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The Problem

In “Conformal invariance of planar loop-erased random
walks and uniform spanning trees” (AOP, 2004), Lawler,
Schramm, and Werner showed that the scaling limit of
loop-erased random walk is a process called SLE2

(Schramm-Loewner Evolution with parameter 2). The proof
is qualitative and no rate of convergence immediately
follows from it.

Schramm’s ICM 2006 Open Problem 3.1: “Obtain
reasonable estimates for the speed of convergence of the
discrete processes which are known to converge to SLE.”

In this talk, we consider the convergence of loop-erased
random walk to radial SLE2.
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Loop-Erased Random Walk

Consider a connected graph G ⊆ Z2, a vertex a ∈ G, and a
nonempty set V ⊂ G. Loop-erased random walk (LERW) γ
from a to V is defined as follows:
Let {S(n)}n≥0 be simple random walk on G started at a and
TV = inf{n ≥ 0 : S(n) ∈ V}. γ = (γ0, . . . , γℓ) is defined
inductively by

γ0 = a,
for n ≥ 0,

if γn ∈ V , n = ℓ,
if γn 6∈ V , γn+1 = S(k + 1), where
k = max{m ≤ TV : S(m) = γn}.

For a,b ∈ Z2, the loop-erasure of S from a to b and of its
time-reversal are not usually the same (path by path).
However, they have the same distribution.
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The Loewner Equation

Consider a simple curve
γ : [0,∞] → Ū = {z ∈ C : |z| ≤ 1} in the unit disk going
from the boundary to the origin, i.e., γ(0) ∈ ∂U and
γ(∞) = 0.
By the Riemann mapping theorem, for all s ≥ 0, there
is a unique conformal map gs : U \ γ(0, s] → U such
that gs(0) = 0,g′

s(0) > 0.
g′

s is increasing in s, so we can reparametrize γ by
capacity t so that g′

t(0) = et .
The maps gt satisfy the Loewner equation

∂tgt(z) = gt(z)
W (t) + gt(z)

W (t) − gt(z)
, g0(z) = z,

where W (t) = limz→γ(t) gt(z). W is the driving function
of the curve γ.
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The Loewner Map

gt

b
b

γ([0, t])
Wt
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The Schramm-Loewner Evolution (SLE)

Instead of obtaining a driving function W from a simple
curve γ, we can also start with the driving function W and
obtain a family of maps g. from it via Loewner’s equation.

If W : [0,∞) → ∂U is continuous, then for every z ∈ Ū, there
is a solution gt(z) to the Loewner (O)DE up to some time
τ(z). If we let Kt = {z ∈ Ū : τ(z) ≤ t},gt is then defined
precisely on U \ Kt .

The (radial) Schramm-Loewner Evolution (SLE) is defined
to be the process (Kt)t≥0 obtained from Loewner’s equation
when using W (t) = eiBκt , where B is a standard Brownian
motion:

∂gt(z) = −gt(z)
gt (z) + eiBκt

gt(z) − eiBκt
, g0(z) = z.
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The SLE Curve

Definition

The SLE curve (or trace) is γ(t) = g−1
t (W (t)), t ≥ 0.

Theorem (Rohde-Schramm, 2001)

With probability one,

0 ≤ κ ≤ 4: γ(t) is a random, simple curve avoiding the
unit circle.

4 < κ < 8: γ(t) is not a simple curve. It has double
points, but does not cross itself! These paths do hit the
unit circle.

κ ≥ 8: γ(t) is a space filling curve. It has double points,
but does not cross itself. Yet it is space-filling...
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The SLE Curve

Theorem (Rohde-Schramm, 2001)

With probability one,

0 ≤ κ ≤ 4: γ(t) is a random, simple curve avoiding the
unit circle.

4 < κ < 8: γ(t) is not a simple curve. It has double
points, but does not cross itself! These paths do hit the
unit circle.

κ ≥ 8: γ(t) is a space filling curve. It has double points,
but does not cross itself. Yet it is space-filling...

Theorem (Beffara, 2008)

With probability one, the Hausdorff dimension of the SLEκ
trace is

min
{

1 +
κ

8
,2
}

.
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Other SLE’s

In general simply connected domains D, we can define
radial SLE from w ∈ ∂D to z ∈ D as the conformal image of
radial SLE in the unit disk under the map ψ : U 7→ D with
ψ(1) = w and ψ(0) = z.

There is a half-plane version of SLE, going from 0 to ∞ in
{z ∈ C : Im(z) ≥ 0}, called chordal SLE. It satisfies

∂gt(z) =
2

gt(z) − Bκt
, g0(z) = z.

Via conformal mapping, one can define chordal SLE in
simply connected domains D going from w ∈ ∂D to z ∈ ∂D.
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The Success Story of SLE

Application to planar Brownian motion:

dimH(frontier) = 4/3, dimH(cutpoints) = 3/4.

SLE2 is the scaling limit of LERW.

SLE3 is the scaling limit of the critical Ising model
interface.

SLE4 is the scaling limit of the harmonic explorer and
the discrete Gaussian free field interface.

SLE6 is the scaling limit of the critical percolation
exploration path on the triangular lattice.

SLE8 is the scaling limit of the uniform spanning tree
Peano curve.

SLE8/3 is conjectured to be the scaling limit of the
self-avoiding walk.
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From LERW to SLE

Setting:

Let D ∋ 0 be a simply connected planar domain with
1
nZ

2 grid domain approximation Dn ⊂ C. (A grid domain
D is a domain whose boundary is a union of edges of
the scaled lattice.)
ψDn : Dn → D, ψDn(0) = 0, ψ′

Dn
(0) > 0.

γn: time-reversed LERW from 0 to ∂Dn (on 1
nZ

2).
γ̃n = ψDn(γn) is a path in D. Parametrize by capacity.
Wn(t) = W0eiϑn(t): the Loewner driving function for γ̃n.
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LSW’s result

A weak form of the convergence result is the following:

Theorem (Lawler, Schramm, Werner, 2004)

Let D be the set of simply connected grid domains with
0 ∈ D,D 6= C. For every T > 0, ǫ > 0, there exists
n = n(T , ǫ) such that if D ∈ D has inner radius > n, then
there exists a coupling between loop-erased random walk γ
from ∂D to 0 in D and Brownian motion B started uniformly
on [0,2π] such that

P(sup{|θ(t) − B2t | : t ∈ [0,T ] > ǫ} < ǫ,

where θ(t) satisfies W (t) = W (0)eiθ(t) and W (t) is the
driving process of γ in Loewner’s equation.

This result leads to the stronger convergence of paths with
respect to Hausdorff metric.
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Ideas of Proof

Three main steps:

1 Find a discrete martingale observable for the LERW
path. Prove that it converges to something conformally
invariant involving γ(t).

2 Use Step 1 together with the Loewner equation to show
that the Loewner driving function is almost a martingale
with the right (conditional) variance.

3 Use Step 2 and Skorokhod embedding to couple the
Loewner driving function with a Brownian motion and
show that they are uniformly close with high probability.

To obtain a rate we re-examined these steps to find explicit
bounds on error terms.
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bounds on error terms.
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A Martingale Observable

The martingale observable used by
Lawler-Schramm-Werner is the discrete Poisson kernel:

Fix n ∈ N and z ∈ V (Dn) := Dn ∩ Z2 and let

Mk = Mk(z) :=
Hk (z, γn(k))

Hk (0, γn(k))
, k ≥ 0,

where for x ∈ V (Dn) \ γn[0, k ], Hk (x , γn(k)) is the probability
that simple random walk started at x exits the slit domain
Dn \ γn[0, k ] at γn(k), i.e., discrete harmonic measure.

One can show that Mk is a martingale with respect to
γn[0, k ] and for fixed k , Mk(·) is discrete harmonic.
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Discrete and Continuous Poisson Kernels

The next step is to show that for appropriate z when n is
large, the discrete and continuous Poisson kernels are
close:

Hk (z, γn(k))

Hk(0, γn(k))
≈ 1 − |ψk (z)|2

|ψk (z) − ψk (γn(k))|2

with explicit error terms (in terms of the lattice scale 1/n).
Here ψk : Dn \ γn[0, k ] → D.

Kozdron-Lawler have a similar estimate in Estimates of
Random Walk Exit Probabilities and Application to LERW.
However, it is in a slightly different setting (union of squares
domains) and isn’t optimal.



A Rate of
Convergence

for
Loop-Erased
Random Walk

Christian
Beneš

Introduction
The Problem

The Protagonists

Loop-Erased
Random Walk

An Eight-Slide
Introduction to SLE

Convergence
of LERW to
SLE2

A Rate of
Convergence
Step 1: An
Observable

A Green’s Function
Estimate

Step 2: The Driving
Function

Step 3: From Driving
Function to Brownian
Motion

Discrete and Continuous Poisson Kernels

The next step is to show that for appropriate z when n is
large, the discrete and continuous Poisson kernels are
close:

Hk (z, γn(k))

Hk(0, γn(k))
≈ 1 − |ψk (z)|2

|ψk (z) − ψk (γn(k))|2

with explicit error terms (in terms of the lattice scale 1/n).
Here ψk : Dn \ γn[0, k ] → D.

Kozdron-Lawler have a similar estimate in Estimates of
Random Walk Exit Probabilities and Application to LERW.
However, it is in a slightly different setting (union of squares
domains) and isn’t optimal.



A Rate of
Convergence

for
Loop-Erased
Random Walk

Christian
Beneš

Introduction
The Problem

The Protagonists

Loop-Erased
Random Walk

An Eight-Slide
Introduction to SLE

Convergence
of LERW to
SLE2

A Rate of
Convergence
Step 1: An
Observable

A Green’s Function
Estimate

Step 2: The Driving
Function

Step 3: From Driving
Function to Brownian
Motion

Discrete and Continuous Poisson Kernels

Theorem (B-Johansson-Kozdron, 2010)

Let 0 < ǫ < 1/4 and let 0 < ρ < 1 be fixed. Suppose that D
is a grid domain with inrad(D) ≥ n. Furthermore, suppose
that x ∈ D ∩ Z2 with |ψD(x)| ≤ ρ and u ∈ V∂(D). If both x
and u are accessible by a simple random walk starting from
0, then

HD(x ,u)

HD(0,u)
=

1 − |ψD(x)|2
|ψD(x) − ψD(u)|2 · [ 1 + O(n−(1/4−ǫ)) ].
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Proving the Closeness of the Poisson Kernels

The proof relies on the fact that for all ǫ > 0, we can find
δ > 0 such that if

D is a(n appropriate) grid domain,

E ⊂ ∂D is a union of edges of Z2,

x is far enough from ∂D,

then
H(x) ≥ ǫ⇒ h(x) ≥ δ, (*)

where h(x) = hD(x ,E) is the discrete harmonic measure of
E at x and H(x) is its continuous analogue.

The implication in (*) is generally not satisfied by grid
domains (problems arise with fjords or channels).
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Proving the Closeness of the Poisson Kernels

To get around this problem, one can cut off anything in the
domain that isn’t accessible by random walk started at x by
creating a Union of Big Squares (UBS) domain D0, which is
the union of squares of side length 2 centered at the points
of V0(D).
Beurling’s theorem implies that if the Poisson kernels are
close in D0, they are close in D: If inrad(D) ≥ n,

∂ψD(D0) ⊂ A(1 − cn−1/2,1).

The conformal map from ∂ψ(D0) to D is almost the identity
and one can show (writing ψ0 for ψD0

) that

|ψ0(x)| = |ψD(x)| + O
(

n−1/2 log n
)

and
ψ0(u) = ψD(u) + O

(

n−1/4
)

.
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Proving the Closeness of the Poisson Kernels

|ψ0(x)| = |ψD(x)| + O
(

n−1/2 log n
)

.

and
ψ0(u) = ψD(u) + O

(

n−1/4
)

.

Suppose that we know

HD0
(x ,u)

HD0
(0,u)

=
1 − |ψ0(x)|2

|ψ0(x) − ψ0(u)|2 · [ 1 + O(n−(1/4−ǫ)) ].

Then

HD(x ,u)

HD(0,u)
=

1 − |ψD(x)|2
|ψD(x) − ψD(u)|2 · [ 1 + O(n−(1/4−ǫ)) ].
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Proving the Closeness of the Poisson Kernels

HD0
(z,w) =

1
4

∑

y∼w

GD0
(z, y),

so
HD0

(x,u)

HD0
(0,u) = 1−|ψ0(x)|2

|ψ0(x)−ψ0(u)|2
· [ 1 + O(n−(1/4−ǫ)) ] follows

(somewhat directly) from

Theorem

For 0 < ǫ < 1/4 and 0 < ρ < 1, if D is UBS with
inrad(D) = n, x , y ∈ D ∩ Z2 with |ψD(x)| ≤ ρ and
|ψD(y)| ≥ 1 − n−(1/4−ǫ), then

GD(x , y)

GD(y)
=

1 − |ψD(x)|2
|ψD(x) − eiθD(y)|2 · [ 1 + O(n−(1/4−ǫ)) ]

where GD is Green’s function for SRW on D ∩ Z2.
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An Estimate for Exiting the Domain

Since
gD(z) = Ez[log |BTD

|] − log |z|
and

GD(x) = Ex [a(SτD)] − a(x),

where a(x) = 2
π log |x | + k0 + O(|x |−2), a key computation

for comparing Poisson kernels is:

Proposition

For any ǫ > 0 there exists c > 0 such that if D is a UBS
domain with inrad(D) = n, then for |x | ≤ n2,

|Ex [log |BT |] − Ex [log |Sτ |]| ≤ cn−(1/2−ǫ),

where T = inf{t ≥ 0 : Bt 6∈ D}, τ = inf{k ≥ 0 : S(k) 6∈ D}.
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KMT Approximation

To prove this proposition, we couple B and S using the KMT
approximation:

Theorem

There exist a probability space containing a planar standard
Brownian motion and a two-dimensional simple random
walk and a constant c > 0 such that for every λ > 0, every
n ∈ N,

P( sup
0≤t≤n

|S2t − Bt | > c(λ+ 1) log n) ≤ cn−λ.
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An Estimate for Exiting the Domain

A number of configurations can make | log |BT | − log |Sτ ||
unusually large, for instance if:

we are on one of the rare events of KMT.

T is very large, meaning that KMT has “lost strength"

|BT | and |Sτ | are very large
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An Estimate for Exiting the Domain

Suppose the starting point x is 0. We define

Ak = {|BT | ∈ [n1+kǫ,n1+(k+1)ǫ)}, k ≥ 0

Bℓ = {T ∈ [nℓǫ,n(ℓ+1)ǫ)}, ℓ ≥ 0

Cm = {|BT − Sτ | ∈ [nmǫ,n(m+1)ǫ)},m ≥ 0

Hr = { sup
0≤t≤T

|Bt − St | ∈ [cr log T , c(r + 1) log T )}, r ≥ 0,

and
Ek ,ℓ,m,r = Ak ∩ Bℓ ∩ Cm ∩Hr .

Then, obviously,

|E [log |BT |] − E [log |Sτ |]|
≤

∑

k ,ℓ,m,r≥0

E [
∣

∣ log |BT | − log |Sτ |
∣

∣1{Ek ,ℓ,m,r}].

(1)
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Technical Ingredients

Lemma

If B is a planar Brownian motion, S a planar simple random
walk, there exists a constant C > 0 such that for every
n ≥ 0, every r ≥ 1,

P( sup
0≤t≤n

|B(t)| ≥ r
√

n) ≤ C exp
{

−r2/2
}

, (2)

P( max
0≤k≤2n

|S(k)| ≥ r
√

n) ≤ C exp
{

−r2/4
}

. (3)
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Technical Ingredients

Lemma

planar simple random walk, there exists a constant C > 0
such that for every n ≥ 0, every r ≥ 1,

P( sup
0≤t≤n

|B(t)| ≤ r−1√n) ≤ exp
{

−Cr2
}

, (4)

P( max
0≤k≤2n

|S(k)| ≤ r−1√n) ≤ exp
{

−Cr2
}

.
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Technical Ingredients

Lemma (Beurling Estimate)

There exists a constant c > 0 such that for any R ≥ 1, any
x ∈ C with |x | ≤ R, any A ⊂ C with [0,R] ⊂ {|z| : z ∈ A},

Px (ξR ≤ TA) ≤ c (|x |/R)1/2 , (5)

where ξR = inf{t ≥ 0 : |B(t)| ≥ R} and
TA = inf{t ≥ 0 : B(t) ∈ A}, where B is planar Brownian
motion.
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An Estimate for Exiting the Domain

The sum
∑

k ,ℓ,m,r≥0

E [
∣

∣ log |BT | − log |Sτ |
∣

∣1{Ek ,ℓ,m,r}]

is difficult to evaluate, partly because under the KMT
coupling, B and S are not jointly Markov. However, the
dominant term in the sum is easy to detect heuristically:

| log |BT |−log |Sτ || = O(log(1+
|BT − Sτ |

|BT |
)) = O(

|BT − Sτ |
|BT |

).

Most likely, |BT | ≈ n. On this event, for
a ≤ 1,P(|BT − Sτ | ≈ na) ≤ n−a/2, by Beurling. The
contribution of this event to the sum is therefore

n−a/2na/n = na/2−1.

This is maximal when a = 1. The cases a > 1 all yield a
smaller contribution to the sum.
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Completing the Main Estimate

Theorem

For any ǫ > 0 there exists c > 0 such that if D is a UBS
domain with inrad(D) = n, then for |x | ≤ n2,

|Ex [log |BT |] − Ex [log |Sτ |]| ≤ cn−(1/2−ǫ),

where T = inf{t ≥ 0 : Bt 6∈ D}, τ = inf{k ≥ 0 : S(k) 6∈ D}.

This theorem gives bad estimates for Green’s functions if x
is close to ∂D. To complete the proof of our Poisson kernel
estimate, a number of technical results based on the
distortion theorem, Koebe theorem, Beurling estimates, etc.
were needed.
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The needed Tools from Complex Analysis

Theorem

Let D be a simply connected domain and suppose
f : D → C is a conformal map. Set d = d(z, ∂D) for z ∈ D.
If |z − w | ≤ rd , then

1 − r
(1 + r)3 |f

′(z)| ≤ |f ′(w)| ≤ 1 + r
(1 − r)3 |f

′(z)|,

|f ′(z)|
(1 + r)2 |z − w | ≤ |f (z) − f (w)| ≤ |f ′(z)|

(1 − r)2 |z − w |,

and
B(f (z),d |f ′(z)|/4) ⊂ f (D),

where B(w , ρ) denotes the open disk of radius ρ around w .
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Finding the Mean and Variance of the Driving
Function

We now apply

HD(x ,u)

HD(0,u)
=

1 − |ψD(x)|2
|ψD(x) − ψD(u)|2

[

1 + O

(

n−1/4 log n
|ψD(x) − ψD(u)|

) ]

to the domains Dn \ γn[0, k ]:
Choose k = k(n) so that tk , the capacity of γn[0, k ] is on an
intermediate scale (of order n−1/6).
Fix an appropriate z ∈ V (Dn) and set

λk :=
1 − |ψk (z)|2

|ψk (z) − ψk (γn(k))|2 =
Re(ψk (γn(k))) + Re(ψk (z))

Re(ψk (γn(k))) − Re(ψk (z))
.

This is almost a martingale with respect to γn[0, j].
We can express λk in terms of ψ0, the Loewner equation, tk
and ϑ(tk ) = ψk (γn(k)).



A Rate of
Convergence

for
Loop-Erased
Random Walk

Christian
Beneš

Introduction
The Problem

The Protagonists

Loop-Erased
Random Walk

An Eight-Slide
Introduction to SLE

Convergence
of LERW to
SLE2

A Rate of
Convergence
Step 1: An
Observable

A Green’s Function
Estimate

Step 2: The Driving
Function

Step 3: From Driving
Function to Brownian
Motion

Finding the Mean and Variance of the Driving
Function

We now apply

HD(x ,u)

HD(0,u)
=

1 − |ψD(x)|2
|ψD(x) − ψD(u)|2

[

1 + O

(

n−1/4 log n
|ψD(x) − ψD(u)|

) ]

to the domains Dn \ γn[0, k ]:
Choose k = k(n) so that tk , the capacity of γn[0, k ] is on an
intermediate scale (of order n−1/6).
Fix an appropriate z ∈ V (Dn) and set

λk :=
1 − |ψk (z)|2

|ψk (z) − ψk (γn(k))|2 =
Re(ψk (γn(k))) + Re(ψk (z))

Re(ψk (γn(k))) − Re(ψk (z))
.

This is almost a martingale with respect to γn[0, j].
We can express λk in terms of ψ0, the Loewner equation, tk
and ϑ(tk ) = ψk (γn(k)).



A Rate of
Convergence

for
Loop-Erased
Random Walk

Christian
Beneš

Introduction
The Problem

The Protagonists

Loop-Erased
Random Walk

An Eight-Slide
Introduction to SLE

Convergence
of LERW to
SLE2

A Rate of
Convergence
Step 1: An
Observable

A Green’s Function
Estimate

Step 2: The Driving
Function

Step 3: From Driving
Function to Brownian
Motion

Finding the Mean and Variance of the Driving
Function

We now apply

HD(x ,u)

HD(0,u)
=

1 − |ψD(x)|2
|ψD(x) − ψD(u)|2

[

1 + O

(

n−1/4 log n
|ψD(x) − ψD(u)|

) ]

to the domains Dn \ γn[0, k ]:
Choose k = k(n) so that tk , the capacity of γn[0, k ] is on an
intermediate scale (of order n−1/6).
Fix an appropriate z ∈ V (Dn) and set

λk :=
1 − |ψk (z)|2

|ψk (z) − ψk (γn(k))|2 =
Re(ψk (γn(k))) + Re(ψk (z))

Re(ψk (γn(k))) − Re(ψk (z))
.

This is almost a martingale with respect to γn[0, j].
We can express λk in terms of ψ0, the Loewner equation, tk
and ϑ(tk ) = ψk (γn(k)).



A Rate of
Convergence

for
Loop-Erased
Random Walk

Christian
Beneš

Introduction
The Problem

The Protagonists

Loop-Erased
Random Walk

An Eight-Slide
Introduction to SLE

Convergence
of LERW to
SLE2

A Rate of
Convergence
Step 1: An
Observable

A Green’s Function
Estimate

Step 2: The Driving
Function

Step 3: From Driving
Function to Brownian
Motion

Finding the Mean and Variance of the Driving
Function

We can Taylor-expand λk − λ0, take expectations and
compare coefficients; the fact that λk is almost a martingale
implies (after some work involving the Beurling and
distortion estimates) that

E[ϑ(tk )] = O
(

n−1/4 log n
)

and
E[ϑ(tk )2 − 2tk ] = O

(

n−1/4 log n
)

.
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Step 3: From Driving
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Motion

Coupling the Driving Function with Brownian
Motion

Grow a macroscopic piece of the curve (capacity of order
1), pieced together by ≈ n1/6 intermediate scale pieces of
the curve (γ([tmk−1 , tmk ])).

The pieces correspond to increasing times/capacities tmk .
From Step 2, k 7→ ϑ(tmk ) is almost, though not quite, a
martingale (with small increments). However,

ξj = ϑ(tmj ) − ϑ(tmj−1) − E [ϑ(tmj ) − ϑ(tmj−1)|γ[0, tmj−1 ]]

is a martingale difference sequence and

Mk =

k
∑

j=0

ξj

can be embedded into Brownian motion.
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Coupling the Driving Function with Brownian
Motion

Lemma (Skorokhod embedding theorem)

If (Mn)n≤N is an (Fn)n≤N martingale, with
‖Mn − Mn−1‖∞ ≤ 2 δ and M0 = 0 a.s., then there are
stopping times 0 = τ0 ≤ τ1 ≤ · · · ≤ τN for standard
Brownian motion (Bt , t ≥ 0), such that (M0,M1, . . . ,MN) and
(B(τ0),B(τ1), . . . ,B(τN)) have the same law. Moreover, one
can impose for n = 0,1, . . . ,N − 1E[τn+1 − τn |B[0, τn]

]

= E[(B(τn+1) − B(τn))
2 |B[0, τn]

]

,E[(τn+1−τn)
p |B[0, τn]

]

≤ CpE[(B(τn+1)−B(τn))
2p |B[0, τn]

]

for constants Cp <∞, and also

τn+1 ≤ inf {t ≥ τn : |Bt − Bτn | ≥ 2 δ} .
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Coupling the Driving Function with Brownian
Motion

We get stopping times τj such that:

B(τj) ≈ ϑ(tmj ).

To show that the “Brownian motion time” is close to 2×
capacity time, i.e., τj ≈ 2tmj , we consider the natural “time”
associated to M:

Yk :=

k
∑

j=1

ξ2
j , k = 1, . . . ,K .

and first show that Yk is close to 2tmk , using a martingale
maximal inequality due to Haeusler and the fact that

E[ϑ(tk )2 − 2tk ] ≈ 0.
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Haeusler’s Inequality

Lemma

Let ξk , k = 1, . . . ,K , be a martingale difference sequence
with respect to the filtration Fk . Then for all λ,u, v > 0

P



 max
1≤j≤K

|
j
∑

k=1

ξk | ≥ λ



 ≤
K
∑

k=1

P(|ξk | > u)

+ 2P

(

K
∑

k=1

E(ξ2
k |Fk−1) > v

)

+ exp{λu−1(1 − log(λuv−1))}.
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A Rate

All of this gives

Theorem (B-J-K, 2010)

Let 0 < ǫ < 1/24 be fixed, and let D be a simply connected
domain with inner radius 1. For every T > 0 there exists an
n0 <∞ depending only on T such that whenever n > n0

there is a coupling of γn with Brownian motion Bt , t ≥ 0,
where eiB0 is uniformly distributed on the unit circle, with the
property that

P

(

sup
0≤t≤T

|Wn(t) − eiB2t | > n−(1/24−ǫ)

)

< n−(1/24−ǫ).
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Transferring (nontrivially) an estimate for the chordal SLE
map close to the tip to the radial case also gives

Theorem
Let 0 < t ≤ t0 where t0 is small enough. There exists c <∞
such that for n sufficiently large there is a coupling of LERW
γ̃n with SLE2 γ̃ such that if p < (15 − 8

√
3)/66,

P
(

dH (γ̃n[0, t] ∪ ∂D, γ̃[0, t] ∪ ∂D) > c(log n)−p) < c(log n)−p.

Here, for two compact sets A, B ⊂ C,
dH(A,B) = inf

{

ǫ > 0 : A ⊂ ⋃z∈B D(z, ǫ), B ⊂ ⋃z∈A D(z, ǫ)
}

denotes Hausdorff distance.
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