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Abstract

Zeitlin’s model is a spatial discretization for the 2-D Euler equations on the flat
2-torus or the 2-sphere. Contrary to other discretizations, it preserves the underlying
geometric structure, namely that the Euler equations describe Riemannian geodesics on
a Lie group. Here we show how to extend Zeitlin’s approach to the axisymmetric Euler
equations on the 3-sphere. It is the first discretization of the 3-D Euler equations that
fully preserves the geometric structure. Thus, this finite-dimensional model admits
Riemannian curvature and Jacobi equations, which are discussed.
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1 Introduction

Euler’s [7] equations for an ideal fluid are the second-oldest partial differential equations
ever written down.1 They are widely studied, but many of their aspects remain abstruse.
It is therefore important to find finite-dimensional models that preserve as much of their
structure as possible, both for theoretical purposes and for numerical simulation. In par-
ticular, the equations describe geodesics in the group of volume preserving diffeomorphisms
of a domain under a right-invariant metric corresponding to kinetic energy (as described by
Arnold [1]). A candidate for modeling this structure is a finite-dimensional Lie group with a
right-invariant Riemannian metric. For the 2-D Euler equations, an effective family of such
models was given by Zeitlin, first on the flat torus [26] and then on the sphere [27]. The
latter uses spherical harmonics and their relation to representation theory for SO(3), such
that the approximating groups are the special unitary groups SU(n) for positive integers n.
In consequence, these models respect the SO(3) symmetry of the sphere, which implies bet-
ter convergence and less Gibbs phenomena than the corresponding torus models (which fail
to preserve the translational symmetry). Zeitlin’s model has been exploited to study the
long-time behavior of spherical solutions, by the first author and others [17, 18, 19, 5, 6, 8].

In this note we show how to extend Zeitlin’s model to the three-dimensional (3-D) case.
On the 3-sphere, the Hopf vector field generates a family of isometries, and its flow lines are
all circles of the same length. The quotient by this flow is the well-known Hopf fibration
onto the 2-sphere. Solutions of the 3-D Euler equation that commute with this Hopf flow are
called axisymmetric by analogy with the rotation field in 3-space, and the 3-D axisymmetric
Euler equation reduces to a pair of equations on the 2-sphere [13]. These equations can be
approximated by the Zeitlin model in the same way as in the two-dimensional case, and
we end up with a model for axisymmetric 3-D Euler equations on 3-spheres in terms of a
finite dimensional space su(n) × u(n) equipped with a twisted Lie algebra product. We will
describe this Lie algebra structure and some aspects of its geometry, along with results of
3-D numerical simulations obtained by the same techniques as in the 2-D case.
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1Only the wave equation is older.
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2 Background

2.1 General aspects

For the material in this portion, we refer to the monograph by Arnold and Khesin [2]. Let
M be a compact simply connected Riemannian manifold without boundary, either S2 or S3

with the usual round metric of constant curvature 1. Euler’s equations for the velocity field
u(t, x) of an ideal fluid on M take the form

u̇+ ∇uu = −∇p, div u = 0,

where u̇ denotes derivative with respect to time and the pressure p is determined implicitly
by the volume preserving constraint via ∆p = − div (∇uu). Eliminating the pressure by
taking the curl gives two versions of the equation for the vorticity ω = curlu, depending on
the dimension:

ω̇ + u · ∇ω = 0, ω = curlu, a function in two dimensions; (1)

ω̇ + [u, ω] = 0, ω = curlu, a vector field in three dimensions. (2)

Since M is simply connected, the curl ω completely determines the divergence-free field
u via a Biot-Savart operator. In two dimensions we can write u = ∇⊥ψ where ψ is a stream
function and u is defined in terms of the area 2-form µ by the condition that ιuαµ = −α∧dψ
for every 1-form α on M ; with this convention2 the vorticity becomes ω = ∆ψ and we have
u · ∇ω = {ψ, ω} in terms of the Poisson bracket defined by dψ ∧ dω = {ψ, ω}µ, so the 2-D
Euler equation becomes

ω̇ + {ψ, ω} = 0, ∆ψ = ω. (3)

The flow of the time-dependent velocity field is denoted by γ, satisfying

γ̇(t, x) = u
(
t, γ(t, x)

)
, γ(0, x) = x,

and the volume preserving condition detDxγ ≡ 1. The group of such volume preserving
diffeomorphisms is denoted Diffµ(M). In terms of the flow γ, the vorticity equations (1)–(2)
can be solved to give the vorticity transport laws

ω(t, γ(t, x)) = ω0(x) (2-D), ω(t, γ(t, x)) = Dxγ(t, x)ω0(x) (3-D).

These correspond to the left action of γ(t) ∈ Diffµ(M) on the initial vorticity configura-
tion ω0.

If G is a group (finite- or infinite-dimensional) with a right-invariant metric ⟨·, ·⟩, then
the equation for a geodesic γ(t) ∈ G starting at the identity can be written as the coupled
system

γ̇(t) = u(t)γ(t), u̇(t) + ad⋆u(t)u(t) = 0, γ(0) = id, u(0) = u0 ∈ g, (4)

2Many authors choose the opposite convention for the stream function, which will flip the sign in all
equations but otherwise does not matter.
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where ad⋆ is the operator defined by

⟨ad⋆uv, w⟩ = ⟨v, aduw⟩ ∀u, v, w ∈ g. (5)

The equation for γ is called the flow equation, while the equation for u is called the Euler-
Arnold equation. The Euler equations correspond to G = Diffµ(M), with g given by the
divergence-free vector fields, and the right-invariant metric given by the L2 kinetic energy

⟨u, v⟩ =

∫
M

g(u, v)µg.

The curvature tensor is given for vectors u and v by the formula [12]

⟨R(u, v)v, u⟩ = 1
4
|ad⋆uv + ad⋆vu+ aduv|2 − ⟨ad⋆uv + aduv, aduv⟩ − ⟨ad⋆uu, ad⋆vv⟩, (6)

which comes from completing the square in the Arnold formula.
The Jacobi equation is the linearization of the Euler-Arnold equation (4), and splits in

the same way: a Jacobi field J(t) = y(t)γ(t) along a geodesic γ satisfies the equation

ẏ(t) − adu(t)y(t) = z(t), ż(t) + ad⋆u(t)z(t) + ad⋆z(t)u(t) = 0. (7)

Conjugate points along geodesics occur when there is a solution of this equation with y(0) = 0
and y(T ) = 0 for some T > 0. See [11] for a survey of results about curvatures and conjugate
points on Diffµ(M).

2.2 Zeitlin’s model on the 2-sphere

Zeitlin’s model originates from quantization theory developed by Hoppe [9]. The idea is
to replace the Poisson algebra of smooth functions on a symplectic manifold M with a
Lie algebra of skew-Hermitian operators in such a way that (i) the operator eigenvalues
correspond to the function values and (ii) the operator commutator corresponds to the
Poisson bracket. If the manifold M is compact and quantizable (cf. [4]), the operators can be
taken as u(n) matrices in such that the classical limit ℏ → 0 corresponds to n→ ∞. The final
ingredient is a quantum version ∆n : u(n) → u(n) of the Laplacian ∆: C∞(M) → C∞(M).
Zeitlin’s model is then given by

Ẇ +
1

ℏ
[P,W ] = 0, ∆nP = W, (8)

which yields a spatial discretization of the vorticity equation (3).
Hoppe and Yau [10] constructed quantization for M = S2 from representation theory

for so(3). Indeed, for integer n, let s = n−1
2

(the “spin” number). Then construct three
matrices S1, S2, S3 ∈ u(n), with indices labeled from −s to s (instead of 1 to n), such that

• S1 is purely imaginary and symmetric, whose only nonzero entries above the diagonal
are aj,j+1 = i

2

√
s(s+ 1) − j(j + 1);

• S2 is purely real and antisymmetric, whose only nonzero entries above the diagonal are
are bj,j+1 = 1

2

√
s(s+ 1) − j(j + 1);
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• S3 is purely imaginary and diagonal, with diagonal entries cjj = ij.

For example, when n = 3 we get s = 1 and

S1 =
1√
2

0 i 0
i 0 i
0 i 0

 S2 =
1√
2

 0 1 0
−1 0 1
0 −1 0

 , S3 =

−i 0 0
0 0 0
0 0 i

 .

Meanwhile, for n = 4 we get s = 3
2

and

S1 =


0

√
3
2
i 0 0√

3
2
i 0 i 0

0 i 0
√
3
2
i

0 0
√
3
2
i 0

 , S2 =


0

√
3
2

0 0

−
√
3
2

0 1 0

0 −1 0
√
3
2

0 0 −
√
3
2

0

 , S3 =


−3i

2
0 0 0

0 − i
2

0 0
0 0 i

2
0

0 0 0 3i
2

 .

The matrices S1, S2, S3 provide an irreducible representation of the Lie algebra so(3) on Cn,
so they fulfil the commutation relations

[S1, S2] = S3, [S2, S3] = S1, [S3, S1] = S2.

In turn, they induce a representation on u(n) via adS1 , adS2 , adS3 , which, via the Peter–Weyl
theorem, decomposes into odd-dimensional, irreducible so(3)-representations

u(n) = V0 ⊕ V1 ⊕ · · · ⊕ Vn−1, dim(Vℓ) = 2ℓ+ 1.

By decomposing each Vℓ according to its weights m = 0, . . . , ℓ we then obtain a map between
spherical harmonics Y m

ℓ and a matrix basis Tmℓ ∈ Vℓ, which yields the quantization as
the representation morphism Tn : C∞(S2) → u(n). The scaled matrices Xα = ℏSα for
ℏ = 2/

√
n2 − 1 correspond to the Cartesian coordinate functions xα ∈ S2, whereas the

scaled commutator 1
ℏ [·, ·] converges in L∞ to the Poisson bracket {·, ·} as n→ ∞ (cf. Charles

and Polterovich [4]). Furthermore, the Casimir element for the representation on u(n) is the
Hoppe–Yau Laplacian ∆n : u(n) → u(n) given by

∆n =
3∑

α=1

ad2
Si
, i.e., ∆nP =

3∑
α=1

[Sα, [Sα, P ]] (9)

Since the quantization operator Tn is a representation morphism it intertwines the Casimir
operators, i.e., Tn ◦ ∆ = ∆n ◦ Tn. Consequently, the Hoppe–Yau Laplacian has the right
spectrum ∆n

∣∣
Vℓ

= −ℓ(ℓ + 1)id. We refer to Modin and Viviani [20] and references therein

for more details on the S2 quantization, its connection to representation theory, and the
corresponding Euler–Zeitlin equation (8) on u(n).

Contrary to all conventional discretizations, the Euler–Zeitlin equation (8) is itself an
Euler–Arnold equation, for G = SU(n), g = su(n), and the right-invariant metric defined at
the identity by

⟨W,P ⟩ = tr(W∆nP ). (10)

Hence, there is a notion of curvature and Jacobi fields, and these notions in the finite-
dimensional case approximate the corresponding objects in the infinite-dimensional case [15].
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2.3 Axisymmetry on the 3-sphere

The flow of a Killing vector field K on M generates isometries, whose action preserves
solutions of the Euler equation. Consequently, a solution which is initially symmetric will
remain so for all time (see Lichtenfelz et al. [13] for details). At the diffeomorphism group
level, the symmetry corresponds to the flow γ commuting with the flow of K, while at the
vector field level, it corresponds to the vanishing commutator condition [K, u] = 0. On
S2 every Killing field is a rotation around some axis, and the condition [K, u] = 0 is very
restrictive, implying that u must be a steady solution of the Euler equation.

But in three dimensions there is more flexibility, and there is a large family of “ax-
isymmetric” nonsteady solutions [13]. The restriction to such solutions is effectively a two-
dimensional fluid, but with an additional source coming from the “swirl” ⟨u,K⟩. Explicitly,
on the 3-sphere embedded in R4, we may choose a basis of vector fields3

E1 = 1
2
(−x ∂w + w ∂x − z ∂y + y ∂z)

E2 = 1
2
(−y ∂w + z ∂x + w ∂y − x ∂z)

E3 = 1
2
(−z ∂w − y ∂x + x ∂y + w ∂z),

and define a Riemannian metric on S3 so that these are orthonormal (corresponding to
working on a 3-sphere of radius 2). The field E1 is the well-known Hopf field, and the flows
of each Ei are 4π-periodic.

A direct calculation, using the Riemannian curl and divergence, shows that

[E1, E2] = −E3, [E2, E3] = −E1, [E3, E1] = −E2, curlEi = Ei ∀i. (11)

Expressing u =
∑3

i=1 uiEi, the divergence is given by

div u =
3∑
i=1

Eiui,

where Ei acts on functions as a differential operator. If we take K = E1, the conditions
[K, u] = 0 and div u = 0 imply the existence of functions σ̃ and ψ̃ such that

u = σ̃E1 − (E3ψ̃)E2 + (E2ψ̃)E3, E1σ̃ ≡ 0, E1ψ̃ ≡ 0. (12)

We then find that the curl is given by

ω = curlu = (σ̃ + (E2
2 + E2

3)ψ̃)E1 +
(
E3σ̃

)
E2 +

(
E2σ̃

)
E3.

The vorticity form (2) of the Euler equation on S3 then becomes the system

∂t(E
2
2 + E2

3)ψ̃ + B
(
ψ̃, σ̃ + (E2

2 + E2
3)ψ̃

)
= 0, ∂tσ̃ + B

(
ψ̃, σ̃

)
= 0 (13)

where
B(f, g) := (E2f)(E3g) − (E3g)(E2f) (14)

3These are the right-invariant vector fields of the quaternion group, and the scaling by 1
2 is a convenience

to avoid other factors of 2 later on, but neither of these things are important in the bigger picture.
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descends to the Poisson bracket on S2, as we shall see below.
The map Π: R4 → R3 given by

Π(w, x, y, z) =
(
2(wy − xz), 2(xy + wz), w2 + x2 − y2 − z2

)
(15)

takes S3 into S2 and its restriction π : S3 → S2 is the Hopf fibration. We compute that
Dπ(E1) ≡ 0, so the flow circles of K = E1 all map to points in the quotient S3/S1 ≃ S2.
Thus, the conditions from (12) that σ̃ and ψ̃ be K-invariant are precisely what one needs to
have real-valued functions σ and ψ defined on S2 and satisfying σ ◦ π = σ̃ and ψ ◦ π = ψ̃.
The equations (13) then also descend to equations on S2, given by

∆ψ̇ + {ψ,∆ψ + σ} = 0, σ̇ + {ψ, σ} = 0, (16)

where our choices on S3 lead to exactly the standard Laplacian ∆ and the standard Poisson
bracket {·, ·} on S2. Comparing to (3), we see that the 3-D axisymmetric equation reduces to
the 2-D equation when the swirl σ is zero. See Appendix B for details of these computations
in spherical coordinates.

3 The product structure and its discretization

If u and v are axisymmetric vector fields on S3 then [u, v] is again axisymmetric. Indeed,
from the Jacobi identity

[[u, v], K] = −[[K, u]︸ ︷︷ ︸
0

, v] − [[v,K]︸ ︷︷ ︸
0

, u] = 0.

Thus, the space of axisymmetric vector fields makes a Lie sub-algebra. Here we construct the
corresponding Lie algebra structure in terms of the components (ψ, σ) ∈ C∞(S2)×C∞(S2),
for which the axisymmetric 3-D Euler equation (16) on S2 is the Euler-Arnold equation. Once
this structure is established, it becomes evident how to discretize it via Zeitlin’s approach.

The Lie algebra is modelled on the product TidDiffµ(S2) × C∞(S2), but with a more
complicated Lie algebra than the usual product structures, i.e., the direct product, the
semidirect product, or the central extension. Instead, it is a special case of the Abelian
extension, described in detail by Vizman [25].

Definition 1. Let g be a Lie algebra with a g-module Σ specified by an action map ρ : g →
End(Σ). An Abelian extension of g by Σ is determined by a bilinear skew-symmetric map
b : g× g → Σ which satisfies the 2-cocycle condition∑

cyclic

b([v1, v2], v3) =
∑
cyclic

ρ(v1)b(v2, v3), v1, v2, v3 ∈ g, (17)

where the cyclic sum is taken as in the Jacobi identity for the three vectors. The Lie bracket
on g× Σ is then defined by

[(v1, σ1), (v2, σ2)] =
(
[v1, v2], ρ(v1)σ2 − ρ(v2)σ1 + b(v1, v2)

)
. (18)
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The bracket (18) indeed gives a Lie algebra: antisymmetry is obvious, while the Jacobi
identity follows from the usual Jacobi identity on g and the cocycle condition on b and ρ.
Note that semidirect products correspond to b = 0, while central extensions correspond to
ρ = 0. In what follows, both b and ρ are nonzero.

Proposition 1. With g = TidDiffµ(S2) and Σ = C∞(S2,R), define the action

ρ : g → End(Σ), ρ(v)σ = {ψ, σ} for v = ∇⊥ψ,

and the 2-cocycle

b : g× g → Σ, b(v1, v2) = −{ψ1, ψ2} for vi = ∇⊥ψi.

Then the Abelian extension in Definition 1 reproduces the Lie algebra of axisymmetric volume
preserving diffeomorphisms on S3.

Proof. By formula (12), we can write arbitrary elements u1, u2 in the Lie algebra of axisym-
metric volume preserving diffeomorphisms of S3 in the form

ui = σ̃iE1 + ∇̃⊥ψ̃i, ∇̃⊥f := −E3(f)E2 + E2(f)E3,

where ψ̃i and σ̃i are both E1-invariant functions on S3.
From the bracket relations (11), we get [σ̃1E1, σ̃2E1] = 0,

[∇̃⊥ψ̃, σ̃E1] = B(ψ̃, σ̃)E1,

and
[∇̃⊥ψ̃1, ∇̃⊥ψ̃2] = ∇̃⊥B(ψ̃1, ψ̃2) − B(ψ̃1, ψ̃2)E1,

with B defined as in (14). Hence, we obtain

[u1, u2] =
(
B(ψ̃1, σ̃2) + B(σ̃1, ψ̃2) − B(ψ̃1, ψ̃2)

)
E1 + ∇̃⊥B(ψ̃1, ψ̃2).

Identifying each ui with an ordered pair of functions (ψ̃i, σ̃i), this formula tells us that[
(ψ̃1, σ̃1), (ψ̃2, σ̃2)

]
=

(
B(ψ̃1, ψ̃2),B(ψ̃1, σ̃2) + B(σ̃1, ψ̃2) − B(ψ̃1, ψ̃2)

)
.

Under identifications via the Hopf projection π : S3 → S2 as in section 2.3, we have deduced
the Lie algebra structure on g× Σ[

(ψ1, σ1), (ψ2, σ2)
]

=
(
{ψ1, ψ2}, {ψ1, σ2} + {σ1, ψ2} − {ψ1, ψ2}

)
, (19)

and this is precisely the Lie algebra (18) with the given choices of ρ and b.

The L2 kinetic energy metric on divergence-free velocity fields u, v ∈ TidDiffµ(M) of a
Riemannian manifold (M, g) is given by

⟨u, v⟩ =

∫
M

g(u, v)µ.
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For axisymmetric divergence-free fields u on S3 represented by (12) this yields

⟨u, u⟩ =

∫
S3

σ̃2 + (E2ψ̃)2 + (E3ψ̃)2 . (20)

We can compute that for E1-invariant functions ψ̃,

E2
2(ψ̃) + E2

3(ψ̃) = ∆ψ,

in terms of the usual Laplacian on S2, and thus the metric (20) reduces to

⟨u, u⟩ = 4π

∫
S2

σ2 + |∇ψ|2 . (21)

See Appendix B for details of these computations.
The following proposition is essentially the statement that axisymmetric volume preserv-

ing diffeomorphisms constitute a totally geodesic subgroup of all volume preserving diffeo-
morphisms. We provide an explicit derivation, since it also applies to the corresponding
Zeitlin product.

Proposition 2. The Euler–Arnold equation for the Lie algebra TidDiffµ(S2)×C∞(S2), with
bracket (19) and right-invariant metric (21), is given by the equations (16). They describe
axisymmetric solutions to the Euler equations on S3.

Proof. Using (19) and the fact that the adjoint operator is the negative of the Lie bracket
of the right-invariant vector fields, we have for any functions g and σ, and any mean-zero
functions f and ψ, that

ad(ψ,σ)(f, g) =
(
− {ψ, f},−{ψ, g} − {σ, f} + {ψ, f}

)
. (22)

The Euler–Arnold equation is given by

∂t(ψ, σ) + ad⋆(ψ,σ)(ψ, σ) = 0.

Consequently, (ψ, σ) satisfies the Euler–Arnold equation if and only if for every pair of
functions (f, g) we have

EA := ⟨∂t(ψ, σ), (f, g)⟩ + ⟨(ψ, σ), ad(ψ,σ)(f, g)⟩ = 0. (23)

From (21) we then obtain

EA =

∫
S2

gσ̇ − f∆ψ̇ + σ(−{ψ, g} − {σ, f} + {ψ, f}) + ∆ψ{ψ, f} .

Now using the formula
∫
S2(f{g, h} + h{g, f}) = 0, which is essentially an integration by

parts using Stokes’ Theorem, we obtain

EA =

∫
S2

g
(
σ̇ + {ψ, σ}

)
− f

(
∆ψ̇ + {ψ, σ} + {ψ,∆ψ}

)
,

and this is zero for every f and g if and only if ψ and σ satisfy the equations (16).
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3.1 Casimir functions

In addition to the Hamiltonian, Euler–Arnold equations conserve the Casimir functions
associated with the Lie–Poisson structure. For the axisymmetric Euler equation (16) there
are infinitely many Casimir functions, corresponding to the magnetic swirls and cross-helicity
in 2-D incompressible magneto-hydrodynamics [23, 21]. Thus, the situation for axisymmetric
Euler equations is quite different from the full 3-D case, where there are only finitely many
independent Casimirs.

Proposition 3. Consider the Lie algebra g × Σ in Proposition 1. For an arbitrary f ∈
C∞(R), the two functionals on (g× Σ)⋆ ≃ g× Σ given by

Cf =

∫
S2

f ◦ σ, I =

∫
S2

(∆ψ)σ,

are Casimir functions for the corresponding Lie–Poisson structure on (g× Σ)⋆.

Proof. From the governing equations (16) we obtain, first for Cf that

d

dt
Cf = ⟨f ′ ◦ σ, σ̇⟩L2 = ⟨f ′ ◦ σ,−{ψ, σ}⟩L2 = ⟨{f ′ ◦ σ, σ}︸ ︷︷ ︸

0

, ψ⟩L2 = 0,

and then for I that

d

dt
I = ⟨∆ψ, σ̇⟩L2 + ⟨∆ψ̇, σ⟩L2 = ⟨∆ψ, σ̇⟩L2 − ⟨{ψ, σ + ∆ψ}, σ⟩L2 =

− ⟨∆ψ, {ψ, σ}⟩L2 − ⟨{ψ,∆ψ}, σ⟩L2 = 0.

3.2 Spatial discretization via Zeitlin’s approach

We now turn to our main point: a Zeitlin discretization for the Euler–Arnold structure in
Proposition 2.

Theorem 1. Let g = su(n) equipped with the scaled commutator bracket 1
ℏ [·, ·]. With Σ =

u(n), define the action ρ of g on Σ by ρ(P )B = 1
ℏ [P,B], and define a 2-cocycle b : g× g → Σ

by b(P1, P2) = −1
ℏ [P1, P2]. Consider then the Abelian extension in Definition 1 with the Lie

bracket (18). Define an inner product on su(n) × u(n) by〈
(P1, B1), (P2, B2)

〉
= tr(P1∆nP2) − tr(B1B2), (24)

where ∆n is the Hoppe-Yau Laplacian (9). Then the corresponding Euler-Arnold equation is

∆N Ṗ +
1

ℏ
[P,∆nP +B] = 0, Ḃ +

1

ℏ
[P,B] = 0. (25)
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Proof. The ad operator is the negative of the Lie bracket

ad(P,B)(U, V ) =
(
− 1

ℏ
[P,U ],−1

ℏ
[P, V ] +

1

ℏ
[U,B] +

1

ℏ
[P,U ]

)
.

We compute the analogue of (23) by the same method as in the proof of Proposition 2, using
bi-invariance of the trace metric:

EAn : = ⟨(Ṗ , Ḃ), (U, V )⟩ + ⟨(P,B), ad(P,B)(U, V )⟩

= tr
(
Ṗ∆nU

)
− tr

(
ḂV

)
− tr

(
(∆nP )

1

ℏ
[P,U ]

)
+ tr

(
B(

1

ℏ
[P, V ] − 1

ℏ
[U,B] − 1

ℏ
[P,U ])

)
= tr

(
∆nṖU

)
− tr

(
ḂV

)
+ tr

(1

ℏ
[P,∆nP ]U

)
− tr

(1

ℏ
[P,B]V

)
+ tr

(1

ℏ
[P,B]U

)
= tr

(
(∆nṖ +

1

ℏ
[P,∆nP ] +

1

ℏ
[P,B])U

)
− tr

(
(Ḃ +

1

ℏ
[P,B])V

)
.

This is zero for all (V, U) ∈ u(N) × su(N) if and only if equations (25) are satisfied.

From quantization theory we know that if P1, P2 ∈ su(n) are related to ψ1, ψ2 ∈ C∞(S2)
via the quantization Tn described in Section 2.2, then 1

ℏ [P1, P2] → Tn{ψ1, ψ2} as n → ∞ in
the spectral norm on su(n) (see [4] for details). Thus, the equations (25) provide a spatial
discretization of the S3 axisymmetric Euler equations (16).

Due to the Euler–Arnold structure, the discretized equations (25) preserve analogues of
the Casimir functions in Proposition 3.

Proposition 4. With g× Σ as in Theorem 1, the Casimir functions are

Cn
f = tr(f(iB)), In = − tr(B∆nP )

where f is an arbitrary real analytic function. These functions are thus conserved by the
Euler–Arnold equations (25) on g× Σ.

4 The Jacobi equation

Now we consider some geometric aspects of the 3-D Zeitlin model (25). Recall that the
Jacobi equation along geodesics is given by equation (7). It describes stable perturbations,
which lead to conjugate points, but also possible instabilities. We can linearize the equations
(25) for perturbations B + ϵZ1 and P + ϵZ2 to obtain

Ż1(t) +
1

ℏ
[P (t), Z1(t)] +

1

ℏ
[Z2(t), B(t)] = 0

∆N Ż2(t) +
1

ℏ
[Z2(t),∆NP (t)] +

1

ℏ
[P (t),∆NZ2(t)] +

1

ℏ
[P (t), Z1(t)] +

1

ℏ
[Z2(t), B(t)] = 0.

(26)

Similarly, using the formula (19) for the Lie bracket, the linearized flow equation (7) for a
Jacobi field J with right translated generators Y1 and Y2 takes the form

Ẏ1(t) +
1

ℏ
(
[B(t), Y2(t)] + [P (t), Y1(t)] − [P (t), Y2(t)]

)
= Z1(t)

Ẏ2(t) +
1

ℏ
[P (t), Y2(t)] = Z2(t).

(27)
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Our goal in this section is to illustrate how to solve this system of equations in a simple case.
Steady solutions of the Euler-Arnold equation (25) are given by matrices (B,P ) satisfying

[P,B] = 0, [P,∆nP ] = 0.

A simple way to satisfy these equations is to take P = ℏS3 as in Section 2.2, since in
that case we have ∆NP = −2P , and we also take B = ℏS3. This corresponds to taking
σ = ψ = − cos θ on the 2-sphere in the equations (16), so that the underlying 2-D flow on
the 2-D sphere is the rigid rotation by ∇⊥ψ = ∂ϕ in the usual spherical coordinates (θ, ϕ).
The reason taking B = P is the simplest choice is that it reduces the first equation in (27)
to the same form as the second, as we will see.

Theorem 2. For the Euler velocity field in su(n)×u(n) given by P (t) = ℏS3 and B(t) = ℏS3,
let γ(t) with γ(0) = e be the corresponding geodesic curve in the Lie group. For each positive
integers m, ℓ, k with m ≤ ℓ ≤ (n − 1)/2, there are conjugate points γ(T ) to the identity at

times t = 4πkℓ
m

and t = 4kπ(ℓ+1)
m

. Each of these occurs with multiplicity 2 for each distinct
pair (ℓ,m) of positive integers.

Proof. Using P (t) = ℏS3 and B(t) = ℏS3, and writing

C := adS3 ,

the linearized Euler equation (26) becomes

Ż1 = C(Z2 − Z1), ∆N Ż2 = −C(Z1 + Z2 + ∆NZ2). (28)

Meanwhile, the linearized flow equation (27) is given by

Ẏ1 + CY1 = Z1, Ẏ2 + CY2 = Z2. (29)

To solve equations (28)–(29), it is convenient to define an operator

D :=
√

−∆n + 1
4
I − 1

2
I, D(Tℓ,m) = ℓTℓ,m ∀ 0 ≤ ℓ ≤ s, |m| ≤ ℓ. (30)

Note that ∆N = −D(I + D). Since ∆n commutes with C, so does D.
We define the new variables

Z3 = Z1−DZ2, Z4 = Z1 +(D+I)Z2, Y3 = Y1−DY2, Y4 = Y2 +(D+I)Y1 (31)

and observe that the equations (28) can be rewritten in the form

(D + I) d
dt

(Z1 −DZ2) = (D + I)(C(Z2 − Z1) − C(Z1 + Z2 − (D + 1)DZ2)

= −(D + 2I)C(Z1 −DZ2)

which implies that
(D + I) d

dt
Z3 = −(D + 2I)CZ3. (32)

Similarly, we obtain
D d
dt
Z4 = −(D − I)CZ4. (33)

12



We also see that (29) takes the form

d
dt
Y3 + CY3 = Z3,

d
dt
Y4 + CY4 = Z4. (34)

We conclude from (32) that if Z3(0) = 0 then Z3(t) = 0 for all t ≥ 0, and thus by (34)
that Y3(t) = 0 for all t since Y3(0) = 0. Similarly, if Z4(0) = 0, then Y4(t) = 0 for all t.
Furthermore, since both C and D are block-diagonal in the basis Tℓm, with

CTℓm = mTℓ,−m, DTℓm = ℓTℓm, −ℓ ≤ m ≤ ℓ,

we can write equation (32) in block diagonal form. That is, writing

Z3(t) =
s∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(t)Tℓm, Y3(t) =
s∑
ℓ=0

ℓ∑
m=−ℓ

cℓm(t)Tℓm,

we obtain the system

a′ℓ,m(t) =
(ℓ+ 2)m

ℓ+ 1
aℓ,−m(t), c′ℓ,m(t) −mcℓ,−m(t) = aℓ,m(t), −ℓ ≤ m ≤ ℓ.

If m ̸= 0, the solutions with cℓ,m(0) = 0 are easily found to be

cℓ,m(t) =
2(ℓ+ 1)

m
sin

(
mt

2(ℓ+ 1)

)[
aℓ,m(0) cos

(
(2ℓ+ 3)mt

2(ℓ+ 1)

)
+ aℓ,−m(0) sin

(
(2ℓ+ 3)mt

2(ℓ+ 1)

)]
.

Hence we get conjugate points occurring at times t = 4kπ(ℓ+1)
m

, with multiplicity two in each
block. Obviously if m = 0 we simply get cℓ,m(t) = aℓ,m(0)t, and there are no conjugate
points arising from such initial conditions.

Similarly solving the system (33)–(34) for Z4(t) =
∑
bℓ,mTℓ,m and Y4(t) =

∑
dℓ,m(t)Tℓ,m

gives

dℓ,m(t) =
2ℓ

m
sin

(
mt

2ℓ

)[
bℓ,m(0) cos

(
(2ℓ− 1)mt

2ℓ

)
+ bℓ,−m(0) sin

(
(2ℓ− 1)mt

2ℓ

)]
,

and we obtain conjugate points at t = 4kπℓ
m

for every positive integer k, in each block.

The reason the analysis is particularly simple in this case is that the corresponding
vector field on the 3-sphere is a Killing field, and the combinations Z1 + (D + I)Z2 and
Z1 −DZ2 occur naturally when one is computing curl eigenfields. See [22] for details, where
the conjugate points are worked out explicitly along a similar geodesic (however we note
that in that paper one considers the full volume preserving diffeomorphism group, not the
axisymmetric subgroup, so there are fewer conjugate points in the present case).

5 Numerical experiments

Here we give two numerical experiments for the 3-D axisymmetric Zeitlin model (25).4

4A Python-based code for the simulations is available at github.com/klasmodin/quflow.
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To retain the structural benefits of the Zeitlin based spatial discretization, it is essential
to use a temporal discretization that preserves the underlying Lie–Poisson structure, which
in turn implies conservation of Casimir functions. Since the Casimirs for the S3 axisymmetric
Euler equations (16) coincide with those for the 2-D incompressible magnetohydrodynamic
(MHD) equations, we use the Casimir-preserving numerical integration scheme for the Zeitlin
discretization of MHD, developed by Modin and Roop [16]. Thereby, the benefits of the
spatial discretization remain in the fully discretized system of equations.

In addition to visualizations of the fields ∆ψ and σ, we demonstrate the growth of the
supremum norm of the vorticity vector

∥ω∥∞ = sup
x̃∈S3

|ω(x̃)| = sup
x∈S2

√
(∆ψ + σ)2 + |∇σ|2.

The analogous formula for Zeitlin’s model is

∥(∆nP,B)∥∞ =

√√√√∥−(∆nP +B)2 −
3∑

α=1

(∇α
nB)2∥, (35)

where ∥·∥ denotes the spectral norm and ∇α
nB = [Sα, B] for Sα as in Section 2.2.

See [6] for details on how to efficiently compute Tnψ, the corresponding pseudo-inverse
T −1
n P (to obtain visualizations), and solution to the quantized Poisson equation ∆nP = W .

5.1 First simulation: smooth, symmetric data

Let Yℓ,m ∈ C∞(S2) denote the real spherical harmonics. The initial data are

∆ψ
∣∣
t=0

= Y2,1, σ
∣∣
t=0

= Y1,0.

These data are antisymmetric under reflection in the equatorial plane. Consequently, the
geometry corresponds to a hemisphere with no-slip boundary conditions along the equator.

Visualizations of ∆nP and B at various output times are given in Figure 1 for n = 1024.
We see the formation of a shock wave in ∆nP , growing in magnitude, and a corresponding
sharp gradient front in B. This formation indicates fast growth of the sup-norm (35). Indeed,
in Figure 2 the growth is slightly faster than exponential until the resolution allowed by n
is unable to resolve the increasingly steep shock wave front.

5.2 Second simulation: smooth, random data

Here, the initial data are of the form

∆ψ
∣∣
t=0

=
10∑
ℓ=0

ℓ∑
m=−ℓ

aℓ,mYℓ,m, σ
∣∣
t=0

=
10∑
ℓ=0

ℓ∑
m=−ℓ

bℓ,mYℓ,m,

where the coefficients aℓ,m and bℓ,m are drawn as independent samples from the standard
Gaussian distribution. This setup represents generic, smooth initial configurations.
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∆nP at t = 0 B at t = 0

∆nP at t = 10 B at t = 10

∆nP at t = 20 B at t = 20

∆nP at t = 30 B at t = 30

Figure 1: First simulation with n = 1024. Visualization of the evolution of ∆nP (t) and
B(t). Notice the formation of a shock-wave in ∆nP and a corresponding sharp gradient of
B, which implies rapid growth of the supremum norm of the vorticity vector ω.
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Evolution of the vorticity supremum norm for different n

0 5 10 15 20 25 30
t

101

102
‖ω
‖ ∞

n = 64

n = 128

n = 256

n = 512

n = 1024

Figure 2: First simulation. The supremum norm of the 3-D vorticity ω for different choices
of n. While the exact dynamics is accurately resolved, the growth is somewhat faster than
exponential (the dotted line). However, eventually the curve flattens out when the model
at level n ceases to resolve the sharpness of the shock wave seen in Figure 1. Indeed, this
flattening eventually occurs for any n, as all norms are equivalent in finite dimension and
the energy norm is bounded. The time when this flattening begins is thus an indication that
the sharpness of the shock wave is no longer accurately resolved.

Visualizations of ∆nP and B at various output times are given in Figure 3 for n =
1024. For 2-D Euler on S2, generic initial conditions give rise interacting coherent blob
structures [17, 20]. For the axisymmetric 3-D Euler on S3 the situation is different. Indeed,
all the large scale structure of ∆nP and B disperse into higher frequency components, as
captured in Figure 3 at t = 20. Eventually, depending on n, the dispersion cannot continue
further, due to the finite dimensionality of the model, so the sup-norm of ω flattens out, as
seen in Figure 4. Initially it grows exponentially or faster.

A Curvature and exact solutions when n = 2

A.1 Ricci curvature

Here we will compute the sectional curvature and the Ricci curvature for the Zeitlin model on
su(n)×u(n). Already in the simplest possible case where n = 2, this is surprisingly nontrivial.
For Zeitlin’s model on S2, the metric (10) then reduces to a multiple of the bi-invariant metric
on su(2), and the sectional curvature ends up being a positive constant (corresponding to the
well-known identification between SU(2) and the round 3-sphere). However, even though our
metric (24) on su(2) × u(2) restricts to multiples of the bi-invariant metric on each factor,
the curvature takes on both signs due to the nontrivial twisting involved in the product
structure given by Theorem 1.

Theorem 3. If Z = (X, cI + Y ) ∈ su(2) × u(2) for X, Y ∈ su(2) and c ∈ R, then the Ricci
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∆nP at t = 0 B at t = 0

∆nP at t = 1 B at t = 1

∆nP at t = 5 B at t = 5

∆nP at t = 20 B at t = 20

Figure 3: Second simulation with n = 1024. Visualization of the evolution of ∆nP (t) and
B(t). Contrary to the 2-D Euler equations, there is no inverse energy cascade. In particular,
the large scale structure of ∆nP disperse into small scales.
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Evolution of the vorticity supremum norm for different n

0 1 2 3 4 5
t

103

‖ω
‖ ∞

n = 64

n = 128

n = 256

n = 512

n = 1024

Figure 4: Second simulation. The supremum norm of the 3-D vorticity ω for different choices
of n. Initially it grows exponentially, or faster. But eventually, due to the finite n, it flattens
out.

curvature for the metric (24) is

Ric(Z,Z) =
1

4
|Y + 2X|2 − 11

8
|X|2. (36)

In particular the Ricci curvature takes on both signs.

Proof. We first note that the Ricci curvature along the center cI of u(n) vanishes as it
commutes with everything else. We therefore can assume c = 0.

On su(2), the Lie bracket in the basis S1, S2, S3 can be identified with the usual cross
product in R3, treating (S1, S2, S3 as an oriented orthonormal basis. Hence we have adXY =
−X × Y for X, Y ∈ su(2). Since S1, S2, and S3 are all eigenvectors of the Hoppe-Yau
Laplacian (9) with eigenvalue −2, we can simply replace ∆2 = −2I, which simplifies things
greatly. In particular the metric (24) on the product su(2) × su(2) becomes〈

(Y1, X1), (Y2, X2)
〉

= Q(Y1, Y2) + 2Q(X1, X2),

in terms of the bi-invariant metric Q(X1, X2) = − tr(X1X2) on su(2).
We first compute ad⋆. Recalling from (19) that

ad(Y1,X1)(Y3, X3) =
(
−X1 × Y3 − Y1 ×X3 +X1 ×X3,−X1 ×X3

)
, (37)

we find that〈
ad⋆(Y1,X1)

(Y2, X2), (Y3, X3)
〉

=
〈
(Y2, X2), ad(Y1,X1)(Y3, X3)

〉
=

〈
(Y2, X2), (−X1 × Y3 − Y1 ×X3 +X1 ×X3,−X1 ×X3)

〉
= ⟨Y2,−X1 × Y3 − Y1 ×X3 +X1 ×X3⟩ − 2⟨X2, X1 ×X3⟩
= ⟨Y3, X1 × Y2⟩ + ⟨X3, Y1 × Y2 −X1 × Y2 + 2X1 ×X2⟩.
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Since this equation is valid for every (Y3, X3), we have

ad⋆(Y1,X1)
(Y2, X2) =

(
X1 × Y2,

1
2
(Y1 × Y2 −X1 × Y2) +X1 ×X2

)
. (38)

The terms in the curvature tensor (6) then take the form, with V = (Y2, X2) and U =
(Y1, X1):

adUV =
(
−X1 × Y2 − Y1 ×X2 +X1 ×X2,−X1 ×X2

)
ad⋆UV + adUV =

(
X1 ×X2 − Y1 ×X2,

1
2
(Y1 × Y2 −X1 × Y2)

)
ad⋆UV + adUV + ad⋆VU =

(
X1 ×X2 − 2Y1 ×X2,

1
2
(Y1 ×X2 −X1 × Y2) −X1 ×X2

)
ad⋆UU = (X1 × Y1,−1

2
X1 × Y1), ad⋆V V = (X2 × Y2,−1

2
X2 × Y2).

Plugging in and simplifying, we obtain

⟨R(U, V )V, U⟩ = 1
4

∣∣(X1 − 2Y1) ×X2

∣∣2 + 1
8

∣∣Y1 ×X2 −X1 × Y2 − 2X1 ×X2

∣∣2
− ⟨(X1 − Y1) ×X2, (X1 − Y1) ×X2 −X1 × Y2⟩ + ⟨(Y1 −X1) × Y2, X1 ×X2⟩

− 3
2
⟨X1 × Y1, X2 × Y2⟩. (39)

Now we consider an orthogonal basis for su(2) × su(2), given by

F1 = (S1, 0), F2 = (S2, 0), F3 = (S3, 0), F4 = (0, S1), F5 = (0, S2), F6 = (0, S3).

Note that ⟨Fi, Fj⟩ = δij and ⟨Fi+3, Fj+3⟩ = 2δij for 1 ≤ i, j ≤ 3. The formula (39) simplifies
in the case U = Fi = (Si, 0) (with X1 = Si and Y1 = 0) to

⟨R(Fi, V )V, Fi⟩ = 1
4
|X1 ×X2|2 + 1

8

∣∣X1 × (Y2 + 2X2)
∣∣2

− ⟨X1 ×X2, X1 × (X2 − Y2)⟩ − ⟨X1 × Y2, X1 ×X2⟩
= −3

4
|Si ×X2|2 + 1

8

∣∣Si × (Y2 + 2X2)
∣∣2. (40)

Meanwhile if U = Fi+3 (with X1 = 0 and Y1 = Si), formula (39) simplifies to

⟨R(Fi+3, V )V, Fi+3⟩ = 1
4

∣∣2Y1 ×X2

∣∣2 + 1
8
|Y1 ×X2|2 − ⟨Y1 ×X2, Y1 ×X2⟩

= 1
8
|Si ×X2|2.

(41)

To get the Ricci curvature, we sum the expressions in (40)–(41) over Si for 1 ≤ i ≤ 3,
taking half the sum of (41) because ⟨Fi+3, Fj+3⟩ = 2δij for 1 ≤ i ≤ 3. Thus we have that

Ric(Z,Z) = −3
2
|X|2 + 1

4
|Y + 2X|2 + 1

8
|X|2.

Here we used the formula
3∑
i=1

|ei ×X|2 = 2|X|2

for the ordinary cross product in three dimensions, and replaced (Y2, X2) with (Y,X) to
simplify notation. This reduces to (36).
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As a consequence, we quickly find both signs of sectional curvature in the three-dimensional
model, even in the simplest case. Meanwhile, in the 2-D Zeitlin model, small values of n lead
to strictly positive sectional curvature, and only higher values yield the negative curvature
which is fairly common in Diffµ(S2).

In finite dimensions the Ricci curvature makes sense and often leads to much simpler
formulas than the full Riemann curvature tensor, since it distills information into fewer
dimensions. In infinite dimensions (on the full groups Diffµ(S2) or Diffµ(S3)) the Ricci
curvature doesn’t make sense, except perhaps in an averaged sense (Lukatskii computed a
version of Ricci curvature for Diffµ(T2) for example by taking averages of sectional curvatures
in simple directions [14]). It would be interesting to see, for each n, how much positive versus
negative Ricci curvature we have, e.g., to find the index of the Ricci bilinear form in general.
Here, when n = 2, we have a 7-dimensional configuration space, and we found that the index
is 0 (three positive eigenvalues of the Ricci tensor, three negative, and one zero in the cI
direction on u(2)). Is this also true for general n?

A.2 Exact solutions

Using the formula for ad⋆ in (38), we can write down the Euler-Arnold equation on su(2) ×
u(2) and solve it explicitly. Obviously, one should not expect such a solution formula for
arbitrary n, but for n = 2 there are a number of cancellations.

Theorem 4. For n = 2, with the Lie bracket identified with the cross product, the Euler
equation (25) for (P,B) takes the form

Ḃ(t) +
1

ℏ
[P,B] = 0, P ′(t) − 1

2ℏ
[P,B] = 0, (42)

and all solutions take the form

B(t) = e−tadLB(0), P (t) = e−2tadLP (0),

where L = 1
ℏP (0) + 1

2ℏB(0).

Proof. The first equation is the same, and the second comes from the fact that on su(2) we
have ∆2 = −2I. Thus, for any solution, we must have that P (t) + 1

2
B(t) is constant. Call

this constant matrix ℏL; then we have

[P (t), B(t)] = [ℏL− 1
2
B(t), B(t)] = ℏ[L,B(t)]

and similarly [P (t), B(t)] = −2ℏ[L, P (t)]. Equations (42) become

B′(t) = −adLB(t), P ′(t) = 2adL : P (t),

and the solution is immediate.

It would be interesting to see if these simple time-dependent solutions have analogues as
exact, nonsteady solutions of the full axisymmetric Euler equations, along the lines of 2-D
Rossby-Haurwitz waves [3], which also survives in the Zeitlin model [24].
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B Explicit computation of the descending metric

For reference, we give here explicit calculations of the expression of the descending metric
(20). These calculations are adaptations of similar calculations in the paper [13].

Choose Hopf-like coordinates (r, θ, ψ) for the 3-sphere such that

w = cos r
2

cos θ
2
, x = − cos r

2
sin θ

2
,

y = sin r
2

cos (ψ + θ
2
), z = sin r

2
sin (ψ + θ

2
).

Here the acceptable domain is 0 < r < π, 0 < θ < 4π, and 0 < ψ < 2π in order to capture
almost all of the 3-sphere. Choose standard spherical coordinates on S2 with

(t, u, v) = (sin ρ cosϕ, sin ρ sinϕ, cos ρ).

Then one can easily compute that the projection map Π from (15) is given in these coordi-
nates by

ρ = r, ϕ = ψ.

Note that the usual spherical coordinate domain of ρ and ψ is completely covered by our
domain for the 3-sphere coordinates, with θ ranging freely over [0, 4π] corresponding to each
level curve of E1 having length 4π.

In these Hopf-like coordinates on S3, our vector fields E1, E2, and E3 defined above take
the explicit form

E1 = −∂θ + ∂ψ

E2 = cosψ ∂r − tan r
2

sinψ ∂θ − cot r sinψ ∂ψ

E3 = sinψ ∂r + tan r
2

cosψ ∂θ + cot r cosψ ∂ψ,

and the dual basis of 1-forms is given by

α1 = − cos r dθ + (1 − cos r) dψ

α2 = cosψ dr − sin r sinψ(dθ + dψ)

α3 = sinψ dr + sin r cosψ(dθ + dψ).

These are all declared to be orthonormal, so the volume form on S3 is

dV = α1 ∧ α2 ∧ α3 = sin r dr ∧ dθ ∧ dψ.

Functions that are invariant under E1 on S3 take the form

σ̃(r, θ, ψ) = σ(r, θ + ψ).

So the integrals we are dealing with look like∫
S3

σ̃2 dV =

∫ π

0

∫ 2π

0

∫ 4π

0

σ(r, θ + ψ)2 sin r dθ dψ dr = 4π

∫ π

0

∫ 2π

0

σ(r, ψ)2 sin r dψ dr.

Thus, the correct multiplier is 4π.
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To check the Laplacian formula, write σ̃(r, θ, ψ) = σ(r, θ + ψ) = σ(ρ, ϕ). We compute
that

E2(σ̃)(r, θ, ψ) = cosψ σρ(r, θ + ψ) − sinψ

sin r
σϕ(r, θ + ψ)

E3(σ̃)(r, θ, ψ) = sinψ σρ(r, θ + ψ) +
cosψ

sin r
σϕ(r, θ + ψ).

Then applying E2 and E3 again, we get

(E2)
2(σ̃)(r, θ, ψ) = cos2 ψ σρρ(r, θ + ψ) + sin2 ψ cot r σρ(r, θ + ψ) +

sin2 ψ

sin2 r
σϕϕ(r, θ + ψ)

+
2 sinψ cosψ

sin r

(
cos r σρ(r, θ + ψ) − σρϕ(r, θ + ψ)

)
(E3)

2(σ̃)(r, θ, ψ) = sin2 ψ σρρ(r, θ + ψ) + cos2 ψ cot r σρ(r, θ + ψ) +
cos2 ψ

sin2 r
σϕϕ(r, θ + ψ)

− 2 sinψ cosψ

sin r

(
cos r σρ(r, θ + ψ) − σρϕ(r, θ + ψ)

)
.

Adding these together, we get

(E2)
2(σ̃)(r, θ, ψ) + (E3)

2(σ̃)(r, θ, ψ) = σρρ(r, θ + ψ) + cot r σρ(r, θ + ψ) +
σϕϕ(r, θ + ψ)

sin2 r
= ∆σ(r, θ + ψ).
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22



[8] A. Franken, M. Caliaro, P. Cifani, and B. Geurts. Zeitlin truncation of a shal-
low water quasi-geostrophic model for planetary flow. J. Adv. Model. Earth Sys.,
16(6):e2023MS003901, 2024.

[9] J. Hoppe. Diffeomorphism groups, quantization, and SU(∞). Int. J. Modern Phys. A,
04(19):5235–5248, 1989.

[10] J. Hoppe and S.-T. Yau. Some properties of matrix harmonics on S2. Comm. Math.
Phys., 195(1):67–77, 1998.

[11] B. Khesin, J. Lenells, G. Misio lek, and S. C. Preston. Curvatures of Sobolev metrics on
diffeomorphism groups. 09 2011.

[12] J. M. Lee and S. C. Preston. Nonpositive curvature of the quantomorphism group and
quasigeostrophic motion. Differential Geom. Appl., 74:101698, 2021.

[13] L. Lichtenfelz, G. Misio lek, and S. C. Preston. Axisymmetric diffeomorphisms and ideal
fluids on Riemannian 3-manifolds. Int. Math. Res. Not., 2022(1):446–485, 2022.

[14] A. M. Lukatskii. Curvature of the group of measure-preserving diffeomorphisms of the
n-dimensional torus. Siberian Mathematical Journal, 25(6):893–903, 1984.

[15] K. Modin and M. Perrot. Eulerian and Lagrangian stability in Zeitlin’s model of hy-
drodynamics. Comm. Math. Phys., 2024.

[16] K. Modin and M. Roop. Spatio-temporal Lie-Poisson discretization for incompressible
magnetohydrodynamics on the sphere. arXiv:2311.16045, 2024.

[17] K. Modin and M. Viviani. A Casimir preserving scheme for long-time simulation of
spherical ideal hydrodynamics. J. Fluid Mech., 884, 2020.

[18] K. Modin and M. Viviani. Lie–Poisson methods for isospectral flows. Found. Comput.
Math., 20(4):889–921, 2020.

[19] K. Modin and M. Viviani. Canonical scale separation in 2D incompressible hydrody-
namics. J. Fluid Mech., 943:A36, 2022.

[20] K. Modin and M. Viviani. Two-dimensional fluids via matrix hydrodynamics.
arXiv:2405.14282, 2024.

[21] P. J. Morrison and J. M. Greene. Noncanonical Hamiltonian Density Formulation of
Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett., 45(10):790–794,
1980.

[22] S. C. Preston. On the volumorphism group, the first conjugate point is always the
hardest. Comm. Math. Phys., 267:493–513, 2006.

[23] S. Vishik and F. Dolzhanski. Analogs of the Euler-Lagrange equations and magnetohy-
drodynamis equations related to Lie groups. Sov. Math. Doklady, 19:149–153, 1978.

23



[24] M. Viviani. Symplectic methods for isospectral flows and 2D ideal hydrodynamics. PhD
thesis, Chalmers University of Technology, 2020.

[25] C. Vizman. Geodesic equations on diffeomorphism groups. SIGMA Symmetry Integra-
bility Geom. Methods Appl., 4:030, 2008.

[26] V. Zeitlin. Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local
canonical structure. Phys. D, 49(3):353–362, 1991.

[27] V. Zeitlin. Self-consistent finite-mode approximations for the hydrodynamics of an
incompressible fluid on nonrotating and rotating spheres. Phys. Rev. Lett., 93:264501,
2004.

24


	Introduction
	Background
	General aspects
	Zeitlin's model on the 2-sphere
	Axisymmetry on the 3-sphere

	The product structure and its discretization
	Casimir functions
	Spatial discretization via Zeitlin's approach

	The Jacobi equation
	Numerical experiments
	First simulation: smooth, symmetric data
	Second simulation: smooth, random data

	Curvature and exact solutions when n = 2
	Ricci curvature
	Exact solutions

	Explicit computation of the descending metric

