
Math 70900 Midterm Exam Solutions

1. Prove that the set of all 2 × 2 matrices of rank one is a submanifold of the set of all
2× 2 real matrices. What is its dimension?

Solution: We identify 2×2 real matrices with R4 via (w, x, y, z) 7→
(
w x
y z

)
. Then such

a matrix has rank two if and only if its determinant is nonzero, wz − xy = 0. It has
rank zero if and only if it is the zero matrix. So the matrices where it has rank one are
those with wz − xy = 0 and at least one of {w, x, y, z} nonzero.

The nonzero matrices form an open subset of R4 (deleting the origin), so we still have
a manifold. The determinant function δ : R4\{0} → R has every rank one matrix as a
regular value, since

Dδ =
(
z −y −x w

)
,

which has maximal rank one as long as at least one of {w, x, y, z} is nonzero. Thus the
set is a smooth submanifold using Theorem 9.1.2 (the Implicit Function Theorem).

2. The Hopf fibration is a map F : S3 → S2 defined in the following way. We first define
F̃ : R4 → R3 by

F̃ (w, x, y, z) = (w2 + x2 − y2 − z2, 2(wz − xy), 2(xz + wy))

then restrict it to S3.

(a) Verify that if x ∈ S3, then F̃ (x) ∈ S2, so that the restriction of F̃ actually is a
smooth map from S3 to S2.

Solution: A computation. Note that (W −Z)2 = (W +Z)2 − 4WZ for any real
numbers W , Z, so we can use W = w2 + x2 and Z = y2 + z2 to get a shortcut:

(w2 + x2 − y2 − z2)2 + 4(wz − xy)2 + 4(xz + wy)2

= (w2 + x2 + y2 + z2)2 − 4(w2 + x2)(y2 + z2)

+ 4(w2z2 − 2wxyz + x2y2) + 4(x2z2 + 2wxyz + w2y2)

= 1− 4(w2y2 + w2z2 + x2y2 + x2z2)

+ 4(w2z2 + x2y2 + x2z2 + w2y2) = 1.

So indeed it maps the sphere S3 into the sphere S2, and since those are both
smooth submanifolds, the restriction of F is smooth.

(b) Compute F∗ on the left-invariant vector fields Ei from Homework #7, problem 3.
Show that there are three vector fields Vi on S

2 that are F -related to Ei. (It is
easier to do this for F̃ first.)

Solution: The linear operator F̃∗ = DF̃ is given on R4 by the matrix

DF̃ =

2w 2x −2y −2z
2z −2y −2x 2w
2y 2z 2w 2x

 .
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Express coordinates on R3 as (t, u, v), so that

t = w2 + x2 − y2 − z2, u = 2(wz − xy), v = 2(wy + xz).

Using

E1 = −x ∂
∂w

+ w ∂
∂x

+ z ∂
∂y

− y ∂
∂z

E2 = −y ∂
∂w

− z ∂
∂x

+ w ∂
∂y

+ x ∂
∂z

E3 = −z ∂
∂w

+ y ∂
∂x

− x ∂
∂y

+ w ∂
∂z

as representatives in R4 as the three left-invariant basis vectors on S3, we compute

DF̃ (E1) =

2w 2x −2y −2z
2z −2y −2x 2w
2y 2z 2w 2x



−x
w
z
−y

 =

 0
−4(wy + xz)
4(wz − xy)

 =

 0
−2v
2u



DF̃ (E2) =

2w 2x −2y −2z
2z −2y −2x 2w
2y 2z 2w 2x



−y
−z
w
x

 =

 −4(wy + xz)
0

2(w2 + x2 − y2 − z2)

 =

−2v
0
2t



DF̃ (E3) =

2w 2x −2y −2z
2z −2y −2x 2w
2y 2z 2w 2x



−z
y
−x
w

 =

 −4(wz − xy)
2(w2 + x2 − y2 − z2)

0

 =

−2u
2t
0

 .

We therefore see that

DF̃ (E1) = V1, DF̃ (E2) = V2, DF̃ (E3) = V3,

where

V1 = −2v ∂
∂u

+ 2u ∂
∂v
, V2 = −2v ∂

∂t
+ 2t ∂

∂v
, V3 = −2u ∂

∂t
+ 2t ∂

∂u
.

These are all vector fields on R3 that are tangent to S2, and we see that F∗(Ei)
∣∣
p
=

(Vi)F (p) for every p ∈ S3, which is what it means to be F -related.

(c) Show that the rank of F is two everywhere, and describe the inverse images of
points of S2.

Solution: We need to know that {V1, V2, V3} always span a two-dimensional
space. If v ̸= 0, then V1 and V2 are linearly independent (since V1 has a nonzero
component in the ∂

∂u
direction while V2 is zero in that direction; and V2 has

a nonzero component in the ∂
∂t

direction, while V1 is zero in that direction).
Similarly if t ̸= 0 then V2 and V3 are linearly independent; and if u ̸= 0 then V1
and V3 are linearly independent. Since t2 + u2 + v2 = 1, at least one of these
components is nonzero, so indeed F has maximal rank.

By the Implicit Function Theorem, since every point of S2 is a regular point,
the inverse images must be manifolds. They must be closed subsets of S3 (hence
compact), and must be one-dimensional manifolds, so they must all be circles.
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3. Let X = x ∂
∂x

− x ∂
∂y

and let Y = (x+ y) ∂
∂y

be vector fields on R2.

(a) Verify that [X, Y ] = 0 everywhere by direct computation.

Solution: For any smooth function f we will have

X(Y (f)) = x∂x((x+ y)fy)− x∂y((x+ y)fy)

= x(x+ y)fxy + xfy − x(x+ y)fyy − xfy

= x(x+ y)(fxy − fyy)

Y (X(f)) = (x+ y)∂y(xfx − xfy)

= (x+ y)x(fxy − fyy),

and these are the same. Hence [X, Y ](f) = 0 on every function f .

(b) Find the flows of X and Y .

Solution: For the flow of X we need to solve the system

x′(t) = x(t), y′(t) = −x(t), x(0) = x0, y(0) = y0.

The solution for the first equation is x(t) = x0e
t, and using this to get y′(t) =

−x0et, we find that y(t) = (x0 + y0)− x0e
t. So the flow of X is

Φt(x, y) = (xet, x+ y − xet).

For the flow of Y we need to solve the system

x′(t) = 0, y′(t) = x(t) + y(t), x(0) = x0, y(0) = y0.

Clearly x(t) = x0, so that y′(t) = x0 + y(t), and so y(t) = −x0 + (x0 + y0)e
t.

Therefore the flow of Y is

Ψt(x, y) = (x, (x+ y)et − x).

(c) Use the flows to construct coordinates (u, v) near the point (1, 0) to make X = ∂
∂u

and Y = ∂
∂v
.

Solution: The coordinates will be obtained indirectly by writing

(x, y) = Φu

(
Ψv(1, 0)

)
= Φu(1, e

v − 1) = (eu, 1 + ev − 1− eu) = (eu, ev − eu).

Thus the transformation is x = eu, y = ev − eu, or inverting u = lnx, v =
ln (y + x).

We verify by computing

∂

∂u
=
∂x

∂u

∂

∂x
+
∂y

∂u

∂

∂y
= eu

∂

∂x
− eu

∂

∂y
= x

∂

∂x
− x

∂

∂y
= X,

and similarly

∂

∂v
=
∂x

∂v

∂

∂x
+
∂y

∂v

∂

∂y
= ev

∂

∂y
= (x+ y)

∂

∂y
= Y,

as desired.
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4. (a) Given a point p ∈ M and a vector v ∈ TpM , show that there is a smooth vector
field V on M with V (p) = v.

Solution: Choose a bump function ζ with support inside a coordinate chart
containing p, which is constantly equal to 1 in a smaller neighborhood of p. This
bump function can be smoothly extended to the entire manifold M by setting it
to zero outside the coordinate chart.

Inside the coordinate chart, the vector v has an expression v =
∑n

i=1 a
i ∂
∂xi

∣∣
p
, and

we define V by

V (q) =


∑n

i=1 a
iξ(q) ∂

∂xi

∣∣∣
q

q ∈ supp ζ

0q q /∈ supp ζ.

Here 0q denotes the zero vector in TqM . Then V is a smooth vector field, and
V (p) = v.

(b) Suppose f : M → R is a smooth function with a critical point at p, i.e., such that
v(f) = 0 for every v ∈ TpM . If V is any smooth vector field and w ∈ TpM is any
vector, show that the number w(V (f)) depends only on the vector v = V (p), not
on the choice of extension. Hence we get a bilinear operator D2f : TpM ×TpM →
R given by D2f(w, v) = w(V (f)) where V is any smooth extension of v ∈ TpM .

Solution: Work in coordinates. THen v(f) = 0 for every v ∈ TpM means that
∂
∂xi

∣∣
p
= 0, so all the first derivatives of f are zero at p. Now if V is a general

vector field defined in a neighborhood of p, we can write

Vq =
n∑

i=1

ai(q)
∂

∂xi

∣∣∣
q
,

so that the function V (f) in a neighborhood of p is given by

V (f)(q) =
n∑

i=1

ai(q)
∂f

∂xi

∣∣∣
q
,

for some functions ai. Now write

w =
n∑

j=1

bj
∂

∂xj

∣∣∣
p
,

and we compute that

w(V (f)) =
n∑

i=1

n∑
j=1

bj
∂

∂xj

(
ai(q)

∂f

∂xi
(q)
)∣∣∣

q=p

=
n∑

i,j=1

bj
∂ai

∂xj

∣∣∣
p

∂f

∂xi

∣∣∣
p
+ bjai(p)

∂2f

∂xi∂xj

∣∣∣
p
.

Since ∂f
∂xi

∣∣
p
= 0 since f has a critical point at p, the first term disappears, and the

second term only depends on bj and ai(p).
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(c) Show that D2f is symmetric.

Solution: A simple way is to use the coordinate expression derived in the previous
part to see this bilinear operator’s coefficients are ∂2f

∂xi∂xj , which is symmetric
between i and j.

For a more sophisticated proof, extend v to a vector field V , and extend w to
a vector field W . Then D2f(v, w) = W (V (f))|p while D2f(w, v) = V (W (f))|p.
The difference between these is

W (V (f))|p − V (W (f))|p = [W,V ](f)|p = 0,

since [W,V ] is a vector field and thus a first-order differential operator; thus it
vanishes on f at p because it has a critical point.

(d) Compute D2f at the origin if f : C → R is given by f(z) = Re(z2).

Solution: In coordinates we have f(x, y) = x2 − y2, so that the first derivatives

are zero at the origin, and the second derivatives are ∂2f
∂x2 = 2, ∂2f

∂x∂y
= 0, ∂2f

∂y2
= −2.

We obtain the bilinear operator

D2f = 2 dx⊗ dx− 2 dy ⊗ dy.

In other words, D2f is determined by its action on the basis by

D2f( ∂
∂x
, ∂
∂x
) = 2, D2f( ∂

∂x
, ∂
∂y
) = 0, D2f( ∂

∂y
, ∂
∂y
) = −2.

5. Show that the tangent bundle TM is always orientable as a manifold even if M itself
is not.

Solution: Our definition of orientable is in terms of coordinate transition map deter-
minants, so we need to compute those.

Recall that coordinates on TM were constructed by starting with a coordinate chart
(ϕ, U) on M given by (x1, . . . , xn) and writing an arbitrary vector v ∈ TpM ⊂ TU
uniquely as

v =
n∑

i=1

ai
∂

∂xi

∣∣∣
p
.

The coordinates of v are then given by

(ϕ(p), a1, . . . , an) = (x1, . . . , xn, a1, . . . , an).

If (ψ, V ) is another coordinate chart given by (y1, . . . , yn), then the vector v can be
written as

v =
n∑

i=1

n∑
j=1

ai
∂yj

∂xi
∂

∂yj

∣∣∣
p
=

n∑
j=1

bj
∂

∂yj

∣∣∣
p
,

so that the transition map to express (y, b) in terms of (x, a) is given by

(y1, . . . , yn, b1, . . . , bn) =

(
ψ ◦ ϕ−1(x1, . . . , xn),

n∑
k=1

ak
∂y1

∂xk
, . . . ,

n∑
k=1

ak
∂yn

∂xk

)
.
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We compute what the Jacobian determinant of this is, which involves first computing
the 2n possible partial derivatives (with respect to all xi and then with respect to all
ai). Note that the first half of the transformation depends only on the xi, not on the
ai, and so we get a block matrix form with the upper right block (the derivatives of
yj with respect to ai) all zeroes. Meanwhile the upper left block is the usual Jacobian

matrix J j
i := ∂yj

∂xi .

For the bottom right corner, we differentiate the bj with respect to the ai, and since
these equations are linear, the only term we get is

∂bj

∂ai
=

∂

∂ai

n∑
k=1

ak
∂yj

∂xk
=
∂yj

∂xi
= J j

i .

That is, we see exactly the same Jacobian matrix in the bottom right corner as in the
upper left corner.

Finally we can compute the bottom left corner, which differentiates the bj with respect
to xi. This is a complicated expression which we will denote by

Kj
i =

n∑
k=1

ak
∂2yj

∂xi∂xk
.

The point though is that K doesn’t matter, since the full Jacobian transformation
matrix is of the form

J =

(
J 0
K J

)
.

The determinant of this is given by detJ = (det J)2, which is always positive regardless
of whether det J is positive or negative. This proves that our standard coordinate charts
on TM are automatically compatible with each other.

6. Consider the group R3 with operation

(x, y, z) · (u, v, w) = (x+ ezu, y + e−zv, z + w).

Compute a basis of left-invariant vector fields {E1, E2, E3} in (x, y, z) coordinates, and
determine the Lie brackets [Ei, Ej] =

∑3
k=1 cijkEk.

Solution: First we compute the left translation map and its differential (planning to
rename all coordinates later). Fix (x, y, z) and denote (a, b, c) as a point in the domain
of L(x,y,z) and (u, v, w) as a point in the range of L(x,y,z). Then we get

(u, v, w) = (x, y, z) · (a, b, c) = (x+ eza, y + e−zb, z + c).

The push-forward by L(x,y,z) is then given by differentiating (u, v, w) with respect to
(a, b, c), to get

(L(x,y,z))∗
(

∂
∂a

∣∣
(a,b,c)

)
= ∂u

∂a
∂
∂u

∣∣
(u,v,w)

+ ∂v
∂a

∂
∂v

∣∣
(u,v,w)

+ ∂w
∂a

∂
∂w

∣∣
(u,v,w)

= ez ∂
∂u

∣∣
(u,v,w)

(L(x,y,z))∗
(

∂
∂b

∣∣
(a,b,c)

)
= ∂u

∂b
∂
∂u

∣∣
(u,v,w)

+ ∂v
∂b

∂
∂v

∣∣
(u,v,w)

+ ∂w
∂b

∂
∂w

∣∣
(u,v,w)

= e−z ∂
∂v

∣∣
(u,v,w)

(L(x,y,z))∗
(

∂
∂c

∣∣
(a,b,c)

)
= ∂u

∂c
∂
∂u

∣∣
(u,v,w)

+ ∂v
∂c

∂
∂v

∣∣
(u,v,w)

+ ∂w
∂c

∂
∂w

∣∣
(u,v,w)

= ∂
∂w

∣∣
(u,v,w)

.
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Now to get the left-invariant fields, we suppose that (a, b, c) is the identity element
(0, 0, 0), so that (u, v, w) = (x, y, z), and get

E1 = (L(x,y,z))∗
(

∂
∂x

∣∣
(0,0,0)

)
= ez ∂

∂x

∣∣
(x,y,z)

E2 = (L(x,y,z))∗
(

∂
∂y

∣∣
(0,0,0)

)
= e−z ∂

∂y

∣∣
(x,y,z)

E3 = (L(x,y,z))∗
(

∂
∂z

∣∣
(0,0,0)

)
= ∂

∂z

∣∣
(x,y,z)

.

To compute the Lie brackets, we use the commutators and apply them to functions.
Abbreviating E1 = ez ∂x, E2 = e−z ∂y, and E3 = ∂z, we get

[E1, E2](f) = ez∂x(e
−zfy)− e−z∂y(e

zfx) = fyx − fxy = 0

[E2, E3](f) = e−z∂y(fz)− ∂z(e
−zfy) = e−zfzy + e−zfy − e−zfyz = e−zfy = E2(f)

[E3, E1](f) = ∂z(e
zfx)− ez∂x(fz) = ezfx + ezfxz − ezfzx = ezfx = E1(f).

We conclude that the Lie algebra is determined by

[E1, E2] = 0, [E2, E3] = E2, [E3, E1] = E1.
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