1. Let X be a vector field on a two-dimensional manifold M and let $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ be a curve such that $\gamma^{\prime}(s)$ and $X_{\gamma(s)}$ are always linearly independent. (In the language of partial differential equations one says that γ is non-characteristic.) Show that given any function $h:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$, there is a neighborhood U of $p=\gamma(0)$ and a smooth function $f: U \rightarrow \mathbb{R}$ such that $X(f)=0$ on U and $f(\gamma(s))=h(s)$ for $s \in(-\varepsilon, \varepsilon)$. This is generically how one solves a first-order PDE.
Solution: Choose coordinates (s, t) on M near p such that $X=\frac{\partial}{\partial t}$ and s is the parameter along the curve γ. That is, we map $(s, t) \mapsto \Phi_{t}(\gamma(s))$ for (s, t) sufficiently small. Since $\frac{\partial}{\partial s}$ and $X=\frac{\partial}{\partial t}$ are linearly independent at $(0,0)$ by assumption (in fact for all $s \in(-\varepsilon, \varepsilon)$ when $t=0$), we know this will be a smooth and locally invertible map into some other coordinates, which can therefore serve as a coordinate system locally.
Since $X=\frac{\partial}{\partial t}$, we know a function satisfying $X(f)=0$ on an open set must be only a function of s. So we extend f on the whole (s, t) coordinate chart by using the same formula $f\left(\Phi_{t}(\gamma(s))\right)=h(s)$, i.e., having f depend only on s. This function is independent of t so it satisfies $X(f)=0$, and when $t=0$ it has the correct values on the initial curve γ.
2. For the 1 -form ω on \mathbb{R}^{4} given by $\omega=x y d w-w z d x+y^{2} d y-z x d z$, compute $d \omega$.

Solution: Using the product rule we have

$$
\begin{aligned}
d \omega & =d(x y) \wedge d w-d(w z) \wedge d x+d\left(y^{2}\right) \wedge d y-d(z x) \wedge d z \\
& =x d y \wedge d w+y d x \wedge d w-w d z \wedge d x-z d w \wedge d x+2 y d y \wedge d y-z d x \wedge d z-x d z \wedge d z \\
& =x d y \wedge d w-(y+z) d w \wedge d x+(w-z) d x \wedge d z
\end{aligned}
$$

using antisymmetric of wedge products of 1-forms.
3. Imitate the proof of Proposition 15.2 .10 to show that if ω is a 1 -form on \mathbb{R}^{3} with $d \omega=0$, then $\omega=d f$ for some smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
Solution: We just need to come up with a formula that works for f. Write

$$
\omega(x, y, z)=p(x, y, z) d x+q(x, y, z) d y+r(x, y, z) d z
$$

where we assume $d \omega=0$, so that

$$
\frac{\partial p}{\partial z}=\frac{\partial r}{\partial x}, \quad \frac{\partial q}{\partial x}=\frac{\partial p}{\partial y}, \quad \frac{\partial r}{\partial y}=\frac{\partial q}{\partial z}
$$

Inspired by the formula in that Proposition, we try

$$
f(x, y, z)=\int_{0}^{x} p(s, y, z) d s+\int_{0}^{y} q(0, s, z) d s+\int_{0}^{z} r(0,0, s) d s
$$

Differentiating with respect to x, we obviously get

$$
\frac{\partial f}{\partial x}(x, y, z)=p(x, y, z)
$$

Differentiating with respect to y and using the fact that $d \omega=0$, we get

$$
\begin{aligned}
\frac{\partial f}{\partial y}(x, y, z) & =\int_{0}^{x} \frac{\partial p}{\partial y}(s, y, z) d s+q(0, y, z) \\
& =\int_{0}^{x} \frac{\partial q}{\partial s}(s, y, z) d s+q(0, y, z) \\
& =q(x, y, z)-q(0, y, z)+q(0, y, z)=q(x, y, z)
\end{aligned}
$$

Similarly for the z-derivative, we use again the fact that $d \omega=0$ to get

$$
\begin{aligned}
\frac{\partial f}{\partial z}(x, y, z) & =\int_{0}^{x} \frac{\partial p}{\partial z}(s, y, z) d s+\int_{0}^{y} \frac{\partial q}{\partial z}(0, s, z) d s+r(0,0, z) \\
& =\int_{0}^{x} \frac{\partial r}{\partial s}(s, y, z) d s+\int_{0}^{y} \frac{\partial r}{\partial s}(0, s, z) d s+r(0,0, z) \\
& =r(x, y, z)-r(0, y, z)+r(0, y, z)-r(0,0, z)=r(0,0, z) \\
& =r(x, y, z)
\end{aligned}
$$

We have therefore found a function $f(x, y, z)$ with $d f=\omega$ everywhere.
4. A contact form on a 3 -dimensional manifold is a 1 -form α such that $\alpha \wedge d \alpha$ is never zero.
(a) Show that $\alpha=d z-x d y$ is a contact form on \mathbb{R}^{3}.

Solution: We have $d \alpha=-d x \wedge d y$, so that

$$
\alpha \wedge d \alpha=(d z-x d y) \wedge(-d x) \wedge(d y)=-d z \wedge d x \wedge d y=-d x \wedge d y \wedge d z
$$

(b) Show that $\alpha=\sin z d x+\cos z d y$ is a contact form on \mathbb{R}^{3} which descends to a contact form on \mathbb{T}^{3}.
Solution: We have

$$
d \alpha=\cos z d z \wedge d x+\sin z d y \wedge d z
$$

Wedging α with this, we get

$$
\alpha \wedge d \alpha=\cos ^{2} z d y \wedge d z \wedge d x+\sin ^{2} z d x \wedge d y \wedge d z=d x \wedge d y \wedge d z
$$

which is never zero.
The 1-form α is invariant under the group action $(x, y, z) \mapsto(x+2 j \pi, y+2 k \pi, z+$ $2 n \pi)$ for integers j, k, n, and thus there is a 1 -form ω on \mathbb{T}^{3} such that if $P: \mathbb{R}^{3} \rightarrow \mathbb{T}^{3}$ is the quotient projection, we have $P^{\#} \omega=\alpha$.
(c) Show that if α is a contact form, then there is a unique vector field ξ (called the Reeb field) such that $d \alpha(\xi, u)=0$ for every vector u, and $\alpha(\xi)=1$ everywhere.
Solution: Express $\alpha=p d x+q d y+r d z$ in coordinates, so that

$$
d \alpha=\left(r_{y}-q_{z}\right) d y \wedge d z+\left(p_{z}-r_{x}\right) d z \wedge d x+\left(q_{x}-p_{y}\right) d x \wedge d y
$$

Then the wedge product is

$$
\alpha \wedge d \alpha=\left[p\left(r_{y}-q_{z}\right)+q\left(p_{z}-r_{x}\right)+r\left(q_{x}-p_{y}\right)\right] d x \wedge d y \wedge d z
$$

and by assumption this coefficient is nonzero.
Write the Reeb field as $\xi=f \partial_{x}+g \partial_{y}+h \partial_{z}$. Then the condition $d \alpha(\xi, u)=0$ for every vector field u is equivalent to the three equations (choosing $u=\partial_{x}, u=\partial_{y}$, and $u=\partial_{z}$ successively)

$$
\begin{aligned}
\left(p_{z}-r_{x}\right) h-\left(q_{x}-p_{y}\right) g & =0 \\
-\left(r_{y}-q_{z}\right) h+\left(q_{x}-p_{y}\right) f & =0 \\
\left(r_{y}-q_{z}\right) g-\left(p_{z}-r_{x}\right) f & =0
\end{aligned}
$$

Consider this as a linear system for $\{f, g, h\}$. If all the components of this system were zero at some point, then $d \alpha$ would be zero at that point, so $\alpha \wedge d \alpha \neq 0$ would be impossible. Thus at least one is nonzero, and we may assume (by permuting the variables if needed) that it's $p_{z}-r_{x} \neq 0$. Then we have

$$
h=\frac{q_{x}-p_{y}}{p_{z}-r_{x}} g, \quad f=\frac{r_{y}-q_{z}}{p_{z}-r_{x}} g .
$$

Hence in this case g determines the other components, and we see that any Reeb vector ξ must be a multiple of the vector

$$
\zeta=\left(r_{y}-q_{z}\right) \partial_{x}+\left(p_{z}-r_{x}\right) \partial_{y}+\left(q_{x}-p_{y}\right) \partial_{z}
$$

So we must have $\xi=\varphi \zeta$ for some function φ, which is determined by the extra condition $\alpha(\xi)=1$, which is equivalent to

$$
\varphi\left[p\left(r_{y}-q_{z}\right)+q\left(p_{z}-r_{x}\right)+r\left(q_{x}-p_{y}\right)\right]=1
$$

By assumption the term in square brackets is everywhere nonzero, and so φ is a uniquely determined smooth function in these coordinates.
Since we have a uniquely specified formula for the Reeb field in any set of coordinates, which are written in terms of the smooth components of α, we see that ξ is uniquely determined and smooth in any chart, and therefore globally on the manifold M.
(d) Find the Reeb field for the contact form in part (b).

Solution: We have already essentially worked out the formula in general. Here we have $p=\sin z$ and $q=\cos z$, with $r=0$, so the field ζ is given by

$$
\zeta=\left(r_{y}-q_{z}\right) \partial_{x}+\left(p_{z}-r_{x}\right) \partial_{y}+\left(q_{x}-p_{y}\right) \partial_{z}=\sin z \partial_{x}+\cos z \partial_{y}
$$

Since we already see that

$$
\alpha(\zeta)=\sin ^{2} z+\cos ^{2} z=1
$$

we see that $\varphi \equiv 1$ and ζ is already the Reeb field ξ.
5. Let $\eta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the diffeomorphism $\eta(u, v)=\left(2 v-u^{2}, 3 u, 4 u+v^{2}\right)$, and let $\omega=$ $y d x \wedge d y-z d z \wedge d x+x d y \wedge d z$. Compute $\eta^{\#} \omega$.
Solution: There are two ways to go: either from the definition (by seeing what $\eta^{\#}$ does to pairs of vector fields) or using the shortcut formulas: including the fact that d commutes with $\eta^{\#}$ and so does the wedge product. The latter is almost always easier. We get $x \circ \eta(u, v)=2 v-u^{2}, y \circ \eta(u, v)=3 u$, and $z \circ \eta(u, v)=4 u+v^{2}$. Therefore we find

$$
\begin{aligned}
\eta^{\#} d x & =-2 u d u+2 d v \\
\eta^{\#} d y & =3 d u \\
\eta^{\#} d z & =4 d u+2 v d v
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
& \eta^{\#}(d x \wedge d y)=(-2 u d u+2 d v) \wedge(3 d u)=-6 d u \wedge d v \\
& \eta^{\#}(d z \wedge d x)=(4 d u+2 v d v) \wedge(-2 u d u+2 d v)=(8+4 u v) d u \wedge d v \\
& \eta^{\#}(d y \wedge d z)=6 v d u \wedge d v
\end{aligned}
$$

Combining, we obtain

$$
\begin{aligned}
\eta^{\#} \omega & =(y \circ \eta) \eta^{\#}(d x \wedge d y)-(z \circ \eta) \eta^{\#}(d z \wedge d x)+(x \circ \eta) \eta^{\#}(d y \wedge d z) \\
& =3 u(-6) d u \wedge d v-\left(4 u+v^{2}\right)(8+4 u v) d u \wedge d v+\left(2 v-u^{2}\right)(6 v) d u \wedge d v \\
& =\left(-18 u-32 u-8 v^{2}-16 u^{2} v-4 u v^{3}+12 v^{2}-6 u^{2} v\right) d u \wedge d v \\
& =\left(-50 u+4 v^{2}-22 u^{2} v-4 u v^{3}\right) d u \wedge d v
\end{aligned}
$$

6. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ be $\gamma(t)=\left(t, t^{2}, t^{3}\right)$, and let $\omega=z d x-x d y+y d z$. Compute $\int_{\gamma} \omega$.

Solution: By definition we have

$$
\int_{\gamma} \omega=\int_{0}^{1} \gamma^{\#} \omega
$$

We compute that $\gamma^{\#} d x=d t, \gamma^{\#} d y=2 t d t$, and $\gamma^{\#} d z=3 t^{2} d t$. Therefore we get

$$
\gamma^{\#} \omega=t^{3} d t-t(2 t) d t+t^{2}\left(3 t^{2}\right) d t=\left(3 t^{4}+t^{3}-2 t^{2}\right) d t
$$

Integrating this over $[0,1]$, we get

$$
\int_{\gamma} \omega=\frac{3}{5}+\frac{1}{4}-\frac{2}{3}=\frac{11}{60} .
$$

