Math 70900 Homework #9 Solutions

1. Let X be a vector field on a two-dimensional manifold M and let v: (—¢,e) — M be
a curve such that +'(s) and X are always linearly independent. (In the language of
partial differential equations one says that «y is non-characteristic.) Show that given
any function h: (—e,e) — R, there is a neighborhood U of p = ~(0) and a smooth
function f: U — R such that X(f) =0 on U and f(v(s)) = h(s) for s € (—¢,¢). This
is generically how one solves a first-order PDE.

Solution: Choose coordinates (s,t) on M near p such that X = % and s is the

parameter along the curve . That is, we map (s,t) — ®;(7(s)) for (s,t) sufficiently

small. Since £ and X = £ are linearly independent at (0,0) by assumption (in fact

for all s € (—e,¢) when t = 0), we know this will be a smooth and locally invertible
map into some other coordinates, which can therefore serve as a coordinate system
locally.

Since X = %, we know a function satisfying X (f) = 0 on an open set must be only

a function of s. So we extend f on the whole (s,t) coordinate chart by using the
same formula f(®;(v(s))) = h(s), i.e., having f depend only on s. This function is
independent of ¢ so it satisfies X (f) = 0, and when ¢ = 0 it has the correct values on
the initial curve 7.

2. For the 1-form w on R* given by w = xy dw — wz dx + y? dy — zx dz, compute dw.

Solution: Using the product rule we have

dw = d(xy) A dw — d(wz) Adx + d(y*) Ady — d(zz) Adz
=zdy Ndw+yde Ndw —wdz Ndx —zdw ANdx +2ydy Ndy — zdx Ndz —xdz N\ dz
=xdy Ndw — (y+ z)dw Ndz + (w — z)dx A dz,

using antisymmetric of wedge products of 1-forms.

3. Imitate the proof of Proposition 15.2.10 to show that if w is a 1-form on R® with
dw = 0, then w = df for some smooth function f: R® — R.

Solution: We just need to come up with a formula that works for f. Write
w(z,y, 2) = p(z,y, 2) dz + q(z,y, 2) dy + r(z, y, 2) dz,

where we assume dw = 0, so that
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Inspired by the formula in that Proposition, we try

T y z
f(x,y,z):/ p(s,y,2) d8+/ q(0,s, z) d8+/ (0,0, s) ds.
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Differentiating with respect to x, we obviously get

)
a—i(x,y,Z) = p(,y,2).

Differentiating with respect to y and using the fact that dw = 0, we get

of /Iap
—(x,y,2) = —(s,y,2)ds + q(0,y, z
ay(y)oay(y) q(0,y,2)

_ ["9
_/0v %(Svya Z) d5+q(0,y,2>

=q(z,y,2) —q(0,y,2) + q(0,y,2) = q(z,y, 2).

Similarly for the z-derivative, we use again the fact that dw = 0 to get

of [T Op Y 0q
az(x,y,z)—/o 8z<8’y’z)d8+/0 82(0’S’Z>d8+r(070’z)

T or Y or
_/0 a(s,y,z)ds#-/o %(O,s,z)ds—l—r(0,0,Z)

=r(x,y,z) —r(0,y,2) +r(0,y,2) — (0,0, 2) = (0,0, 2)
=r(x,y, 2).

We have therefore found a function f(x,y, z) with df = w everywhere.

. A contact form on a 3-dimensional manifold is a 1-form « such that a A da is never
ZETo.

(a) Show that o = dz — x dy is a contact form on R3,
Solution: We have da = —dx A dy, so that

aNda = (dz—xzdy) N\ (—dz) A (dy) = —dz ANdx Ndy = —dz N\ dy A dz.

(b) Show that o = sinzdx + coszdy is a contact form on R? which descends to a
contact form on T3,

Solution: We have
doo =coszdz Ndx +sinzdy Adz.
Wedging a with this, we get
aAdo =cos® zdy Adz A dx +sin® zdx Ady A dz = dx A dy A dz,

which is never zero.

The 1-form « is invariant under the group action (z,y, z) — (x4 2jm, y+ 2k, z +
2nm) for integers 4, k, n, and thus there is a 1-form w on T? such that if P: R? — T3
is the quotient projection, we have P¥w = a.
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Show that if « is a contact form, then there is a unique vector field ¢ (called the
Reeb field) such that da(&,u) = 0 for every vector u, and «(§) = 1 everywhere.

Solution: Express a = pdx + qdy + r dz in coordinates, so that

da = (ry —q.)dy Ndz + (p, — r5) dz Ndx + (g — py) dz A\ dy.
Then the wedge product is

aNdo = [p(ry — ¢.) +q(p: — r2) + r(g: — py)] dz Ady A dz,

and by assumption this coefficient is nonzero.

Write the Reeb field as ¢ = f 0, + g 0, +h0,. Then the condition da(&,u) = 0 for
every vector field u is equivalent to the three equations (choosing v = 0, u = 0,
and u = 0, successively)

(pz - rw)h - (Qm _py)g =0
_(Ty - q,z)h + (q;;: — py)f =0
(ry —qz)g — (p- —72)f = 0.

Consider this as a linear system for {f, g, h}. If all the components of this system
were zero at some point, then da would be zero at that point, so a Ada # 0 would
be impossible. Thus at least one is nonzero, and we may assume (by permuting
the variables if needed) that it’s p, — r, # 0. Then we have
Qe — P Ty — 4z
h/ — —y g, f e Y

Pz —Tg Pz — Tz

Hence in this case g determines the other components, and we see that any Reeb
vector £ must be a multiple of the vector

C = (ry - Qz) aa: + (pz - ch) 8y + (qgc - py) az

So we must have ¢ = ¢( for some function ¢, which is determined by the extra
condition «(§) = 1, which is equivalent to

olplry — ¢.) + alp —12) + (0 — py)] = 1.

By assumption the term in square brackets is everywhere nonzero, and so ¢ is a
uniquely determined smooth function in these coordinates.

Since we have a uniquely specified formula for the Reeb field in any set of coor-
dinates, which are written in terms of the smooth components of «, we see that

¢ is uniquely determined and smooth in any chart, and therefore globally on the
manifold M.

Find the Reeb field for the contact form in part (b).

Solution: We have already essentially worked out the formula in general. Here
we have p = sin z and ¢ = cos z, with r = 0, so the field ( is given by

C=(ry—q.)0p+ (P —1r2) Oy + (¢w — py) O, = sin 20, + cos 2 0,,.
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Since we already see that
a(¢) =sin® z + cos® z = 1,
we see that ¢ = 1 and ( is already the Reeb field &.
5. Let n: R? — R? be the diffeomorphism 7(u,v) = (2v — u?, 3u, 4u + v?), and let w =
ydr Ady — zdz N dx + x dy A dz. Compute n¥w.

Solution: There are two ways to go: either from the definition (by seeing what n#*
does to pairs of vector fields) or using the shortcut formulas: including the fact that d
commutes with 77 and so does the wedge product. The latter is almost always easier.

We get z o n(u,v) = 2v — u?, y on(u,v) = 3u, and z o n(u,v) = 4u + v>. Therefore we
find

nfdr = —2udu+ 2 dv

ntdy = 3du

n*dz = 4 du + 2v dv.

Thus we get

n? (dx A dy) = (—2udu + 2 dv) A (3du) = —6du A dv
0 (dz A dr) = (4du + 2vdv) A (—2udu + 2dv) = (8 4 4uv) du A dv
0 (dy A dz) = 6v du A do.

Combining, we obtain

nfw = (yon)n®(dx Ady) — (z on)n™(dz A dx) + (x 0 n)n™ (dy A dz)

3u(—6) du A dv — (4u + v?)(8 + 4uv) du A dv + (2v — u?)(6v) du A dv
(—

(—

18u — 32u — 8v* — 16uv — 4uv® + 120% — 6uv) du A dv
50u + 4v° — 22u*v — duv®) du A dv.

6. Let v: [0,1] — R? be y(t) = (¢, t%,¢*), and let w = zdx — x dy + y dz. Compute fvw.
Solution: By definition we have
1
/w = / w.
ol 0

We compute that v#dz = dt, y*dy = 2t dt, and v#dz = 3t*> dt. Therefore we get
yFw = t3dt — t(2t) dt + t*(3t?) dt = (3t* + > — 21%) dt.

Integrating this over [0, 1], we get



