1. Let X be a vector field on a two-dimensional manifold M and let $\gamma: (-\varepsilon, \varepsilon) \to M$ be a curve such that $\gamma'(s)$ and $X_{\gamma(s)}$ are always linearly independent. (In the language of partial differential equations one says that γ is *non-characteristic*.) Show that given any function $h: (-\varepsilon, \varepsilon) \to \mathbb{R}$, there is a neighborhood U of $p = \gamma(0)$ and a smooth function $f: U \to \mathbb{R}$ such that X(f) = 0 on U and $f(\gamma(s)) = h(s)$ for $s \in (-\varepsilon, \varepsilon)$. This is generically how one solves a first-order PDE.

Solution: Choose coordinates (s,t) on M near p such that $X = \frac{\partial}{\partial t}$ and s is the parameter along the curve γ . That is, we map $(s,t) \mapsto \Phi_t(\gamma(s))$ for (s,t) sufficiently small. Since $\frac{\partial}{\partial s}$ and $X = \frac{\partial}{\partial t}$ are linearly independent at (0,0) by assumption (in fact for all $s \in (-\varepsilon, \varepsilon)$ when t = 0), we know this will be a smooth and locally invertible map into some other coordinates, which can therefore serve as a coordinate system locally.

Since $X = \frac{\partial}{\partial t}$, we know a function satisfying X(f) = 0 on an open set must be only a function of s. So we extend f on the whole (s, t) coordinate chart by using the same formula $f(\Phi_t(\gamma(s))) = h(s)$, i.e., having f depend only on s. This function is independent of t so it satisfies X(f) = 0, and when t = 0 it has the correct values on the initial curve γ .

For the 1-form ω on ℝ⁴ given by ω = xy dw - wz dx + y² dy - zx dz, compute dω.
Solution: Using the product rule we have

$$d\omega = d(xy) \wedge dw - d(wz) \wedge dx + d(y^2) \wedge dy - d(zx) \wedge dz$$

= $x \, dy \wedge dw + y \, dx \wedge dw - w \, dz \wedge dx - z \, dw \wedge dx + 2y \, dy \wedge dy - z \, dx \wedge dz - x \, dz \wedge dz$
= $x \, dy \wedge dw - (y+z) \, dw \wedge dx + (w-z) \, dx \wedge dz$,

using antisymmetric of wedge products of 1-forms.

3. Imitate the proof of Proposition 15.2.10 to show that if ω is a 1-form on \mathbb{R}^3 with $d\omega = 0$, then $\omega = df$ for some smooth function $f : \mathbb{R}^3 \to \mathbb{R}$.

Solution: We just need to come up with a formula that works for f. Write

$$\omega(x, y, z) = p(x, y, z) \, dx + q(x, y, z) \, dy + r(x, y, z) \, dz,$$

where we assume $d\omega = 0$, so that

$$\frac{\partial p}{\partial z} = \frac{\partial r}{\partial x}, \qquad \frac{\partial q}{\partial x} = \frac{\partial p}{\partial y}, \qquad \frac{\partial r}{\partial y} = \frac{\partial q}{\partial z}.$$

Inspired by the formula in that Proposition, we try

$$f(x, y, z) = \int_0^x p(s, y, z) \, ds + \int_0^y q(0, s, z) \, ds + \int_0^z r(0, 0, s) \, ds.$$

Differentiating with respect to x, we obviously get

$$\frac{\partial f}{\partial x}(x,y,z) = p(x,y,z)$$

Differentiating with respect to y and using the fact that $d\omega = 0$, we get

$$\begin{aligned} \frac{\partial f}{\partial y}(x,y,z) &= \int_0^x \frac{\partial p}{\partial y}(s,y,z) \, ds + q(0,y,z) \\ &= \int_0^x \frac{\partial q}{\partial s}(s,y,z) \, ds + q(0,y,z) \\ &= q(x,y,z) - q(0,y,z) + q(0,y,z) = q(x,y,z) \end{aligned}$$

Similarly for the z-derivative, we use again the fact that $d\omega = 0$ to get

$$\begin{aligned} \frac{\partial f}{\partial z}(x,y,z) &= \int_0^x \frac{\partial p}{\partial z}(s,y,z) \, ds + \int_0^y \frac{\partial q}{\partial z}(0,s,z) \, ds + r(0,0,z) \\ &= \int_0^x \frac{\partial r}{\partial s}(s,y,z) \, ds + \int_0^y \frac{\partial r}{\partial s}(0,s,z) \, ds + r(0,0,z) \\ &= r(x,y,z) - r(0,y,z) + r(0,y,z) - r(0,0,z) = r(0,0,z) \\ &= r(x,y,z). \end{aligned}$$

We have therefore found a function f(x, y, z) with $df = \omega$ everywhere.

- 4. A contact form on a 3-dimensional manifold is a 1-form α such that $\alpha \wedge d\alpha$ is never zero.
 - (a) Show that $\alpha = dz x \, dy$ is a contact form on \mathbb{R}^3 . Solution: We have $d\alpha = -dx \wedge dy$, so that

$$\alpha \wedge d\alpha = (dz - x \, dy) \wedge (-dx) \wedge (dy) = -dz \wedge dx \wedge dy = -dx \wedge dy \wedge dz.$$

(b) Show that $\alpha = \sin z \, dx + \cos z \, dy$ is a contact form on \mathbb{R}^3 which descends to a contact form on \mathbb{T}^3 .

Solution: We have

$$d\alpha = \cos z \, dz \wedge dx + \sin z \, dy \wedge dz.$$

Wedging α with this, we get

$$\alpha \wedge d\alpha = \cos^2 z \, dy \wedge dz \wedge dx + \sin^2 z \, dx \wedge dy \wedge dz = dx \wedge dy \wedge dz,$$

which is never zero.

The 1-form α is invariant under the group action $(x, y, z) \mapsto (x + 2j\pi, y + 2k\pi, z + 2n\pi)$ for integers j, k, n, and thus there is a 1-form ω on \mathbb{T}^3 such that if $P \colon \mathbb{R}^3 \to \mathbb{T}^3$ is the quotient projection, we have $P^{\#}\omega = \alpha$.

(c) Show that if α is a contact form, then there is a unique vector field ξ (called the *Reeb field*) such that $d\alpha(\xi, u) = 0$ for every vector u, and $\alpha(\xi) = 1$ everywhere. Solution: Express $\alpha = p dx + q dy + r dz$ in coordinates, so that

$$d\alpha = (r_y - q_z) \, dy \wedge dz + (p_z - r_x) \, dz \wedge dx + (q_x - p_y) \, dx \wedge dy.$$

Then the wedge product is

$$\alpha \wedge d\alpha = \left[p(r_y - q_z) + q(p_z - r_x) + r(q_x - p_y) \right] dx \wedge dy \wedge dz,$$

and by assumption this coefficient is nonzero.

Write the Reeb field as $\xi = f \partial_x + g \partial_y + h \partial_z$. Then the condition $d\alpha(\xi, u) = 0$ for every vector field u is equivalent to the three equations (choosing $u = \partial_x$, $u = \partial_y$, and $u = \partial_z$ successively)

$$(p_z - r_x)h - (q_x - p_y)g = 0$$

-(r_y - q_z)h + (q_x - p_y)f = 0
(r_y - q_z)g - (p_z - r_x)f = 0.

Consider this as a linear system for $\{f, g, h\}$. If all the components of this system were zero at some point, then $d\alpha$ would be zero at that point, so $\alpha \wedge d\alpha \neq 0$ would be impossible. Thus at least one is nonzero, and we may assume (by permuting the variables if needed) that it's $p_z - r_x \neq 0$. Then we have

$$h = \frac{q_x - p_y}{p_z - r_x} g, \qquad f = \frac{r_y - q_z}{p_z - r_x} g.$$

Hence in this case g determines the other components, and we see that any Reeb vector ξ must be a multiple of the vector

$$\zeta = (r_y - q_z) \,\partial_x + (p_z - r_x) \,\partial_y + (q_x - p_y) \,\partial_z.$$

So we must have $\xi = \varphi \zeta$ for some function φ , which is determined by the extra condition $\alpha(\xi) = 1$, which is equivalent to

$$\varphi \left[p(r_y - q_z) + q(p_z - r_x) + r(q_x - p_y) \right] = 1.$$

By assumption the term in square brackets is everywhere nonzero, and so φ is a uniquely determined smooth function in these coordinates.

Since we have a uniquely specified formula for the Reeb field in any set of coordinates, which are written in terms of the smooth components of α , we see that ξ is uniquely determined and smooth in any chart, and therefore globally on the manifold M.

(d) Find the Reeb field for the contact form in part (b).

Solution: We have already essentially worked out the formula in general. Here we have $p = \sin z$ and $q = \cos z$, with r = 0, so the field ζ is given by

$$\zeta = (r_y - q_z) \,\partial_x + (p_z - r_x) \,\partial_y + (q_x - p_y) \,\partial_z = \sin z \,\partial_x + \cos z \,\partial_y.$$

Since we already see that

$$\alpha(\zeta) = \sin^2 z + \cos^2 z = 1,$$

we see that $\varphi \equiv 1$ and ζ is already the Reeb field ξ .

5. Let $\eta \colon \mathbb{R}^2 \to \mathbb{R}^3$ be the diffeomorphism $\eta(u, v) = (2v - u^2, 3u, 4u + v^2)$, and let $\omega = y \, dx \wedge dy - z \, dz \wedge dx + x \, dy \wedge dz$. Compute $\eta^{\#} \omega$.

Solution: There are two ways to go: either from the definition (by seeing what $\eta^{\#}$ does to pairs of vector fields) or using the shortcut formulas: including the fact that d commutes with $\eta^{\#}$ and so does the wedge product. The latter is almost always easier. We get $x \circ \eta(u, v) = 2v - u^2$, $y \circ \eta(u, v) = 3u$, and $z \circ \eta(u, v) = 4u + v^2$. Therefore we find

$$\eta^{\#} dx = -2u \, du + 2 \, dv$$
$$\eta^{\#} dy = 3 \, du$$
$$\eta^{\#} dz = 4 \, du + 2v \, dv.$$

Thus we get

$$\eta^{\#}(dx \wedge dy) = (-2u \, du + 2 \, dv) \wedge (3 \, du) = -6 \, du \wedge dv$$
$$\eta^{\#}(dz \wedge dx) = (4 \, du + 2v \, dv) \wedge (-2u \, du + 2 \, dv) = (8 + 4uv) \, du \wedge dv$$
$$\eta^{\#}(dy \wedge dz) = 6v \, du \wedge dv.$$

Combining, we obtain

$$\eta^{\#}\omega = (y \circ \eta)\eta^{\#}(dx \wedge dy) - (z \circ \eta)\eta^{\#}(dz \wedge dx) + (x \circ \eta)\eta^{\#}(dy \wedge dz)$$

= 3u(-6) du \lapha dv - (4u + v²)(8 + 4uv) du \lapha dv + (2v - u²)(6v) du \lapha dv
= (-18u - 32u - 8v² - 16u²v - 4uv³ + 12v² - 6u²v) du \lapha dv
= (-50u + 4v² - 22u²v - 4uv³) du \lapha dv.

6. Let $\gamma : [0,1] \to \mathbb{R}^3$ be $\gamma(t) = (t, t^2, t^3)$, and let $\omega = z \, dx - x \, dy + y \, dz$. Compute $\int_{\gamma} \omega$. Solution: By definition we have

$$\int_{\gamma} \omega = \int_0^1 \gamma^{\#} \omega.$$

We compute that $\gamma^{\#} dx = dt$, $\gamma^{\#} dy = 2t dt$, and $\gamma^{\#} dz = 3t^2 dt$. Therefore we get

$$\gamma^{\#}\omega = t^3 dt - t(2t) dt + t^2(3t^2) dt = (3t^4 + t^3 - 2t^2) dt.$$

Integrating this over [0, 1], we get

$$\int_{\gamma} \omega = \frac{3}{5} + \frac{1}{4} - \frac{2}{3} = \frac{11}{60}.$$