
Math 70900 Homework #9 Solutions

1. Let X be a vector field on a two-dimensional manifold M and let γ : (−ε, ε) → M be
a curve such that γ′(s) and Xγ(s) are always linearly independent. (In the language of
partial differential equations one says that γ is non-characteristic.) Show that given
any function h : (−ε, ε) → R, there is a neighborhood U of p = γ(0) and a smooth
function f : U → R such that X(f) = 0 on U and f(γ(s)) = h(s) for s ∈ (−ε, ε). This
is generically how one solves a first-order PDE.

Solution: Choose coordinates (s, t) on M near p such that X = ∂
∂t

and s is the
parameter along the curve γ. That is, we map (s, t) 7→ Φt(γ(s)) for (s, t) sufficiently
small. Since ∂

∂s
and X = ∂

∂t
are linearly independent at (0, 0) by assumption (in fact

for all s ∈ (−ε, ε) when t = 0), we know this will be a smooth and locally invertible
map into some other coordinates, which can therefore serve as a coordinate system
locally.

Since X = ∂
∂t
, we know a function satisfying X(f) = 0 on an open set must be only

a function of s. So we extend f on the whole (s, t) coordinate chart by using the
same formula f

(
Φt(γ(s))

)
= h(s), i.e., having f depend only on s. This function is

independent of t so it satisfies X(f) = 0, and when t = 0 it has the correct values on
the initial curve γ.

2. For the 1-form ω on R4 given by ω = xy dw − wz dx+ y2 dy − zx dz, compute dω.

Solution: Using the product rule we have

dω = d(xy) ∧ dw − d(wz) ∧ dx+ d(y2) ∧ dy − d(zx) ∧ dz

= x dy ∧ dw + y dx ∧ dw − w dz ∧ dx− z dw ∧ dx+ 2y dy ∧ dy − z dx ∧ dz − x dz ∧ dz

= x dy ∧ dw − (y + z) dw ∧ dx+ (w − z) dx ∧ dz,

using antisymmetric of wedge products of 1-forms.

3. Imitate the proof of Proposition 15.2.10 to show that if ω is a 1-form on R3 with
dω = 0, then ω = df for some smooth function f : R3 → R.
Solution: We just need to come up with a formula that works for f . Write

ω(x, y, z) = p(x, y, z) dx+ q(x, y, z) dy + r(x, y, z) dz,

where we assume dω = 0, so that

∂p

∂z
=

∂r

∂x
,

∂q

∂x
=

∂p

∂y
,

∂r

∂y
=

∂q

∂z
.

Inspired by the formula in that Proposition, we try

f(x, y, z) =

∫ x

0

p(s, y, z) ds+

∫ y

0

q(0, s, z) ds+

∫ z

0

r(0, 0, s) ds.
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Differentiating with respect to x, we obviously get

∂f

∂x
(x, y, z) = p(x, y, z).

Differentiating with respect to y and using the fact that dω = 0, we get

∂f

∂y
(x, y, z) =

∫ x

0

∂p

∂y
(s, y, z) ds+ q(0, y, z)

=

∫ x

0

∂q

∂s
(s, y, z) ds+ q(0, y, z)

= q(x, y, z)− q(0, y, z) + q(0, y, z) = q(x, y, z).

Similarly for the z-derivative, we use again the fact that dω = 0 to get

∂f

∂z
(x, y, z) =

∫ x

0

∂p

∂z
(s, y, z) ds+

∫ y

0

∂q

∂z
(0, s, z) ds+ r(0, 0, z)

=

∫ x

0

∂r

∂s
(s, y, z) ds+

∫ y

0

∂r

∂s
(0, s, z) ds+ r(0, 0, z)

= r(x, y, z)− r(0, y, z) + r(0, y, z)− r(0, 0, z) = r(0, 0, z)

= r(x, y, z).

We have therefore found a function f(x, y, z) with df = ω everywhere.

4. A contact form on a 3-dimensional manifold is a 1-form α such that α ∧ dα is never
zero.

(a) Show that α = dz − x dy is a contact form on R3.

Solution: We have dα = −dx ∧ dy, so that

α ∧ dα = (dz − x dy) ∧ (−dx) ∧ (dy) = −dz ∧ dx ∧ dy = −dx ∧ dy ∧ dz.

(b) Show that α = sin z dx + cos z dy is a contact form on R3 which descends to a
contact form on T3.

Solution: We have

dα = cos z dz ∧ dx+ sin z dy ∧ dz.

Wedging α with this, we get

α ∧ dα = cos2 z dy ∧ dz ∧ dx+ sin2 z dx ∧ dy ∧ dz = dx ∧ dy ∧ dz,

which is never zero.

The 1-form α is invariant under the group action (x, y, z) 7→ (x+2jπ, y+2kπ, z+
2nπ) for integers j, k, n, and thus there is a 1-form ω on T3 such that if P : R3 → T3

is the quotient projection, we have P#ω = α.
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(c) Show that if α is a contact form, then there is a unique vector field ξ (called the
Reeb field) such that dα(ξ, u) = 0 for every vector u, and α(ξ) = 1 everywhere.

Solution: Express α = p dx+ q dy + r dz in coordinates, so that

dα = (ry − qz) dy ∧ dz + (pz − rx) dz ∧ dx+ (qx − py) dx ∧ dy.

Then the wedge product is

α ∧ dα =
[
p(ry − qz) + q(pz − rx) + r(qx − py)

]
dx ∧ dy ∧ dz,

and by assumption this coefficient is nonzero.

Write the Reeb field as ξ = f ∂x+g ∂y+h ∂z. Then the condition dα(ξ, u) = 0 for
every vector field u is equivalent to the three equations (choosing u = ∂x, u = ∂y,
and u = ∂z successively)

(pz − rx)h− (qx − py)g = 0

−(ry − qz)h+ (qx − py)f = 0

(ry − qz)g − (pz − rx)f = 0.

Consider this as a linear system for {f, g, h}. If all the components of this system
were zero at some point, then dα would be zero at that point, so α∧dα ̸= 0 would
be impossible. Thus at least one is nonzero, and we may assume (by permuting
the variables if needed) that it’s pz − rx ̸= 0. Then we have

h =
qx − py
pz − rx

g, f =
ry − qz
pz − rx

g.

Hence in this case g determines the other components, and we see that any Reeb
vector ξ must be a multiple of the vector

ζ = (ry − qz) ∂x + (pz − rx) ∂y + (qx − py) ∂z.

So we must have ξ = φζ for some function φ, which is determined by the extra
condition α(ξ) = 1, which is equivalent to

φ
[
p(ry − qz) + q(pz − rx) + r(qx − py)

]
= 1.

By assumption the term in square brackets is everywhere nonzero, and so φ is a
uniquely determined smooth function in these coordinates.

Since we have a uniquely specified formula for the Reeb field in any set of coor-
dinates, which are written in terms of the smooth components of α, we see that
ξ is uniquely determined and smooth in any chart, and therefore globally on the
manifold M .

(d) Find the Reeb field for the contact form in part (b).

Solution: We have already essentially worked out the formula in general. Here
we have p = sin z and q = cos z, with r = 0, so the field ζ is given by

ζ = (ry − qz) ∂x + (pz − rx) ∂y + (qx − py) ∂z = sin z ∂x + cos z ∂y.
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Since we already see that

α(ζ) = sin2 z + cos2 z = 1,

we see that φ ≡ 1 and ζ is already the Reeb field ξ.

5. Let η : R2 → R3 be the diffeomorphism η(u, v) = (2v − u2, 3u, 4u + v2), and let ω =
y dx ∧ dy − z dz ∧ dx+ x dy ∧ dz. Compute η#ω.

Solution: There are two ways to go: either from the definition (by seeing what η#

does to pairs of vector fields) or using the shortcut formulas: including the fact that d
commutes with η# and so does the wedge product. The latter is almost always easier.

We get x ◦ η(u, v) = 2v − u2, y ◦ η(u, v) = 3u, and z ◦ η(u, v) = 4u+ v2. Therefore we
find

η#dx = −2u du+ 2 dv

η#dy = 3 du

η#dz = 4 du+ 2v dv.

Thus we get

η#(dx ∧ dy) = (−2u du+ 2 dv) ∧ (3 du) = −6 du ∧ dv

η#(dz ∧ dx) = (4 du+ 2v dv) ∧ (−2u du+ 2 dv) = (8 + 4uv) du ∧ dv

η#(dy ∧ dz) = 6v du ∧ dv.

Combining, we obtain

η#ω = (y ◦ η)η#(dx ∧ dy)− (z ◦ η)η#(dz ∧ dx) + (x ◦ η)η#(dy ∧ dz)

= 3u(−6) du ∧ dv − (4u+ v2)(8 + 4uv) du ∧ dv + (2v − u2)(6v) du ∧ dv

= (−18u− 32u− 8v2 − 16u2v − 4uv3 + 12v2 − 6u2v) du ∧ dv

= (−50u+ 4v2 − 22u2v − 4uv3) du ∧ dv.

6. Let γ : [0, 1] → R3 be γ(t) =
(
t, t2, t3), and let ω = z dx− x dy + y dz. Compute

∫
γ
ω.

Solution: By definition we have ∫
γ

ω =

∫ 1

0

γ#ω.

We compute that γ#dx = dt, γ#dy = 2t dt, and γ#dz = 3t2 dt. Therefore we get

γ#ω = t3 dt− t(2t) dt+ t2(3t2) dt = (3t4 + t3 − 2t2) dt.

Integrating this over [0, 1], we get∫
γ

ω = 3
5
+ 1

4
− 2

3
= 11

60
.
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