Math 70900 Homework #8 Solutions

1. ODM:R2, 1etX:y(%—|—x% andY:x%+yaﬁy_

(a)

Show that [X,Y] = 0.
Solution: For any function f, we have

XY () = y0u(@ fotyfy) 420, (x fotu fy) = Yoty footy foy T foyta fytay fyy,

while

Y(X(f)) = 280u(y Lot fy)+yy(y Lot fy) = 2y faot@ [yt fayty fot? Foytay fyy-
Subtracting gives
[X7 YKf) = yf:): + mfy - -Tfy - yfx = 0.

Since the bracket is zero on any function, the vector field [ X, Y] is zero everywhere.

Find the flows ®; of X and V¥, of Y.
Solution: The flow of X is found from solving the system

Z(t)=y(t), yt)==@t),  x0)==, y0)=uy0.

This reduces to z”"t) = x(t), with general solution z(t) = Acosht + Bsinht, so
that y(t) = 2/(t) = Asinht + Bcosht. Thus we must have A = xy and B = yj,
so the flow is

®y(x,y) = (xcosht + ysinht, zsinht + y cosht).
The flow of Y is found from solving
2(t) ==x(t),  yt)=y),  x(0)=1x0, y(0)=uo,
with solution x(t) = zge’, y(t) = yoe'. Thus we have
Uy (x,y) = (ve', ye").

Construct an explicit coordinate chart near (1,0) such that X = % and Y = %.
Solution: Starting from the point (1,0), we define a map from (u, v) to (z,y) by

(l’,y) = q)u(\lfv(l,(])) = q)u(ev,o) = (ev COShu, e’ sinhu).

We check that

g—8—$3+@2—6”smhug+e”c03hué— 3ﬁLxQ—X

ou Oudr Oudy ox 8y_y8x oy
and similarly

g 0Ox 0 0Oy 0 0 . 0 9, 9,

TP I LI veoshu 2 4 P sinhu— =2 — 4y~ =Y,

ov 8u8x+8uay ¢ oo ua$+e i u@y xax“/ay ’



2. Suppose X and Y are vector fields on M, with flows ®; and W, respectively. Prove
that

0 0
XY] = —— — P,oW,0P_,0W_.(p).
XY Btlim0s lsmo t° 00010 (v)
Solution: By the Chain Rule, we have
0 0
%@t oWs0d 0V _y(p) = (D). %\I{s od®_, oV _4(p) |- (1)

Fix p and write v(s) = V_4(p) and F' = ®_;; then we need to compute

0

52 (s, Fr (),

and using the Chain Rule again, we have

%\I/(s, F(y(s))) = g—f(s,F(’y(s))) + (1), (%F(v(s)))

= Yu,(r(3(5) + (Vs)- (F (V'(S)))'

This is a bit complicated, but plugging in s = 0 makes it easier: we get v(0) = ¥_4(p) =

p and
0

! - = = — —
7(0) = 88\11_8(27) s=0 Yoo s=0 Yo,
since Wy is the identity map. Therefore
0
% 5:0\1/(8’ F<7<5)))YF(p) + F*( - ifp) = Y‘P—t(p) — (CI)_t)*(Y;))

Plugging into equation (1) gives
9,

0s

o Wio® oW (p) = (Do) (Yo, — (P-0)-(Y)))
= (P)(Yo_,(n) = Yp = (D) Y ), — V).

Now take the time derivative of this with respect to ¢ (in each tangent space T,M) to
get

0

It li=o
by the definition in Proposition 14.5.4, which is equal to —[X, Y] also by Proposition
14.5.4.

An alternate way to do this is expanding locally in s and ¢ as we did in class up to
first order.

(®)sY —Y = —LxY

3. Let G = GL,(R) be the Lie group of all real invertible n x n matrices. We can identify
both points in G' and vectors in T.G with matrices: for example if a(t) is a curve
of matrices in G with deta(t) # O then its derivative is a(t) € TG, which is just
another matrix.



(a) Show that the left translation push-forward is (L,)«(z) = azx for a € G and
xzeT.G.
The left translation is L,(g) = ag for a,g € G. Now if v: (—,¢) — G is any
curve with v(0) = e and 7/(0) = z, then we have

d d
—| L) = —
dt lt=0 (v(1)) dt lt=0

(Lo)sx = ay(t) = ay'(0) = azx.

(b) Show that the flow of the left-invariant vector field X on G generated by = € T.G

is given by ®(¢,a) = ae'™.
Solution: First we figure out what X actually is. By definition of a left-invariant
field, we have X, = (L,).z = gz for every g € G. Integral curves then satisfy the
formula 7/(t) = X, or more explicitly ¥'(t) = v(t)x where x is some matrix.
The solution of this differential equation is y(t) = v(0)e"*, so the flow is y(t) =
O(t,a) = ae'™.

(c) Use Problem 2 to compute the bracket [X,Y] for left-invariant fields on G gen-
erated by matrices x,y € T.G. Show that it is the left-invariant vector field
generated by xy — yr € T,G. (Hint: the Lie bracket of left-invariant fields is
left-invariant by Proposition 14.2.9.)

Solution: If X is the left-invariant field generated by x, then the flow of X is
®,(a) = ae™. Similarly the flow of Y is Ui(a) = ae®¥. Thus by Problem 1 we
have

0 0

 Otli=0s
Now we compute the term inside to get

[X> Y]e =

G, oU, 0D ,0W_(e).
s=0

PoW, 0P 0V _(e)=D0WU, 0D () =D, 0V (e e )

— q)t(e—sye—mesy) — €_Sy€_m€sy6t$.

Taking the derivatives and using the formulas £e'* = ze'™ = 'z, we get
0 0
(X,Y]. = ~5i 0B S:()(I)t oW,od ;00 _,(e)

9,

=—— ( — e SVye el 4 e*‘sye’myesyet"”)
8t t=0 s=0

_ _2 (_ —tx tx + —tx t:p)

= 57|, (Tye e+ e ye
a —tx,, tx

— _(0 o eft:rxyetx + eftmyxetx) ‘t:()

= —(—2y +yx)

=y — yz.

4. Find a basis {ej, e, e3} of traceless matrices for the Lie algebra sly(R), and use the
previous problem to compute all the nonzero Lie brackets [e;, €;].

3



Solution: A simple basis is

(1 0 /(01 (0 1
“=1p 1) “2=\10) B7\21 0/)

It is enough to compute [ey, 5], [e2, €3], and [eg, ;] by antisymmetry.

We get
le1, €2] = ((1) _01> ((1) (1J) - ((1) (1)> ((1) _01> = (_02 ?)) = 2es,

and similarly
leg, €3] = —2e, e3,e1] = —2e;.



