1. On $M=\mathbb{R}^{2}$, let $X=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ and $Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$.
(a) Show that $[X, Y]=0$.

Solution: For any function f, we have
$X(Y(f))=y \partial_{x}\left(x f_{x}+y f_{y}\right)+x \partial_{y}\left(x f_{x}+y f_{y}\right)=y f_{x}+x y f_{x x}+y^{2} f_{x y}+x^{2} f_{x y}+x f_{y}+x y f_{y y}$,
while
$Y(X(f))=x \partial_{x}\left(y f_{x}+x f_{y}\right)+y \partial_{y}\left(y f_{x}+x f_{y}\right)=x y f_{x x}+x f_{y}+x^{2} f_{x y}+y f_{x}+y^{2} f_{x y}+x y f_{y y}$.
Subtracting gives

$$
[X, Y](f)=y f_{x}+x f_{y}-x f_{y}-y f_{x}=0
$$

Since the bracket is zero on any function, the vector field $[X, Y]$ is zero everywhere.
(b) Find the flows Φ_{t} of X and Ψ_{t} of Y.

Solution: The flow of X is found from solving the system

$$
x^{\prime}(t)=y(t), \quad y^{\prime}(t)=x(t), \quad x(0)=x_{0}, \quad y(0)=y_{0} .
$$

This reduces to $\left.x^{\prime \prime} t\right)=x(t)$, with general solution $x(t)=A \cosh t+B \sinh t$, so that $y(t)=x^{\prime}(t)=A \sinh t+B \cosh t$. Thus we must have $A=x_{0}$ and $B=y_{0}$, so the flow is

$$
\Phi_{t}(x, y)=(x \cosh t+y \sinh t, x \sinh t+y \cosh t)
$$

The flow of Y is found from solving

$$
x^{\prime}(t)=x(t), \quad y^{\prime}(t)=y(t), \quad x(0)=x_{0}, \quad y(0)=y_{0}
$$

with solution $x(t)=x_{0} e^{t}, y(t)=y_{0} e^{t}$. Thus we have

$$
\Psi_{t}(x, y)=\left(x e^{t}, y e^{t}\right)
$$

(c) Construct an explicit coordinate chart near $(1,0)$ such that $X=\frac{\partial}{\partial u}$ and $Y=\frac{\partial}{\partial v}$.

Solution: Starting from the point (1, 0), we define a map from (u, v) to (x, y) by

$$
(x, y)=\Phi_{u}\left(\Psi_{v}(1,0)\right)=\Phi_{u}\left(e^{v}, 0\right)=\left(e^{v} \cosh u, e^{v} \sinh u\right) .
$$

We check that

$$
\frac{\partial}{\partial u}=\frac{\partial x}{\partial u} \frac{\partial}{\partial x}+\frac{\partial y}{\partial u} \frac{\partial}{\partial y}=e^{v} \sinh u \frac{\partial}{\partial x}+e^{v} \cosh u \frac{\partial}{\partial y}=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}=X
$$

and similarly

$$
\frac{\partial}{\partial v}=\frac{\partial x}{\partial u} \frac{\partial}{\partial x}+\frac{\partial y}{\partial u} \frac{\partial}{\partial y}=e^{v} \cosh u \frac{\partial}{\partial x}+e^{v} \sinh u \frac{\partial}{\partial y}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}=Y
$$

2. Suppose X and Y are vector fields on M, with flows Φ_{t} and Ψ_{t} respectively. Prove that

$$
[X, Y]_{p}=-\left.\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(p)
$$

Solution: By the Chain Rule, we have

$$
\begin{equation*}
\frac{\partial}{\partial s} \Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(p)=\left(\Phi_{t}\right)_{*}\left(\frac{\partial}{\partial s} \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(p)\right) \tag{1}
\end{equation*}
$$

Fix p and write $\gamma(s)=\Psi_{-s}(p)$ and $F=\Phi_{-t}$; then we need to compute

$$
\frac{\partial}{\partial s} \Psi(s, F(\gamma(s))),
$$

and using the Chain Rule again, we have

$$
\begin{aligned}
\frac{\partial}{\partial s} \Psi(s, F(\gamma(s))) & =\frac{\partial \Psi}{\partial s}(s, F(\gamma(s)))+\left(\Psi_{s}\right)_{*}\left(\frac{\partial}{\partial s} F(\gamma(s))\right) \\
& =Y_{\Psi_{s}(F(\gamma(s)))}+\left(\Psi_{s}\right)_{*}\left(F_{*}\left(\gamma^{\prime}(s)\right)\right)
\end{aligned}
$$

This is a bit complicated, but plugging in $s=0$ makes it easier: we get $\gamma(0)=\Psi_{-s}(p)=$ p and

$$
\gamma^{\prime}(0)=\left.\frac{\partial}{\partial s} \Psi_{-s}(p)\right|_{s=0}=-\left.Y_{\Psi_{-s}(p)}\right|_{s=0}=-Y_{p}
$$

since Ψ_{0} is the identity map. Therefore

$$
\left.\frac{\partial}{\partial s}\right|_{s=0} \Psi(s, F(\gamma(s))) Y_{F(p)}+F_{*}\left(-Y_{p}\right)=Y_{\Phi_{-t}(p)}-\left(\Phi_{-t}\right)_{*}\left(Y_{p}\right)
$$

Plugging into equation (1) gives

$$
\begin{aligned}
& \left.\frac{\partial}{\partial s}\right|_{s=0} \Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(p)=\left(\Phi_{t}\right)_{*}\left(Y_{\Phi_{-t}(p)}-\left(\Phi_{-t}\right)_{*}\left(Y_{p}\right)\right) \\
& \quad=\left(\Phi_{t}\right)_{*}\left(Y_{\Phi_{-t}(p)}\right)-Y_{p}=\left(\left(\Phi_{t}\right)_{\#} Y\right)_{p}-Y_{p}
\end{aligned}
$$

Now take the time derivative of this with respect to t (in each tangent space $T_{p} M$) to get

$$
\left.\frac{\partial}{\partial t}\right|_{t=0}\left(\Phi_{t}\right)_{\#} Y-Y=-\mathcal{L}_{X} Y
$$

by the definition in Proposition 14.5.4, which is equal to $-[X, Y]$ also by Proposition 14.5.4.

An alternate way to do this is expanding locally in s and t as we did in class up to first order.
3. Let $G=G L_{n}(\mathbb{R})$ be the Lie group of all real invertible $n \times n$ matrices. We can identify both points in G and vectors in $T_{e} G$ with matrices: for example if $a(t)$ is a curve of matrices in G with $\operatorname{det} a(t) \neq 0$ then its derivative is $\dot{a}(t) \in T_{a(t)} G$, which is just another matrix.
(a) Show that the left translation push-forward is $\left(L_{a}\right)_{*}(x)=a x$ for $a \in G$ and $x \in T_{e} G$.
The left translation is $L_{a}(g)=a g$ for $a, g \in G$. Now if $\gamma:(-\varepsilon, \varepsilon) \rightarrow G$ is any curve with $\gamma(0)=e$ and $\gamma^{\prime}(0)=x$, then we have

$$
\left(L_{a}\right)_{*} x=\left.\frac{d}{d t}\right|_{t=0} L_{a}(\gamma(t))=\left.\frac{d}{d t}\right|_{t=0} a \gamma(t)=a \gamma^{\prime}(0)=a x
$$

(b) Show that the flow of the left-invariant vector field X on G generated by $x \in T_{e} G$ is given by $\Phi(t, a)=a e^{t x}$.
Solution: First we figure out what X actually is. By definition of a left-invariant field, we have $X_{g}=\left(L_{g}\right)_{*} x=g x$ for every $g \in G$. Integral curves then satisfy the formula $\gamma^{\prime}(t)=X_{\gamma(t)}$, or more explicitly $\gamma^{\prime}(t)=\gamma(t) x$ where x is some matrix. The solution of this differential equation is $\gamma(t)=\gamma(0) e^{t x}$, so the flow is $\gamma(t)=$ $\Phi(t, a)=a e^{t x}$.
(c) Use Problem 2 to compute the bracket $[X, Y]$ for left-invariant fields on G generated by matrices $x, y \in T_{e} G$. Show that it is the left-invariant vector field generated by $x y-y x \in T_{e} G$. (Hint: the Lie bracket of left-invariant fields is left-invariant by Proposition 14.2.9.)
Solution: If X is the left-invariant field generated by x, then the flow of X is $\Phi_{t}(a)=a e^{t x}$. Similarly the flow of Y is $\Psi_{s}(a)=a e^{s y}$. Thus by Problem 1 we have

$$
[X, Y]_{e}=-\left.\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(e)
$$

Now we compute the term inside to get

$$
\begin{aligned}
\Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(e)=\Phi_{t} \circ \Psi_{s} \circ \Phi_{-t}\left(e^{-s y}\right) & =\Phi_{t} \circ \Psi_{s}\left(e^{-s y} e^{-t x}\right) \\
& =\Phi_{t}\left(e^{-s y} e^{-t x} e^{s y}\right)=e^{-s y} e^{-t x} e^{s y} e^{t x}
\end{aligned}
$$

Taking the derivatives and using the formulas $\frac{d}{d t} e^{t x}=x e^{t x}=e^{t x} x$, we get

$$
\begin{aligned}
{[X, Y]_{e} } & =-\left.\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}(e) \\
& =-\left.\left.\frac{\partial}{\partial t}\right|_{t=0}\left(-e^{-s y} y e^{-t x} e^{s y} e^{t x}+e^{-s y} e^{-t x} y e^{s y} e^{t x}\right)\right|_{s=0} \\
& =-\left.\frac{\partial}{\partial t}\right|_{t=0}\left(-y e^{-t x} e^{t x}+e^{-t x} y e^{t x}\right) \\
& =-\left.\frac{\partial}{\partial t}\right|_{t=0}\left(-y+e^{-t x} y e^{t x}\right) \\
& =-\left.\left(0-e^{-t x} x y e^{t x}+e^{-t x} y x e^{t x}\right)\right|_{t=0} \\
& =-(-x y+y x) \\
& =x y-y x
\end{aligned}
$$

4. Find a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of traceless matrices for the Lie algebra $\mathfrak{s l}_{2}(\mathbb{R})$, and use the previous problem to compute all the nonzero Lie brackets $\left[e_{i}, e_{j}\right]$.

Solution: A simple basis is

$$
e_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

It is enough to compute $\left[e_{1}, e_{2}\right]$, $\left[e_{2}, e_{3}\right]$, and $\left[e_{3}, e_{1}\right]$ by antisymmetry. We get

$$
\left[e_{1}, e_{2}\right]=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)=2 e_{3}
$$

and similarly

$$
\left[e_{2}, e_{3}\right]=-2 e_{1}, \quad\left[e_{3}, e_{1}\right]=-2 e_{2}
$$

