
Math 70900 Homework #8 Solutions

1. On M = R2, let X = y ∂
∂x

+ x ∂
∂y

and Y = x ∂
∂x

+ y ∂
∂y
.

(a) Show that [X, Y ] = 0.

Solution: For any function f , we have

X(Y (f)) = y∂x(xfx+yfy)+x∂y(xfx+yfy) = yfx+xyfxx+y2fxy+x2fxy+xfy+xyfyy,

while

Y (X(f)) = x∂x(yfx+xfy)+y∂y(yfx+xfy) = xyfxx+xfy+x2fxy+yfx+y2fxy+xyfyy.

Subtracting gives

[X, Y ](f) = yfx + xfy − xfy − yfx = 0.

Since the bracket is zero on any function, the vector field [X, Y ] is zero everywhere.

(b) Find the flows Φt of X and Ψt of Y .

Solution: The flow of X is found from solving the system

x′(t) = y(t), y′(t) = x(t), x(0) = x0, y(0) = y0.

This reduces to x′′t) = x(t), with general solution x(t) = A cosh t + B sinh t, so
that y(t) = x′(t) = A sinh t + B cosh t. Thus we must have A = x0 and B = y0,
so the flow is

Φt(x, y) = (x cosh t+ y sinh t, x sinh t+ y cosh t).

The flow of Y is found from solving

x′(t) = x(t), y′(t) = y(t), x(0) = x0, y(0) = y0,

with solution x(t) = x0e
t, y(t) = y0e

t. Thus we have

Ψt(x, y) = (xet, yet).

(c) Construct an explicit coordinate chart near (1, 0) such that X = ∂
∂u

and Y = ∂
∂v
.

Solution: Starting from the point (1, 0), we define a map from (u, v) to (x, y) by

(x, y) = Φu

(
Ψv(1, 0)

)
= Φu(e

v, 0) = (ev coshu, ev sinhu).

We check that

∂

∂u
=

∂x

∂u

∂

∂x
+

∂y

∂u

∂

∂y
= ev sinhu

∂

∂x
+ ev coshu

∂

∂y
= y

∂

∂x
+ x

∂

∂y
= X,

and similarly

∂

∂v
=

∂x

∂u

∂

∂x
+

∂y

∂u

∂

∂y
= ev coshu

∂

∂x
+ ev sinhu

∂

∂y
= x

∂

∂x
+ y

∂

∂y
= Y,
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2. Suppose X and Y are vector fields on M , with flows Φt and Ψt respectively. Prove
that

[X, Y ]p = − ∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

Φt ◦Ψs ◦ Φ−t ◦Ψ−s(p).

Solution: By the Chain Rule, we have

∂

∂s
Φt ◦Ψs ◦ Φ−t ◦Ψ−s(p) = (Φt)∗

(
∂

∂s
Ψs ◦ Φ−t ◦Ψ−s(p)

)
. (1)

Fix p and write γ(s) = Ψ−s(p) and F = Φ−t; then we need to compute

∂

∂s
Ψ
(
s, F (γ(s))

)
,

and using the Chain Rule again, we have

∂

∂s
Ψ
(
s, F (γ(s))

)
=

∂Ψ

∂s

(
s, F (γ(s))

)
+ (Ψs)∗

(
∂

∂s
F (γ(s))

)
= YΨs(F (γ(s))) + (Ψs)∗

(
F∗

(
γ′(s)

))
.

This is a bit complicated, but plugging in s = 0 makes it easier: we get γ(0) = Ψ−s(p) =
p and

γ′(0) =
∂

∂s
Ψ−s(p)

∣∣∣
s=0

= −YΨ−s(p)

∣∣∣
s=0

= −Yp,

since Ψ0 is the identity map. Therefore

∂

∂s

∣∣∣
s=0

Ψ
(
s, F (γ(s))

)
YF (p) + F∗

(
− Yp

)
= YΦ−t(p) − (Φ−t)∗(Yp).

Plugging into equation (1) gives

∂

∂s

∣∣∣
s=0

Φt ◦Ψs ◦ Φ−t ◦Ψ−s(p) = (Φt)∗
(
YΦ−t(p) − (Φ−t)∗(Yp)

)
= (Φt)∗(YΦ−t(p))− Yp = ((Φt)#Y )p − Yp.

Now take the time derivative of this with respect to t (in each tangent space TpM) to
get

∂

∂t

∣∣∣
t=0

(Φt)#Y − Y = −LXY

by the definition in Proposition 14.5.4, which is equal to −[X, Y ] also by Proposition
14.5.4.

An alternate way to do this is expanding locally in s and t as we did in class up to
first order.

3. Let G = GLn(R) be the Lie group of all real invertible n×n matrices. We can identify
both points in G and vectors in TeG with matrices: for example if a(t) is a curve
of matrices in G with det a(t) ̸= 0 then its derivative is ȧ(t) ∈ Ta(t)G, which is just
another matrix.
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(a) Show that the left translation push-forward is (La)∗(x) = ax for a ∈ G and
x ∈ TeG.

The left translation is La(g) = ag for a, g ∈ G. Now if γ : (−ε, ε) → G is any
curve with γ(0) = e and γ′(0) = x, then we have

(La)∗x =
d

dt

∣∣∣
t=0

La(γ(t)) =
d

dt

∣∣∣
t=0

aγ(t) = aγ′(0) = ax.

(b) Show that the flow of the left-invariant vector field X on G generated by x ∈ TeG
is given by Φ(t, a) = aetx.

Solution: First we figure out what X actually is. By definition of a left-invariant
field, we have Xg = (Lg)∗x = gx for every g ∈ G. Integral curves then satisfy the
formula γ′(t) = Xγ(t), or more explicitly γ′(t) = γ(t)x where x is some matrix.
The solution of this differential equation is γ(t) = γ(0)etx, so the flow is γ(t) =
Φ(t, a) = aetx.

(c) Use Problem 2 to compute the bracket [X, Y ] for left-invariant fields on G gen-
erated by matrices x, y ∈ TeG. Show that it is the left-invariant vector field
generated by xy − yx ∈ TeG. (Hint: the Lie bracket of left-invariant fields is
left-invariant by Proposition 14.2.9.)

Solution: If X is the left-invariant field generated by x, then the flow of X is
Φt(a) = aetx. Similarly the flow of Y is Ψs(a) = aesy. Thus by Problem 1 we
have

[X, Y ]e = − ∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

Φt ◦Ψs ◦ Φ−t ◦Ψ−s(e).

Now we compute the term inside to get

Φt ◦Ψs ◦ Φ−t ◦Ψ−s(e) = Φt ◦Ψs ◦ Φ−t(e
−sy) = Φt ◦Ψs(e

−sye−tx)

= Φt(e
−sye−txesy) = e−sye−txesyetx.

Taking the derivatives and using the formulas d
dt
etx = xetx = etxx, we get

[X, Y ]e = − ∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

Φt ◦Ψs ◦ Φ−t ◦Ψ−s(e)

= − ∂

∂t

∣∣∣
t=0

(
− e−syye−txesyetx + e−sye−txyesyetx

)∣∣∣
s=0

= − ∂

∂t

∣∣∣
t=0

(
− ye−txetx + e−txyetx

)
= − ∂

∂t

∣∣∣
t=0

(
− y + e−txyetx

)
= −

(
0− e−txxyetx + e−txyxetx

)∣∣
t=0

= −(−xy + yx)

= xy − yx.

4. Find a basis {e1, e2, e3} of traceless matrices for the Lie algebra sl2(R), and use the
previous problem to compute all the nonzero Lie brackets [ei, ej].
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Solution: A simple basis is

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 1
−1 0

)
.

It is enough to compute [e1, e2], [e2, e3], and [e3, e1] by antisymmetry.

We get

[e1, e2] =

(
1 0
0 −1

)(
0 1
1 0

)
−
(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 2
−2 0

)
= 2e3,

and similarly
[e2, e3] = −2e1, [e3, e1] = −2e2.

4


