
Math 70900 Homework #7 Solutions

1. Prove that if M is a smooth manifold with a trivial tangent bundle, then M must be
orientable.

Solution: Let Υ: TM → M × Rn be a trivialization. We want to prove that M is
orientable, i.e., that there is a family of coordinate charts (ϕi, Ui) coveringM such that
detD(ϕi ◦ ϕ−1

j ) > 0 always.

Now use Υ to define n linearly-independent vector fields V1, . . . , Vn on M . For any
given coordinate chart (ϕ, U) on M , write these vector fields as

Vj =
n∑

k=1

ckj
∂

∂xk
.

Then ckj is a nonsingular matrix since both { ∂
∂xk } and {Xj} are linearly independent.

Hence the determinant detC of this matrix is either positive or negative, and by
continuity of the vector fields this determinant must also be continuous. Hence it’s
always positive or always negative.

If the determinant detC is negative, then we can change the coordinate chart to a new
chart with the same domain by y1 = x1, . . . , yn−1 = xn−1, yn = −xn, and in this chart
we will have ∂

∂xk = ∂
∂yk

when k ̸= n and ∂
∂xn = − ∂

∂yn
. Hence the corresponding matrix

C̃ in the y-basis will be the same as the matrix C in the x-basis except that the last
row or column (depending how you write it) will flip sign. Thus the determinant will
also flip sign.

By doing the above we can take any given atlas and flip the sign of the last coordinate
so that the determinant of the matrix C that expresses the fields {Vj} in the coordinate
basis is always positive. So suppose we have done this.

Now let (x1, . . . , xn) and (y1, . . . , yn) be two coordinate charts, and suppose

Vj =
n∑

k=1

ckj
∂

∂xk
and Vj =

n∑
ℓ=1

bℓj
∂

∂yℓ
.

Then using the change-of-basis formula for coordinate vectors, we have

n∑
k=1

ckj

n∑
ℓ=1

∂yℓ

∂xk
∂

∂yℓ
=

n∑
ℓ=1

bjℓ
∂

∂yℓ
,

which obviously implies that

bjℓ =
n∑

k=1

ckj
∂yℓ

∂xk

for every j and ℓ. This is just a product of matrices: we have detB = detC det ∂y
∂x
.

Since detB > 0 and detC > 0 by construction, we conclude that det ∂y
∂x
> 0 for all of

the charts in our atlas. This is exactly the definition of orientability.
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2. SupposeM is a smooth submanifold of a smooth manifold N in the sense of Definition
9.1.9, and let ι : M → N be the inclusion. Let Y be a smooth vector field on N such
that whenever p ∈M we have Y (ι(p)) ∈ ι∗[TpM ]. Prove that there is a unique smooth
vector field X on M such that ι∗ ◦X = Y ◦ ι. (Hint: for each p ∈ M the vector X(p)
is completely determined; what does it look like in a coordinate chart?)

Solution: Since M is a smooth submanifold, around every point p ∈ M there is a
coordinate chart (ψ, V ) on N with ι(p) ∈ V and ψ[M ∩ V ] = {(x1, . . . , xm, 0, . . . , 0) ∈
Rn}. Let U = M ∩ V , an open set in M , and let ϕ : U → Rm be the map ϕ(p) =
πRm(ψ(ι(p))) which projects an n-tuple onto its first m components. Then ϕ is a
coordinate chart on M , and in the charts (ϕ, U) and (ψ, V ), the smooth map ι takes
the form

(x1, . . . , xn) = ψ ◦ ι ◦ ϕ−1(u1, . . . , um) = (u1, . . . , um, 0, . . . , 0).

As a result the formula for ι∗ is

ι∗

(
∂

∂uk

∣∣∣
p

)
=

∂

∂xk

∣∣∣
ι(p)

for 1 ≤ k ≤ m.

Now let Y be a smooth vector field on N . By definition Y is smooth if in every
coordinate chart it is smooth. Let (ψ, V ) be the chart above and let (Ψ, TV ) be the
corresponding chart on TN . Then

Y (q) =
n∑

k=1

yk(q)
∂

∂xk

∣∣∣
q

for some functions yk(q), and in coordinates we have

Ψ ◦ Y ◦ ψ−1(x1, . . . , xn) =
(
x1, . . . , xn, b1(x1, . . . , xn), . . . , bn(x1, . . . , xn)

)
,

where bk = yk ◦ ψ−1. So Y is smooth if and only if the functions bk are smooth on Rn.
Now since

Ψ ◦ ι∗ ◦ Φ−1(u1, . . . , um, a1, . . . , am) = (u1, . . . , um, 0, . . . , 0, a1, . . . , am, 0, . . . , 0)

and

Ψ◦Y ◦ι◦ϕ−1(u1, . . . , um) =
(
u1, . . . , um, 0, . . . , 0, b1(u1, . . . , um, 0, . . . , 0), . . . , bn(u1, . . . , um, 0, . . . , 0)

)
,

we see that Y (ι(p)) ∈ ι∗[TpM ] if and only if in coordinates we have

bk(u1, . . . , um, 0, . . . , 0) = 0 for m+ 1 ≤ k ≤ n

for all (u1, . . . , um) ∈ Rm.

If Y (ι(p)) ∈ ι∗[TpM ] for a p ∈M , then Y (ι(p)) = ι∗(X(p)) for some X(p) ∈ TpM , and
X(p) is unique since ι∗ is one-to-one. This works for every p ∈ M and thus defines
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a map from M to TM with X(p) ∈ TpM for all p. We just have to check that it’s
smooth. In coordinates (ϕ, U) and (Φ, TU) on M and TM as above, we must have

Φ◦X◦ϕ−1(u1, . . . , um) =
(
u1, . . . , um, b1(u1, . . . , um, 0, . . . , 0), . . . , bm(u1, . . . , um, 0, . . . , 0)

)
,

and since each bk is smooth on all of Rn, it is in particular smooth on Rm ×{0} ⊂ Rn.
Thus since X is smooth in coordinates, it is a smooth vector field.

3. Consider R4 as the quaternions, where each element is written as (w, x, y, z) = q =
w + xi+ yj + zk, with the multiplication defined to be a bilinear operation satisfying

i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j, and ji = −k, kj = −i, ik = −j.

(You can take for granted that this multiplication is well-defined and associative.)
Show that the unit quaternions (those satisfying w2 + x2 + y2 + z2 = 1) are a group,
which is identified with S3. Compute the left-invariant vector fields on S3. (Hint: first
compute the left-invariant fields on R4, then use the previous problem.)

Solution: First we check the group property, which is the statement that if P =
w + xi + yj + zk and Q = a + bi + cj + dk both have unit length, then so does
QP = LQ(P ). Let Q = (a, b, c, d) = a + bi + cj + dk be a fixed quaternion; then we
compute for a quaternion P = w + xi+ yj + zk that

LQ(P ) = (a+ bi+ cj + dk)(w + xi+ yj + zk)

= (aw − bx− cy − dz) + (bw + ax+ cz − dy)i

+ (ay + cw + dx− bz)j + (az + dw + by − cx)k.

Or in coordinates we have

(q, r, s, t) = L(a,b,c,d)(w, x, y, z)

= (aw − bx− cy − dz, bw + ax+ cz − dy, ay + cw + dx− bz, az + dw + by − cx).

(1)

By expanding the squared length of this, we get

(aw−bx−cy−dz)2+(bw+ax+cz−dy)2+(ay+cw+dx−bz)2+(az+dw+by−cx)2 =
(a2+ b2+ c2+d2)w2+(b2+a2+d2+ c2)x2+(c2+d2+a2+ b2)y2+(d2+ c2+ b2+a2)z2

+ 2wx(−ab+ ab+ cd− cd) + 2wy(−ac− bd+ ac+ bd) + 2wz(−ad+ bc− bcad)

+ 2xy(bc− ad+ ad− bc) + 2xz(bd+ ac− bd− ac) + 2yz(cd− cd− ab+ ab)

= 1 · (w2 + x2 + y2 + z2) = 1.

So indeed, the product of unit quaternions is still unit, and the unit quaternions form
a group.
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Using formula (1) for the left-translation, the derivative map is computed by

(LQ)∗
(

∂
∂w

∣∣∣
P

)
= ∂q

∂w
∂
∂q

∣∣∣
QP

+ ∂r
∂w

∂
∂r

∣∣∣
QP

+ ∂s
∂w

∂
∂s

∣∣∣
QP

+ ∂t
∂w

∂
∂t

∣∣∣
QP

= a ∂
∂q

∣∣∣
QP

+ b ∂
∂r

∣∣∣
QP

+ c ∂
∂s

∣∣∣
QP

+ d ∂
∂t

∣∣∣
QP

(LQ)∗
(

∂
∂x

∣∣∣
P

)
= −b ∂

∂q

∣∣∣
QP

+ a ∂
∂r

∣∣∣
QP

+ d ∂
∂s

∣∣∣
QP

− c ∂
∂t

∣∣∣
QP

(LQ)∗
(

∂
∂y

∣∣∣
P

)
= −c ∂

∂q

∣∣∣
QP

− d ∂
∂r

∣∣∣
QP

+ a ∂
∂s

∣∣∣
QP

+ b ∂
∂t

∣∣∣
QP

(LQ)∗
(

∂
∂z

∣∣∣
P

)
= −d ∂

∂q

∣∣∣
QP

+ c ∂
∂r

∣∣∣
QP

− b ∂
∂s

∣∣∣
QP

+ a ∂
∂t

∣∣∣
QP
.

Now set P = e = (1, 0, 0, 0), the identity of S3 (or of R4). The basis vectors here
are spanned by ∂

∂x
, ∂

∂y
, and ∂

∂z
, and the three left-invariant fields are given at each

Q = a+ bi+ cj + dk by

E1

∣∣
Q
= (LQ)∗

(
∂
∂x

∣∣
e

)
= −b ∂

∂q

∣∣∣
Q
+ a ∂

∂r

∣∣∣
Q
+ d ∂

∂s

∣∣∣
Q
− c ∂

∂t

∣∣∣
Q

E2

∣∣
Q
= (LQ)∗

(
∂
∂y

∣∣
e

)
= −c ∂

∂q

∣∣∣
Q
− d ∂

∂r

∣∣∣
Q
+ a ∂

∂s

∣∣∣
Q
+ b ∂

∂t

∣∣∣
Q

E3

∣∣
Q
= (LQ)∗

(
∂
∂z

∣∣
e

)
= −d ∂

∂q

∣∣∣
Q
+ c ∂

∂r

∣∣∣
Q
− b ∂

∂s

∣∣∣
Q
+ a ∂

∂t

∣∣∣
Q
.

Now renaming both (q, r, s, t) and (a, b, c, d) to standard coordinates (w, x, y, z), we get
the form

E1 = −x ∂
∂w

+ w ∂
∂x

+ z ∂
∂y

− y ∂
∂z

E2 = −y ∂
∂w

− z ∂
∂x

+ w ∂
∂y

+ x ∂
∂z

E3 = −z ∂
∂w

+ y ∂
∂x

− x ∂
∂y

+ w ∂
∂z
.

All of these are vector fields in R4 that are orthogonal to each other and to the unit
normal vector field

E0 = w ∂
∂w

+ x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
,

so they are all tangent to S3 and induce vector fields on it as in problem 2.

4. SupposeM is a smooth manifold with a discrete group G which gives a free and proper
action on M by smooth maps ϕg : M → M for each g ∈ G, so that K = M/G is a
smooth manifold by Theorem 9.1.8. Let τ : M → K be the quotient map.

(a) If X is a vector field on M , and if (ϕg)∗X(p) = X(ϕg(p)) for every g ∈ G, prove
that there is a vector field Y on K such that τ∗ ◦X(p) = Y (τ(p)) for all p ∈ X.
We say “X descends to K.”

Solution: Given q ∈ K, pick a p ∈ τ−1{q} and push X(p) forward to q = τ(p) to
get Y (q) = τ∗(X(p)). We want to show that this does not depend on the choice
of p ∈ τ−1{q}. If p′ is also in τ−1{q}, then p′ = ϕg(p) for some g ∈ G. Now
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X(p′) = X(ϕg(p)) = (ϕg)∗X(p) by assumption. Furthermore since τ ◦ ϕg = τ by
definition of the quotient map, we have τ∗ ◦ (ϕg)∗ = τ∗ by the Chain Rule, and
thus τ∗(X(p′)) = τ∗(ϕg)∗(X(p)) = τ∗(X(p)). So τ∗(X(p)) is uniquely determined
by τ(p).

We have now defined Y on K and we need to prove it is smooth. This is easy
to do in the smooth structure we defined for K in Theorem 9.1.8. Around any
point p ∈ M we take a coordinate chart (ϕ, U) where U is small enough that
ϕg[U ] ∩ U = ∅ for any g ̸= e. Then τ |U is a diffeomorphism from U to τ [U ],
and coordinates on π[U ] are given by ϕ ◦ τ |−1

U . In such coordinates, τ is basically
the identity: τ(x1, . . . , xn) = (y1, . . . , yn). Thus if X(p) =

∑
i a

i(p) ∂
∂xi

∣∣
p
, then we

have Y (q) =
∑

i a
i(τ(p)) ∂

∂yi

∣∣
q
. So Y is just as smooth as X.

(b) In the special case where M = R2 and the group G is the group of isometries
generated by g1(x, y) = (x+1, y) and g2(x, y) = (−x, y+1), show that Y (p) = ∂

∂y

∣∣
p

descends to K but that X(p) = ∂
∂x

∣∣
p
does not descend to K.

Solution: We just need to check that (g1)∗Y = Y ◦ g1 and that (g2)∗Y = Y ◦ g2.
Notice that

(g1)∗

(
∂

∂x

∣∣∣
(x,y)

)
=

∂

∂x

∣∣∣
(x+1,y)

and (g1)∗

(
∂

∂y

∣∣∣
(x,y)

)
=

∂

∂y

∣∣∣
(x+1,y)

(g2)∗

(
∂

∂x

∣∣∣
(x,y)

)
= − ∂

∂x

∣∣∣
(−x,y+1)

and (g2)∗

(
∂

∂y

∣∣∣
(x,y)

)
=

∂

∂y

∣∣∣
(−x,y+1)

.

Hence (g1)∗(Y (x, y)) = Y (g1(x, y)) and (g2)∗(Y (x, y)) = Y (g2(x, y)), so that Y
descends. But (g1)∗(X(x, y)) = X(g1(x, y)) while (g2)∗(X(x, y)) = −X(g2(x, y)),
so X does not descend.

(c) Show directly that there cannot be any other vector field Z = h(x, y) ∂
∂x

∣∣
(x,y)

+

j(x, y) ∂
∂y

∣∣
(x,y)

that is linearly independent of Y everywhere and descends to K.

Solution: Write Z = f(x, y) ∂
∂x

∣∣
(x,y)

+g(x, y) ∂
∂y

∣∣
(x,y)

for some smooth functions f

and g. Clearly Z is linearly independent of Y everywhere if and only if f(x, y) ̸= 0
for all (x, y) ∈ R2. Since R2 is connected, the only way this is possible is if f
is either always positive, or always negative (for if it were both, then by the
Intermediate Value Theorem along a path, f would have to be zero somewhere in
between).

In order to have (g1)∗Z = Z ◦ g1 we must have f(x, y) = f(x+1, y) and g(x, y) =
g(x + 1, y) for all (x, y) ∈ R2. Furthermore to have (g2)∗Z = Z ◦ g2 we must
have −f(x, y) = f(x, y + 1) and g(x, y) = g(x, y + 1) for all (x, y) ∈ R2. Now
f(x, y + 1) = −f(x, y) contradicts the fact that f is always of the same sign and
never zero. So there is no such Z.

(d) Prove that the Klein bottle does not have trivial tangent bundle.

Solution: If the tangent bundle were trivial, then we could have two vector fields
on K that are everywhere linearly independent. But the argument above shows
that we only have one vector field that is nowhere zero, and no other field can be
chosen to give a linearly independent one.
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5. The following steps are used to construct a partition of unity on a noncompact manifold.

(a) Given a noncompact manifoldM (which is Hausdorff and second-countable), show
that there is a countable collection of open subsets Vi such that

� the closure Vi of Vi is a compact subset of M

� Vi ⊂ Vi+1 for each i

�

⋃∞
i=1 Vi =M

Solution: Cover M with coordinate charts. Since M is second-countable, it
is Lindelöf, and thus we only need countably many charts to cover. Call them
(ϕi, Ui) for i ∈ N.
The idea is to set up Vi as the union of finitely many coordinate balls, where the
number of balls and their radii increases simultaneously. Precisely, we let

Vi =
i⋃

j=1

ϕ−1
j [Bi(0)].

The closure of a finite union is the finite union of the closure, and since the ϕj

are homeomorphisms, we have

Vi =
i⋃

j=1

ϕ−1
j [Bi(0)].

The ball of radius i is compact, and thus so is Vi. Secondly we have

Vi =
i⋃

j=1

ϕ−1
j [Bi(0)] ⊂

i⋃
j=1

ϕ−1
j [Bi+1(0)] ⊂

i+1⋃
j=1

ϕ−1
j [Bi+1(0)] = Vi+1.

Finally, for any point p ∈M , we know that p ∈ Uk for some k ∈ N. Furthermore
the Euclidean distance from ϕk(p) to 0 is less than some positive integer ℓ. Hence
if m = max{k, ℓ}, then

p ∈ ϕ−1
k [Bℓ(0)] ⊂ ϕ−1

k [Bm(0)] ⊂ Vm.

Thus the family {Vm : m ∈ N} covers M .

(b) If {Vi} is a collection as above and Wi = Vi\Vi−2, show that each Wi intersects
only Wi−1 and Wi+1.

Solution: The only thing that matters here is that Vi ⊂ Vi ⊂ Vi+1. Consider
Wi ∩Wj with j > i. Then

Wi ∩Wj = (Vi\Vi−2) ∩ (Vj\Vj−2) = Vi ∩ Vi−2
c ∩ Vj ∩ Vj−2

c
.

Now Vi ⊂ Vj and Vi−2 ⊂ Vj−2, so that Vj−2
c ⊂ Vi−2

c
. Thus

Wi ∩Wj ⊂ Vi ∩ Vj−2
c
.

If j − 2 ≥ i then Vj−2
c ⊂ V

c

i ⊂ V c
i , which means Wi ∩Wj ⊂ Vi ∩ V c

i = ∅.
Hence the only way Wi ∩Wj ̸= ∅ with j > i is if j = i+ 1.
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