Math 70900 Homework \#6 Solutions

1. (Alternate approach to vectors.) For $p \in M$, let \mathcal{G}_{p} denote the set of all germs of C^{∞} functions at p (that is, smooth real-valued functions defined on some open neighborhood of p under the equivalence relation that functions are equal if they coincide on some neighborhood of p which is contained in both their domains; see Remark 10.3.3). Define a schmector to be a linear operator D from the algebra \mathcal{G}_{p} to \mathbb{R} which satisfies the Leibniz rule $D(f \cdot g)=g(p) D(f)+f(p) D(g)$.
(a) Prove that addition and multiplication are well-defined operations on germs (so that it is in fact an algebra), and that for any $v \in T_{p} M$ the operator $D_{v}: f \mapsto v(f)$ is a schmector.
Solution: If $F=[(f, U)]$ and $G=[(g, V)]$, then to prove that $F+G$ is welldefined, we want to check that if $(f, U) \equiv(h, A)$ and $(g, V) \equiv(j, B)$ then $(f+$ $g, U \cap V) \equiv(h+j, A \cap B)$. Now $f=h$ on some open $C \subset A \cap U$ and $g=j$ on some open $D \subset B \cap V$, which means that $f+g=h+j$ on the set $C \cap D \subset$ $(A \cap U) \cap(B \cap V)=(U \cap V) \cap(A \cap B)$. Hence $(f+g, U \cap V) \equiv(h+j, A \cap B)$. Similarly multiplication is well-defined.
Now we show that D_{v} is a schmector. We already know that D_{v} is a linear operator, and we just need to show the Leibniz rule. Let γ be any representative of v. Then

$$
\begin{aligned}
v(f \cdot g)=\left.\frac{d}{d t}(f(\gamma(t)) g(\gamma(t)))\right|_{t=0} & =\left.f(\gamma(0)) \frac{d}{d t} g(\gamma(t))\right|_{t=0}+\left.g(\gamma(0)) \frac{d}{d t} f(\gamma(t))\right|_{t=0} \\
& =f(p) v(g)+g(p) v(f)
\end{aligned}
$$

by the usual product rule for functions.
(b) Prove using the Leibniz rule that if $f: U \rightarrow \mathbb{R}$ is a constant function for some open set $U \ni p$, then $D(f)=0$ for any schmector D.
Solution: Suppose f is a constant function, $f(p)=c$ for all $p \in M$. Let h be the constant function $h(p)=1$ for all $p \in M$. Then $f=c h$ and $D_{v}(f)=c D_{v}(h)$. On the other hand, $h^{2}=h$, which means that

$$
D_{v}(h)=h(p) D_{v}(h)+h(p) D_{v}(h)=2 D_{v}(h)
$$

Hence we must have $D_{v}(h)=0$ and thus also $D_{v}(f)=0$.
(c) Prove the following Lemma: for any C^{∞} function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can write

$$
g(\mathbf{x})=a+\sum_{k=1}^{n} b_{k} x^{k}+\sum_{i, j=1}^{n} c_{i j}(\mathbf{x}) x^{i} x^{j}
$$

where $a=g(\mathbf{0}), b_{k}=\frac{\partial g}{\partial x^{k}}(\mathbf{0})$, and $c_{i j}(\mathbf{x})=\int_{0}^{1}(1-t) \frac{\partial^{2} g}{\partial x^{i} \partial x^{j}}(t \mathbf{x}) d t$. (Hint: Suppose for a fixed \mathbf{x} we denote $h(t)=g\left(t x^{1}, \ldots, t x^{n}\right)$; show that $h^{\prime \prime}(t)=$ $\sum_{i, j=1}^{n} x^{i} x^{j} \frac{\partial^{2} g}{\partial x^{i} \partial x^{j}}(t \mathbf{x})$. Then use integration by parts.)

Solution: Let's check the formula in the hint: we have

$$
\begin{aligned}
h^{\prime}(t) & =\sum_{j=1}^{n} \frac{\partial g}{\partial x^{j}}\left(t x^{1}, \ldots, t x^{n}\right) \frac{d}{d t}\left(t x^{j}\right)=\sum_{j=1}^{n} x^{j} \frac{\partial g}{\partial x^{j}}\left(t x^{1}, \ldots, t x^{n}\right) \\
h^{\prime \prime}(t) & =\sum_{i, j=1}^{n} x^{j} \frac{\partial^{2} g}{\partial x^{i} \partial x^{j}}\left(t x^{1}, \ldots, t x^{n}\right) \frac{d}{d t}\left(t x^{i}\right)=\sum_{i, j=1}^{n} x^{i} x^{j} \frac{\partial^{2} g}{\partial x^{i} \partial x^{j}}\left(t x^{1}, \ldots, t x^{n}\right) .
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
\sum_{i, j=1}^{n} c_{i j}(\mathbf{x}) x^{i} x^{j} & =\sum_{i, j=1}^{n} x^{i} x^{j} \int_{0}^{1}(1-t) \frac{\partial^{2} g}{\partial x^{i} \partial x^{j}}(t \mathbf{x}) d t=\int_{0}^{1}(1-t) h^{\prime \prime}(t) d t \\
& =\left.(1-t) h^{\prime}(t)\right|_{t=0} ^{t=1}+\int_{0}^{1} h^{\prime}(t) d t=-h^{\prime}(0)+h(1)-h(0) .
\end{aligned}
$$

We thus have

$$
\begin{aligned}
& h(1)=h(0)+h^{\prime}(0)+\sum_{i, j=1}^{n} c_{i j}(\mathbf{x}) x^{i} x^{j}, \text { which translates into } \\
& g(\mathbf{x})=g(\mathbf{0})+\sum_{j=1}^{n} x^{j} \frac{\partial g}{\partial x^{j}}(\mathbf{0})+\sum_{i, j=1}^{n} c_{i j}(\mathbf{x}) x^{i} x^{j} .
\end{aligned}
$$

(d) Use the previous result and the Leibniz rule to prove that the space of all schmectors is an n-dimensional vector space, and that the identification $v \mapsto D_{v}$ is an isomorphism from tangent vectors to schmectors.
Solution: For any schmector D on \mathcal{G}_{p} and any germ of a function f at p, we have

$$
\begin{aligned}
D(f) & =D\left(a+\sum_{k=1}^{n} b_{k} \phi^{k}(q)+\sum_{i, j=1}^{n} C_{i j}(q) \phi^{i}(q) \phi^{j}(q)\right) \\
& =a D(1)+\sum_{k=1}^{n} b_{k} D\left(\phi^{k}\right)+\sum_{i, j=1}^{n} D\left(C_{i j} \phi^{i} \phi^{j}\right) \\
& =a \cdot 0+\sum_{k=1}^{n} b_{k} D\left(\phi^{k}\right)+\sum_{i, j=1}^{n}\left(\phi^{i}(p) D\left(C_{i j} \phi^{j}\right)+C_{i j}(p) \phi^{j}(p) D\left(\phi^{i}\right)\right) \\
& =\sum_{k=1}^{n} b_{k} D\left(\phi^{k}\right)
\end{aligned}
$$

since $\phi^{i}(p)=\phi^{j}(p)=0$ for all i, j.
Now define a set of schmectors $\left\{D_{1}, \ldots, D_{n}\right\}$ by $D_{k}=\left.\frac{\partial}{\partial x^{k}}\right|_{p}$. Since $b_{k}=\frac{\partial}{\partial x^{k}}(f \circ$ $\left.\mathbf{x}^{-1}\right)\left.\right|_{0}$, we know that $D_{k}(f)=b_{k}$. Hence the general formula above says that

$$
D(f)=\sum_{k=1}^{n} D\left(\phi^{k}\right) D_{k}(f)
$$

for every function f, which means that $D=\sum_{k=1}^{n} D\left(\phi^{k}\right) D_{k}$. Hence the set $\left\{D_{1}, \ldots, D_{n}\right\}$ spans the vector space of all schmectors. Furthermore if $D=$ $\sum_{k=1}^{n} a^{k} D_{k}=0$ for some numbers $\left\{a_{1}, \ldots, a_{n}\right\}$ then $D\left(\phi^{k}\right)=a^{k}=0$ for all k; thus the set $\left\{D_{1}, \ldots, D_{n}\right\}$ is a basis for the space of schmectors, and so the schmectors are an n-dimensional vector space.
The fact that $v \mapsto D_{v}$ is an isomorphism comes from the fact that it is linear by problem \#4d and that a basis $\left\{\left.\frac{\partial}{\partial x^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{p}\right\}$ for $T_{p} M$ immediately gives a basis $\left\{D_{1}, \ldots, D_{n}\right\}$ for the schmectors.
2. A Lie group G is a smooth manifold such that

- G is a group under some multiplication operation,
- the inversion $F: G \rightarrow G$ given by $F(g)=g^{-1}$ is a smooth map, and
- the multiplication $P: G \times G \rightarrow G$ given by $P(g, h)=g \cdot h$ is a smooth map.
(a) Show that for any fixed g the left-translation $L_{g}: G \rightarrow G$ given by $L_{g}(p)=g \cdot p$ is a diffeomorphism.
Solution: For a fixed g, let $\iota: G \rightarrow G \times G$ be the map $\iota(p)=(g, p)$. Then ι is smooth by definition of the product manifold structure, and we have $L_{g}=P \circ \iota$ which is the composition of smooth maps. Thus L_{g} is smooth. To prove L_{g} is a diffeomorphism, note that we have

$$
L_{g^{-1}} \circ L_{g}(p)=g^{-1} \cdot(g \cdot p)=\left(g^{-1} \cdot g\right) \cdot p=e \cdot p=p
$$

for every $p \in G$. Hence $L_{g^{-1}}=L_{g}^{-1}$. Since $L_{g^{-1}}$ is also smooth, we see that L_{g} is a diffeomorphism.
(b) If $e \in G$ is the identity and $v \in T_{e} G$ is any vector, show that $X_{v}(g)=\left(L_{g}\right)_{*}(v)$ defines a smooth vector field X_{v} on G. (Such a vector field is called "left-invariant.")
Solution: The trick here is that we are differentiating with respect to the p variable in $g \cdot p$ while holding g fixed, then fixing $p=e$, then considering the result as g varies. So we really need to use the smoothness of $P: G \times G \rightarrow G$, not just the smoothness of L_{g}.
Let $g_{o} \in G$ be a particular point; let (ψ, V) be a coordinate neighborhood of g_{o} and let (ϕ, U) be a coordinate neighborhood of e. (We can assume that $\phi(e)=\mathbf{0}$.) Then $(\psi \times \phi, V \times U)$ is a coordinate neighborhood of $G \times G$, and we can write

$$
\left(z^{1}, \ldots, z^{n}\right)=\psi \circ P \circ(\psi \times \phi)^{-1}\left(y^{1}, \ldots, y^{n}, x^{1}, \ldots, x^{n}\right)=\left(\rho^{1}(\mathbf{y}, \mathbf{x}), \ldots, \rho^{n}(\mathbf{y}, \mathbf{x})\right)
$$

where each ρ^{k} is smooth on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Then for each particular $g \in V$ with $\psi(g)=\left(y_{o}^{1}, \ldots, y_{o}^{n}\right)$, we have

$$
\left(z^{1}, \ldots, z^{n}\right)=\psi \circ L_{g} \circ \phi^{-1}\left(x^{1}, \ldots, x^{n}\right)=\left(\lambda^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, \lambda^{n}\left(x^{1}, \ldots, x^{n}\right)\right)
$$

where $\lambda^{k}\left(x^{1}, \ldots, x^{n}\right)=\rho^{k}\left(y_{o}^{1}, \ldots, y_{o}^{n}, x^{1}, \ldots, x^{n}\right)$ for each k.

The push-forward is therefore given by

$$
\left(L_{g}\right)_{*}\left(\left.\sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}\right|_{e}\right)=\left.\left.\sum_{i=1}^{n} \sum_{j=1}^{n} a^{i} \frac{\partial \lambda^{j}}{\partial x^{i}}\right|_{\phi(e)} \frac{\partial}{\partial z^{j}}\right|_{g},
$$

for any constants $a^{i}, 1 \leq i \leq n$. For a fixed vector $\mathbf{a}=\left.\sum_{i} a^{i} \frac{\partial}{\partial x^{i}}\right|_{e} \in T_{e} G$ we have, in coordinates $(\Psi, T V)$, that $\left(L_{g}\right)_{*}(\mathbf{a})$ takes the form

$$
\Psi\left(\left(L_{g}\right)_{*}(\mathbf{a})\right)=\left(\psi\left(L_{g}(e)\right),\left.\sum_{i} a^{i} \frac{\partial \lambda^{1}}{\partial x^{i}}\right|_{\phi(e)},\left.\sum_{i} a^{i} \frac{\partial \lambda^{n}}{\partial x^{i}}\right|_{\phi(e)}\right) .
$$

But recall that $L_{g}(e)=g$, that $\psi(g)=\left(y_{o}^{1}, \ldots, y_{o}^{n}\right)$, and that $\lambda^{j}\left(x^{1}, \ldots, x^{n}\right)=$ $\rho^{j}\left(y_{o}^{1}, \ldots, y_{o}^{n}, x^{1}, \ldots, x^{n}\right)$. Since in addition we have $\phi(e)=\mathbf{0}$, we then obtain

$$
\Psi\left(\left(L_{g}\right)_{*}(\mathbf{a})\right)=\left(y_{o}^{1}, \ldots, y_{o}^{n}, \sum_{i} a^{i} \frac{\partial \rho^{1}}{\partial x^{i}}\left(y_{o}^{1}, \ldots, y_{o}^{n}, 0, \ldots, 0\right), \ldots, \sum_{i} a^{i} \frac{\partial \rho^{n}}{\partial x^{i}}\left(y_{o}^{1}, \ldots, y_{o}^{n}, 0, \ldots, 0\right)\right)
$$

All this was done holding g fixed (so that $\left(y_{o}^{1}, \ldots, y_{o}^{n}\right)$ was fixed), but now that we have our formula we can let g vary to get

$$
\begin{aligned}
\Psi \circ X(g) & =\Psi \circ X \circ \psi^{-1}\left(y^{1}, \ldots, y^{n}\right) \\
& =\left(y^{1}, \ldots, y^{n}, \sum_{i} a^{i} \frac{\partial \rho^{1}}{\partial x^{i}}\left(y^{1}, \ldots, y^{n}, 0, \ldots, 0\right), \ldots, \sum_{i} a^{i} \frac{\partial \rho^{n}}{\partial x^{i}}\left(y^{1}, \ldots, y^{n}, 0, \ldots, 0\right)\right) .
\end{aligned}
$$

Since the functions ρ^{j} are C^{∞} on $\mathbb{R}^{n} \times \mathbb{R}^{n}$, this is a C^{∞} function, so X is indeed a smooth vector field.
(c) Show that the tangent bundle of any Lie group is trivial.

Solution: Take a basis $\left\{f_{1}, \ldots, f_{n}\right\}$ of $T_{e} G$. Use the process above to get smooth vector fields X_{1}, \ldots, X_{n} defined on G such that $X_{j}=\left(L_{g}\right)_{*}\left(f_{j}\right)$ for each j. Since each L_{g} is a diffeomorphism, we know $\left(L_{g}\right)_{*}$ is an isomorphism of tangent spaces, and thus if $\left\{f_{1}, \ldots, f_{n}\right\}$ is a basis then so is $\left\{\left(L_{g}\right)_{*}\left(f_{1}\right), \ldots,\left(L_{g}\right)_{*}\left(f_{n}\right)\right\}$. Hence the vector fields X_{j} are linearly independent at each point, and we can use Theorem 12.2.3 to conclude that $T G$ is trivial.
3. Let H denote the Heisenberg group of matrices of the form

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\}
$$

with group operation given by matrix multiplication. As a manifold it is simply \mathbb{R}^{3}.
(a) Verify that this is a group and compute the left-translation maps in coordinates.

Solution: Write

$$
A=\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad X=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

Then we have

$$
L_{A}(X)=A X=\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x+a & z+a y+c \\
0 & 1 & y+b \\
0 & 0 & 1
\end{array}\right)
$$

which is a matrix of the same form (so this is closed under multiplication). We verify that the inverse always exists: given (a, b, c) we can solve for (x, y, z) to get the identity via $x=-a, y=-b$, and $z=a b-c$.
Reading off the entries, in coordinates we have

$$
\phi \circ L_{A} \circ \phi^{-1}(x, y, z)=(x+a, y+b, z+a y+c) .
$$

(b) Find a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of $T_{I} G$ and compute the left-invariant vector fields generated by it.
Solution: First we compute the push-forward of the left-translation map for a fixed matrix A. Write $(u, v, w)=\left(\phi \circ L_{A} \circ \phi^{-1}\right)(x, y, z)=(x+a, y+b, z+a y+c)$. Then using Proposition 11.2.1 gives

$$
\begin{aligned}
\left(L_{A}\right)_{*}\left(\left.\frac{\partial}{\partial x}\right|_{I}\right) & =\left.\frac{\partial u}{\partial x} \frac{\partial}{\partial u}\right|_{A}+\left.\frac{\partial v}{\partial x} \frac{\partial}{\partial v}\right|_{A}+\left.\frac{\partial w}{\partial x} \frac{\partial}{\partial w}\right|_{A} \\
& =\left.\frac{\partial}{\partial u}\right|_{A} \\
\left(L_{A}\right)_{*}\left(\left.\frac{\partial}{\partial y}\right|_{I}\right) & =\left.\frac{\partial}{\partial v}\right|_{A}+\left.a \frac{\partial}{\partial w}\right|_{A} \\
\left(L_{A}\right)_{*}\left(\left.\frac{\partial}{\partial z}\right|_{I}\right) & =\left.\frac{\partial}{\partial w}\right|_{A}
\end{aligned}
$$

Therefore (renaming everything to (x, y, z)), a basis of left-invariant fields is

$$
E_{1}=\left.\frac{\partial}{\partial x}\right|_{(x, y, z)}, \quad E_{2}=\left.\frac{\partial}{\partial y}\right|_{(x, y, z)}+\left.x \frac{\partial}{\partial z}\right|_{(x, y, z)}, \quad E_{3}=\left.\frac{\partial}{\partial z}\right|_{(x, y, z)} .
$$

4. Suppose $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function and 0 is a regular value of G. Let $M=$ $G^{-1}\{0\}$ and let
$N=\left\{(x, y, z, a, b, c) \mid G(x, y, z)=0\right.$ and $\left.a G_{x}(x, y, z)+b G_{y}(x, y, z)+c G_{z}(x, y, z)=0\right\}$.
(a) Show that N is a smooth submanifold of \mathbb{R}^{6}.

Solution: Obviously N is an inverse image of the function $H: \mathbb{R}^{6} \rightarrow \mathbb{R}^{2}$ defined by

$$
H(x, y, z, a, b, c)=\left(G(x, y, z), a G_{x}(x, y, z)+b G_{y}(x, y, z)+c G_{z}(x, y, z)\right)
$$

then $N=H^{-1}\{(0,0)\}$. We need to check that $(0,0)$ is regular, i.e., that $D H$ has maximal rank (two) everywhere on $H^{-1}\{(0,0)\}$. Of course we need to use the fact that G itself has maximal rank on $G^{-1}\{0\}$. We have
$D H=\left(\begin{array}{ccccc}G_{x} & G_{y} & G_{z} & 0 & 0 \\ a \\ a G_{x x}+b G_{x y}+c G_{x z} & a G_{x y}+b G_{y y}+c G_{y z} & a G_{x z}+b G_{y z}+c G_{z z} & G_{x} & G_{y}\end{array} G_{z}\right)$.
To get the first row vector to be nonzero, we just need at least one of G_{x}, G_{y}, or G_{z} to be nonzero, which is true since $D G$ has rank one on $G^{-1}\{0\}$. And to get the second row vector to be linearly independent of the first, we again just need at least one of G_{x}, G_{y}, or G_{z} to be nonzero. Note that the complicated part in the bottom left corner doesn't matter. Hence $D H$ really does have rank two everywhere, and so $H^{-1}\{(0,0)\}$ is a smooth manifold.
(b) Show that N is a smooth vector bundle over M.

Solution: Define $\pi: N \rightarrow M$ as the restriction of the projection from $T \mathbb{R}^{3}$ to \mathbb{R}^{3}; that is, $\pi(x, y, z, a, b, c)=(x, y, z)$ whenever $(x, y, z, a, b, c) \in N$; then $(x, y, z) \in M$ for all such points, so $\pi[N]$ is indeed M. Since M and N are smooth submanifolds of \mathbb{R}^{3} and \mathbb{R}^{6}, the map π is smooth. Given any $p \in M$ the inverse image is $\pi^{-1}\{p\}=\{p\} \times\left\{(a, b, c) \in \mathbb{R}^{3} \mid a G_{x}+b G_{y}+c G_{z}=0\right\}$, which is a two-dimensional vector space regardless of p.
To get the local trivializations, use the Implicit Function Theorem. At every point of M, at least one of G_{x}, G_{y}, or G_{z} is nonzero. Suppose $G_{z}\left(x_{o}, y_{o}, z_{o}\right) \neq 0$ at some $p=\left(x_{o}, y_{o}, z_{o}\right) \in M$; then there is an open set $U \subset \mathbb{R}^{2}$ with $\left(x_{o}, y_{o}\right) \in U$ and a smooth function $f: U \rightarrow \mathbb{R}$ such that $G(x, y, f(x, y))=0$ for all $(x, y) \in U$. The chart ϕ is then $(x, y, z) \mapsto(x, y)$, restricted to M. Tangent vectors are then given in the basis $\left.\frac{\partial}{\partial x}\right|_{(x, y, f(x, y))}$ and $\left.\frac{\partial}{\partial y}\right|_{(x, y, f(x, y))}$, and so the coordinate chart Φ induced from ϕ is just the restriction of $(x, y, z, a, b, c) \mapsto(x, y, a, b)$ to N. The fact that these maps are isomorphisms in each vector space comes from the fact that a vector (a, b, c) with $a G_{x}+b G_{y}+c G_{z}=0$ is determined by a and b since we can solve for c (because $G_{z} \neq 0$). Similarly we'd get other charts when $G_{x} \neq 0$ or $G_{y} \neq 0$.
(c) Show that N is bundle-isomorphic to $T M$.

Solution: Let $\iota: M \rightarrow \mathbb{R}^{3}$; since M is a smooth submanifold, ι is smooth as a map of manifolds. Consider the induced bundle map $\iota_{*}: T M \rightarrow T \mathbb{R}^{3}$. For any curve $\gamma: \mathbb{R} \rightarrow M$ we have $\iota \circ \gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ satisfying $G \circ \iota \circ \gamma(t)=0$, and therefore $G_{*} \circ \iota_{*}\left(\gamma^{\prime}(t)\right)=0$. Thus if $\gamma(0)=p$ and $\gamma^{\prime}(0)=v \in T_{p} M$, then $G(\iota(p))=0$ and $\iota_{*}(v)$ is in $\operatorname{ker} G_{*}$. Hence $\iota_{*}(v) \in N$. Furthermore the first three coordinates of $\iota_{*}(v)$ are a point (x, y, z) satisfying $G(x, y, z)=0$, so that $\iota_{*}(v)$ lies over M. At any $p \in M$ the map $\left(\iota_{*}\right)_{p}$ is an isomorphism from $T_{p} M$ to $T_{\iota(p)} \mathbb{R}^{3}$, and since ι_{*} preserves base points, it is a bundle isomorphism.

