
Math 70900 Homework #6 Solutions

1. (Alternate approach to vectors.) For p ∈ M , let Gp denote the set of all germs of C∞

functions at p (that is, smooth real-valued functions defined on some open neighbor-
hood of p under the equivalence relation that functions are equal if they coincide on
some neighborhood of p which is contained in both their domains; see Remark 10.3.3).
Define a schmector to be a linear operator D from the algebra Gp to R which satisfies
the Leibniz rule D(f · g) = g(p)D(f) + f(p)D(g).

(a) Prove that addition and multiplication are well-defined operations on germs (so
that it is in fact an algebra), and that for any v ∈ TpM the operator Dv : f 7→ v(f)
is a schmector.

Solution: If F = [(f, U)] and G = [(g, V )], then to prove that F + G is well-
defined, we want to check that if (f, U) ≡ (h,A) and (g, V ) ≡ (j, B) then (f +
g, U ∩ V ) ≡ (h + j, A ∩ B). Now f = h on some open C ⊂ A ∩ U and g = j
on some open D ⊂ B ∩ V , which means that f + g = h + j on the set C ∩D ⊂
(A ∩ U) ∩ (B ∩ V ) = (U ∩ V ) ∩ (A ∩B). Hence (f + g, U ∩ V ) ≡ (h+ j, A ∩B).
Similarly multiplication is well-defined.

Now we show that Dv is a schmector. We already know that Dv is a linear
operator, and we just need to show the Leibniz rule. Let γ be any representative
of v. Then

v(f · g) = d

dt

(
f(γ(t))g(γ(t))

)∣∣∣
t=0

= f(γ(0))
d

dt
g(γ(t))

∣∣∣
t=0

+ g(γ(0))
d

dt
f(γ(t))

∣∣∣
t=0

= f(p)v(g) + g(p)v(f)

by the usual product rule for functions.

(b) Prove using the Leibniz rule that if f : U → R is a constant function for some
open set U ∋ p, then D(f) = 0 for any schmector D.

Solution: Suppose f is a constant function, f(p) = c for all p ∈M . Let h be the
constant function h(p) = 1 for all p ∈M . Then f = ch and Dv(f) = cDv(h). On
the other hand, h2 = h, which means that

Dv(h) = h(p)Dv(h) + h(p)Dv(h) = 2Dv(h).

Hence we must have Dv(h) = 0 and thus also Dv(f) = 0.

(c) Prove the following Lemma: for any C∞ function g : Rn → R, we can write

g(x) = a+
n∑

k=1

bkx
k +

n∑
i,j=1

cij(x)x
ixj,

where a = g(0), bk =
∂g

∂xk
(0), and cij(x) =

∫ 1

0

(1 − t)
∂2g

∂xi∂xj
(tx) dt. (Hint:

Suppose for a fixed x we denote h(t) = g(tx1, . . . , txn); show that h′′(t) =
n∑

i,j=1

xixj
∂2g

∂xi∂xj
(tx). Then use integration by parts.)
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Solution: Let’s check the formula in the hint: we have

h′(t) =
n∑

j=1

∂g

∂xj
(tx1, . . . , txn)

d

dt
(txj) =

n∑
j=1

xj
∂g

∂xj
(tx1, . . . , txn)

h′′(t) =
n∑

i,j=1

xj
∂2g

∂xi∂xj
(tx1, . . . , txn)

d

dt
(txi) =

n∑
i,j=1

xixj
∂2g

∂xi∂xj
(tx1, . . . , txn).

We therefore have

n∑
i,j=1

cij(x)x
ixj =

n∑
i,j=1

xixj
∫ 1

0

(1− t)
∂2g

∂xi∂xj
(tx) dt =

∫ 1

0

(1− t)h′′(t) dt

= (1− t)h′(t)
∣∣t=1

t=0
+

∫ 1

0

h′(t) dt = −h′(0) + h(1)− h(0).

We thus have

h(1) = h(0) + h′(0) +
n∑

i,j=1

cij(x)x
ixj, which translates into

g(x) = g(0) +
n∑

j=1

xj
∂g

∂xj
(0) +

n∑
i,j=1

cij(x)x
ixj.

(d) Use the previous result and the Leibniz rule to prove that the space of all schmec-
tors is an n-dimensional vector space, and that the identification v 7→ Dv is an
isomorphism from tangent vectors to schmectors.

Solution: For any schmector D on Gp and any germ of a function f at p, we have

D(f) = D

(
a+

n∑
k=1

bkϕ
k(q) +

n∑
i,j=1

Cij(q)ϕ
i(q)ϕj(q)

)

= aD(1) +
n∑

k=1

bkD(ϕk) +
n∑

i,j=1

D(Cijϕ
iϕj)

= a · 0 +
n∑

k=1

bkD(ϕk) +
n∑

i,j=1

(
ϕi(p)D(Cijϕ

j) + Cij(p)ϕ
j(p)D(ϕi)

)
=

n∑
k=1

bkD(ϕk),

since ϕi(p) = ϕj(p) = 0 for all i, j.

Now define a set of schmectors {D1, . . . , Dn} by Dk = ∂
∂xk

∣∣
p
. Since bk = ∂

∂xk (f ◦
x−1)

∣∣
0
, we know that Dk(f) = bk. Hence the general formula above says that

D(f) =
n∑

k=1

D(ϕk)Dk(f)
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for every function f , which means that D =
∑n

k=1D(ϕk)Dk. Hence the set
{D1, . . . , Dn} spans the vector space of all schmectors. Furthermore if D =∑n

k=1 a
kDk = 0 for some numbers {a1, . . . , an} then D(ϕk) = ak = 0 for all

k; thus the set {D1, . . . , Dn} is a basis for the space of schmectors, and so the
schmectors are an n-dimensional vector space.

The fact that v 7→ Dv is an isomorphism comes from the fact that it is linear
by problem #4d and that a basis { ∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
} for TpM immediately gives a

basis {D1, . . . , Dn} for the schmectors.

2. A Lie group G is a smooth manifold such that

� G is a group under some multiplication operation,

� the inversion F : G→ G given by F (g) = g−1 is a smooth map, and

� the multiplication P : G×G→ G given by P (g, h) = g · h is a smooth map.

(a) Show that for any fixed g the left-translation Lg : G → G given by Lg(p) = g · p
is a diffeomorphism.

Solution: For a fixed g, let ι : G → G × G be the map ι(p) = (g, p). Then ι is
smooth by definition of the product manifold structure, and we have Lg = P ◦ ι
which is the composition of smooth maps. Thus Lg is smooth. To prove Lg is a
diffeomorphism, note that we have

Lg−1 ◦ Lg(p) = g−1 · (g · p) = (g−1 · g) · p = e · p = p

for every p ∈ G. Hence Lg−1 = L−1
g . Since Lg−1 is also smooth, we see that Lg is

a diffeomorphism.

(b) If e ∈ G is the identity and v ∈ TeG is any vector, show that Xv(g) = (Lg)∗(v) de-
fines a smooth vector field Xv on G. (Such a vector field is called “left-invariant.”)

Solution: The trick here is that we are differentiating with respect to the p
variable in g · p while holding g fixed, then fixing p = e, then considering the
result as g varies. So we really need to use the smoothness of P : G×G→ G, not
just the smoothness of Lg.

Let go ∈ G be a particular point; let (ψ, V ) be a coordinate neighborhood of go
and let (ϕ, U) be a coordinate neighborhood of e. (We can assume that ϕ(e) = 0.)
Then (ψ × ϕ, V × U) is a coordinate neighborhood of G×G, and we can write

(z1, . . . , zn) = ψ ◦ P ◦ (ψ × ϕ)−1(y1, . . . , yn, x1, . . . , xn) =
(
ρ1(y,x), . . . , ρn(y,x)

)
,

where each ρk is smooth on Rn × Rn. Then for each particular g ∈ V with
ψ(g) = (y1o , . . . , y

n
o ), we have

(z1, . . . , zn) = ψ ◦ Lg ◦ ϕ−1(x1, . . . , xn) =
(
λ1(x1, . . . , xn), . . . , λn(x1, . . . , xn)

)
,

where λk(x1, . . . , xn) = ρk(y1o , . . . , y
n
o , x

1, . . . , xn) for each k.
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The push-forward is therefore given by

(Lg)∗

(
n∑

i=1

ai
∂

∂xi

∣∣∣
e

)
=

n∑
i=1

n∑
j=1

ai
∂λj

∂xi

∣∣∣
ϕ(e)

∂

∂zj

∣∣∣
g
,

for any constants ai, 1 ≤ i ≤ n. For a fixed vector a =
∑

i a
i ∂
∂xi

∣∣
e
∈ TeG we have,

in coordinates (Ψ, TV ), that (Lg)∗(a) takes the form

Ψ
(
(Lg)∗(a)

)
=

(
ψ(Lg(e)),

∑
i

ai
∂λ1

∂xi
∣∣
ϕ(e)

,
∑
i

ai
∂λn

∂xi
∣∣
ϕ(e)

)
.

But recall that Lg(e) = g, that ψ(g) = (y1o , . . . , y
n
o ), and that λj(x1, . . . , xn) =

ρj(y1o , . . . , y
n
o , x

1, . . . , xn). Since in addition we have ϕ(e) = 0, we then obtain

Ψ
(
(Lg)∗(a)

)
=

(
y1o , . . . , y

n
o ,
∑
i

ai
∂ρ1

∂xi
(y1o , . . . , y

n
o , 0, . . . , 0), . . . ,

∑
i

ai
∂ρn

∂xi
(y1o , . . . , y

n
o , 0, . . . , 0)

)
.

All this was done holding g fixed (so that (y1o , . . . , y
n
o ) was fixed), but now that

we have our formula we can let g vary to get

Ψ ◦X(g) = Ψ ◦X ◦ ψ−1(y1, . . . , yn)

=

(
y1, . . . , yn,

∑
i

ai
∂ρ1

∂xi
(y1, . . . , yn, 0, . . . , 0), . . . ,

∑
i

ai
∂ρn

∂xi
(y1, . . . , yn, 0, . . . , 0)

)
.

Since the functions ρj are C∞ on Rn × Rn, this is a C∞ function, so X is indeed
a smooth vector field.

(c) Show that the tangent bundle of any Lie group is trivial.

Solution: Take a basis {f1, . . . , fn} of TeG. Use the process above to get smooth
vector fields X1, . . . , Xn defined on G such that Xj = (Lg)∗(fj) for each j. Since
each Lg is a diffeomorphism, we know (Lg)∗ is an isomorphism of tangent spaces,
and thus if {f1, . . . , fn} is a basis then so is {(Lg)∗(f1), . . . , (Lg)∗(fn)}. Hence the
vector fields Xj are linearly independent at each point, and we can use Theorem
12.2.3 to conclude that TG is trivial.

3. Let H denote the Heisenberg group of matrices of the form

H =


1 x z
0 1 y
0 0 1

 ∣∣∣x, y, z ∈ R

 ,

with group operation given by matrix multiplication. As a manifold it is simply R3.

(a) Verify that this is a group and compute the left-translation maps in coordinates.
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Solution: Write

A =

1 a c
0 1 b
0 0 1

 and X =

1 x z
0 1 y
0 0 1

 .

Then we have

LA(X) = AX =

1 a c
0 1 b
0 0 1

1 x z
0 1 y
0 0 1

 =

1 x+ a z + ay + c
0 1 y + b
0 0 1

 ,

which is a matrix of the same form (so this is closed under multiplication). We
verify that the inverse always exists: given (a, b, c) we can solve for (x, y, z) to get
the identity via x = −a, y = −b, and z = ab− c.

Reading off the entries, in coordinates we have

ϕ ◦ LA ◦ ϕ−1(x, y, z) = (x+ a, y + b, z + ay + c).

(b) Find a basis {v1, v2, v3} of TIG and compute the left-invariant vector fields gen-
erated by it.

Solution: First we compute the push-forward of the left-translation map for a
fixed matrix A. Write (u, v, w) = (ϕ◦LA ◦ϕ−1)(x, y, z) = (x+a, y+ b, z+ay+ c).
Then using Proposition 11.2.1 gives

(LA)∗

(
∂

∂x

∣∣∣
I

)
=
∂u

∂x

∂

∂u

∣∣∣
A
+
∂v

∂x

∂

∂v

∣∣∣
A
+
∂w

∂x

∂

∂w

∣∣∣
A

=
∂

∂u

∣∣∣
A

(LA)∗

(
∂

∂y

∣∣∣
I

)
=

∂

∂v

∣∣∣
A
+ a

∂

∂w

∣∣∣
A

(LA)∗

(
∂

∂z

∣∣∣
I

)
=

∂

∂w

∣∣∣
A
.

Therefore (renaming everything to (x, y, z)), a basis of left-invariant fields is

E1 =
∂

∂x

∣∣∣
(x,y,z)

, E2 =
∂

∂y

∣∣∣
(x,y,z)

+ x
∂

∂z

∣∣∣
(x,y,z)

, E3 =
∂

∂z

∣∣∣
(x,y,z)

.

4. Suppose G : R3 → R is a smooth function and 0 is a regular value of G. Let M =
G−1{0} and let

N = {(x, y, z, a, b, c) |G(x, y, z) = 0 and aGx(x, y, z) + bGy(x, y, z) + cGz(x, y, z) = 0}.

(a) Show that N is a smooth submanifold of R6.

Solution: Obviously N is an inverse image of the function H : R6 → R2 defined
by

H(x, y, z, a, b, c) =
(
G(x, y, z), aGx(x, y, z) + bGy(x, y, z) + cGz(x, y, z)

)
;
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then N = H−1{(0, 0)}. We need to check that (0, 0) is regular, i.e., that DH has
maximal rank (two) everywhere on H−1{(0, 0)}. Of course we need to use the
fact that G itself has maximal rank on G−1{0}. We have

DH =

(
Gx Gy Gz 0 0 0

aGxx + bGxy + cGxz aGxy + bGyy + cGyz aGxz + bGyz + cGzz Gx Gy Gz

)
.

To get the first row vector to be nonzero, we just need at least one of Gx, Gy,
or Gz to be nonzero, which is true since DG has rank one on G−1{0}. And to
get the second row vector to be linearly independent of the first, we again just
need at least one of Gx, Gy, or Gz to be nonzero. Note that the complicated part
in the bottom left corner doesn’t matter. Hence DH really does have rank two
everywhere, and so H−1{(0, 0)} is a smooth manifold.

(b) Show that N is a smooth vector bundle over M .

Solution: Define π : N → M as the restriction of the projection from TR3

to R3; that is, π(x, y, z, a, b, c) = (x, y, z) whenever (x, y, z, a, b, c) ∈ N ; then
(x, y, z) ∈ M for all such points, so π[N ] is indeed M . Since M and N are
smooth submanifolds of R3 and R6, the map π is smooth. Given any p ∈ M the
inverse image is π−1{p} = {p} × {(a, b, c) ∈ R3 | aGx + bGy + cGz = 0}, which is
a two-dimensional vector space regardless of p.

To get the local trivializations, use the Implicit Function Theorem. At every point
ofM , at least one of Gx, Gy, or Gz is nonzero. Suppose Gz(xo, yo, zo) ̸= 0 at some
p = (xo, yo, zo) ∈ M ; then there is an open set U ⊂ R2 with (xo, yo) ∈ U and
a smooth function f : U → R such that G(x, y, f(x, y)) = 0 for all (x, y) ∈ U .
The chart ϕ is then (x, y, z) 7→ (x, y), restricted to M . Tangent vectors are then
given in the basis ∂

∂x

∣∣
(x,y,f(x,y))

and ∂
∂y

∣∣
(x,y,f(x,y))

, and so the coordinate chart Φ

induced from ϕ is just the restriction of (x, y, z, a, b, c) 7→ (x, y, a, b) to N . The
fact that these maps are isomorphisms in each vector space comes from the fact
that a vector (a, b, c) with aGx+ bGy + cGz = 0 is determined by a and b since we
can solve for c (because Gz ̸= 0). Similarly we’d get other charts when Gx ̸= 0 or
Gy ̸= 0.

(c) Show that N is bundle-isomorphic to TM .

Solution: Let ι : M → R3; since M is a smooth submanifold, ι is smooth as a
map of manifolds. Consider the induced bundle map ι∗ : TM → TR3. For any
curve γ : R →M we have ι ◦ γ : R → R3 satisfying G ◦ ι ◦ γ(t) = 0, and therefore
G∗ ◦ ι∗(γ′(t)) = 0. Thus if γ(0) = p and γ′(0) = v ∈ TpM , then G(ι(p)) = 0 and
ι∗(v) is in kerG∗. Hence ι∗(v) ∈ N . Furthermore the first three coordinates of
ι∗(v) are a point (x, y, z) satisfying G(x, y, z) = 0, so that ι∗(v) lies over M . At
any p ∈ M the map (ι∗)p is an isomorphism from TpM to Tι(p)R3, and since ι∗
preserves base points, it is a bundle isomorphism.
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