
Math 70900 Homework #5 Solutions

1. If n ∈ N and Ω =
(

0 In
−In 0

)
, let Sp2n(R) = {P ∈ R2n×2n : P TΩP = Ω} be the symplectic

group.

(a) If P =
(
A B
C D

)
for n× n matrices A, B, C, D, work out the condition for P to be

symplectic explicitly.

Solution: We have(
0 In

−In 0

)
=

(
AT CT

BT DT

)(
0 In

−In 0

)(
A B
C D

)
=

(
AT CT

BT DT

)(
C D
−A −B

)
=

(
ATC − CTA ATD − CTB
BTC −DTA BTD −DTB

)
Thus we must have ATC = CTA and BTD = DTB, together with ATD−CTB =
I. The fourth condition on BTC − DTA = −I is simply the negative transpose
of the other condition we have.

(b) Define F : R2n×2n → Rn(2n−1) by F (P ) = P TΩP . Compute DF (P )(Q) as in class
at any matrix Q =

(
W X
Y Z

)
.

Solution: The derivative of the defining condition is

DF (P )(Q) = QTΩP + P TΩQ

=

(
W T Y T

XT ZT

)(
0 In

−In 0

)(
A B
C D

)
+

(
AT CT

BT DT

)(
0 In

−In 0

)(
W X
Y Z

)
=

(
W T Y T

XT ZT

)(
C D
−A −B

)
+

(
AT CT

BT DT

)(
Y Z

−W −X

)
=

(
W TC − Y TA W TD − Y TB
XTC − ZTA XTD − ZTB

)
+

(
ATY − CTW ATZ − CTX
BTY −DTW BTZ −DTX

)
.

(c) Show that DF (P ) is surjective onto the antisymmetric 2n×2n matrices for every
symplectic P , and conclude that Sp2n(R) is a smooth manifold.

Solution: Let’s apply the same trick that worked in class for the orthogonal
group. That is, we compute

DF (P )(PQ) = (PQ)TΩP + P TΩ(PQ) = QTP TΩP + P TΩPQ = QTΩ + ΩQ.

We want to solve DF (P )(Q) =
(

E F
−FT G

)
for Q =

(
W X
Y Z

)
, where E and G are

antisymmetric. We have

DF (P )(PQ) =

(
Y − Y T W T + Z

−ZT −W XT −X

)
=

(
E F

−F T G

)
,

where one solution is

Y = 1
2
E, W = 1

2
F T , X = 1

2
G, Z = −1

2
F.

Hence DF (P ) is surjective for every P ∈ SP2n(R), and thus SP2n(R) is a smooth
manifold.
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2. Consider the Grassmannian manifold Gr(2, 4). Let {e1, e2, e3, e4} denote the standard
basis of R4. Let (ϕ, U) denote the coordinate chart generated as in the text by vec-
tors {e1, e2} and (ψ, V ) denote the chart generated by vectors {e1, e3}. Compute the
transition map explicitly on the overlap.

Solution: Consider a plane spanned by the two vectors {(1, 0, p, q), (0, 1, r, s)}, and
also spanned by the two vectors {(1, w, 0, x), (0, y, 1, z)}. We want to know under what
conditions these spans are equal, and it is sufficient to be able to express each vector
of one basis in terms of the others. That is, we want to solve the equations

a(1, 0, p, q) + b(0, 1, r, s) = (1, w, 0, x)

c(1, 0, p, q) + d(0, 1, r, s) = (0, y, 1, z)

for a, b, c, d ∈ R.
These equations simplify to

a = 1, b = w, ap+ br = 0, aq + bs = x

c = 0, d = y, cp+ dr = 1, cq + ds = z

We must have a = 1, b = w, c = 0, and d = y, and now our goal is to solve for
(p, q, r, s): we get

p = −w
y
, q = x− w

z
, r =

1

y
, s =

1

z
.

This is defined on the open set y ̸= 0 and z ̸= 0 and is obviously C∞.

3. Verify that for any k < n, the map defining the Stiefel manifold F (A) = ATA from
n × k matrices A to symmetric k × k matrices has Ik as a regular value. (Hint: this
works the same way as for the orthogonal group.)

Solution: The derivative of F is DF (A)(B) = ATB + BTA. We want to prove that
it is surjective for any A satisfying ATA = Ik. Let C be any symmetric k × k matrix,
and define B = 1

2
AC, which is an n× k matrix. Then we check that

DF (A)(B) = 1
2
ATAC + 1

2
CTATA = 1

2
(C + CT ) = C,

as desired.

4. If F : Rn+1 → R has a regular value r0 ∈ R, thenM = F−1[r0] is a smooth submanifold.
Show that it must be orientable.

Solution: For each point of M there is a coordinate chart (φ,U) on Rn such that
M ∩ U = φ−1{(x, ) : x ∈ Rn}. In these coordinates the function F can be expressed
as F (x1, . . . , xn, xn+1), and since F is constant on M , we must have ∂F

∂xi (x, 0) for every
x ∈ Rn. Since F has rank one everywhere on M , we must have ∂F

∂xn+1 (x, 0) nowhere
zero. We may then replace the coordinate chart with (y1, . . . , yn, yn+1) where yi = xi

for i ≤ n and yn+1 = F (x1, . . . , xn), and this is a genuine chart (a diffeomorphism of
Rn+1 since ∂F

∂xn+1 is nonzero.
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The coordinates (x1, . . . , xn, xn+1) are either compatible with the standard orientation
on Rn+1 or not; if they are not compatible we reflect in one of the other coordinates
(such as xn) in order to get a compatible orientation. In this way we cover all of M
with coordinate charts on Rn+1 that are compatible with the known orientation on
Rn+1. Now we restrict these to the actual coordinate charts on M by taking just the
first n components of each of these special charts.

When transitioning between two such charts (y1, . . . , yn, yn+1) and (z1, . . . , zn, zn+1),
we have positive determinant of the Jacobian, and since zn+1 = yn+1, the Jacobian
matrix will look like

(
Z 0
0 1

)
in block form. Thus the determinant of Z is also positive.

Now consider the restriction to yn+1 = 0 to get coordinate charts (y1, . . . , yn) on M
that cover all ofM ; the transition maps will also have positive determinant and satisfy
the orientability condition.

5. Recall that the stereographic projection transition map on S2 is given by (x, y) =
( u
u2+v2

, v
u2+v2

). Use this to express the vector given in north-pole coordinates by ∂
∂v

∣∣
p
,

in terms of the south-pole coordinate vectors ∂
∂x

∣∣
p
and ∂

∂y

∣∣
p
, for a point p on the sphere

which isn’t one of the poles. What happens to ∂
∂v

∣∣
p
as p approaches the south pole?

Solution: Using the transition formula, we have

∂

∂v

∣∣∣
p
=
∂x

∂v

∣∣∣
(u(p),v(p)

∂

∂x

∣∣∣
p
+
∂y

∂v

∣∣∣
(u(p),v(p)

∂

∂y

∣∣∣
p

= − 2uv

(u2 + v2)2
∂

∂x

∣∣∣
p
+

u2 − v2

(u2 + v2)2
∂

∂y

∣∣∣
p
.

Now plugging in our formulas for u and v in terms of x and y, this becomes

∂

∂v

∣∣∣
p
= −2xy

∂

∂x

∣∣∣
p
+ (x2 − y2)

∂

∂y

∣∣∣
p
.

As we approach the south pole, x and y both approach 0 so the vector ∂
∂v

∣∣
p
approaches

the zero vector as p approaches the south pole.

6. Consider the function f : C → R defined by f(z) = Im(z3), and let γ(t) = eit.

(a) Compute (f ◦ γ)′(0) directly.
Solution: We have f ◦ γ(t) = Im(e3it) = sin 3t, so that (f ◦ γ)′(t) = 3 cos 3t and
(f ◦ γ)′(0) = 3.

(b) Compute f ◦ x−1, x ◦ γ, and (f ◦ γ)′(0) by the Chain Rule, using rectangular
coordinates x = (x, y).

Solution: In rectangular coordinates, we have f ◦ x−1(x, y) = 3x2y − y3, and
x ◦ γ(t) = (cos t, sin t). Thus we have at time zero that

d

dt
(x ◦ γ(t))

∣∣∣
t=0

= − sin t
∣∣
t=0

= 0,
d

dt
(y ◦ γ(t))

∣∣∣
t=0

= cos t
∣∣
t=0

= 1.
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Meanwhile since γ(0) = (1, 0) in (x, y) coordinates, we have

∂

∂x
(f ◦ x−1)

∣∣∣
(1,0)

= 6xy
∣∣∣
(1,0)

= 0,
∂

∂y
(f ◦ x−1)

∣∣∣
(1,0)

= 3x2 − 3y2
∣∣∣
(1,0)

= 3.

Thus we get

d

dt
(f ◦ γ)(t)

∣∣∣
t=0

=
∂(f ◦ x−1)

∂x

∣∣∣
(1,0)

d(x ◦ γ)
dt

∣∣∣
t=0

+
∂(f ◦ x−1)

∂y

∣∣∣
(1,0)

d(y ◦ γ)
dt

∣∣∣
t=0

= 0 · 0 + 3 · 1 = 3.

(c) Compute f ◦u−1, u◦γ, and (f ◦γ)′(0) by the Chain Rule, using polar coordinates
u = (r, θ).

Solution: In polar coordinates the curve is described by r = 1, θ = t, while the
function is described by f ◦u−1(r, θ) = Im(r3e3iθ) = r3 sin 3θ. Thus the derivative
is given by

d

dt
(f ◦ γ)(t)

∣∣∣
t=0

= 3r2 sin 3θ
∣∣∣
(1,0)

· 0 + 3r3 cos 3θ
∣∣∣
(1,0)

· 1 = 3.
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