
Math 70900 Homework #4 Solutions

1. The torus in R3 can be defined to be the image T2 = F [R2] of F : R2 → R3 given by

F (u, v) =
(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)
,

or as the inverse image H−1{1} where H : R3 → R is given by

H(x, y, z) =
(√

x2 + y2 − 2
)2

+ z2.

(a) Show that F [R2] = H−1{1} as sets in R3.

Solution: If (x, y, z) =
(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)
, then we have

x2 + y2 = (2 + cosu)2, and since 2 + cosu is positive, we can write
√

x2 + y2 =
2 + cosu. Thus H(x, y, z) = cos2 u+ sin2 u = 1.

Conversely, if H(x, y, z) = 1, then
√

x2 + y2 − 2 = cosu and z = sinu for some

u ∈ R. Hence
√

x2 + y2 = 2+cosu, and we conclude that x = (2+cosu) cos v and
y = (2+cosu) sin v for some v ∈ R. Thus (x, y, z) = F (u, v) for some (u, v) ∈ R2.

(b) Show that DF has maximal rank everywhere.

Solution: The matrix DF is given by

DF =

− sinu cos v −(2 + cosu) sin v
− sinu sin v (2 + cosu) cos v

cosu 0

 .

We compute the subdeterminants: letting Dij denote the determinants using row
i and j, we get

D12 = −(2+cosu) sinu, D13 = cosu(2+cosu) sin v, D23 = − cosu(2+cosu) cos v.

An easy way to see that at least one of these is nonzero is to compute

D2
12 +D2

13 +D2
23 = (2 + cosu)2,

which is never zero.

(c) Show that DH has maximal rank everywhere on H−1{1}.
Solution: The matrix DH is given by

DH =

(
2x(

√
x2+y2−2)√
x2+y2

2y(
√

x2+y2−2)√
x2+y2

2z

)
.

Doing the same trick as before, we get

H2
x +H2

y +H2
z = 4(

√
x2 + y2 − 2)2 + 4z2 = 4H(x, y, z) = 4

for all points in H−1{1}. So again at least one of these must be nonzero, and DH
always has rank 1.
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2. Suppose U ⊂ Rn is open and that ϕ : U → Rn is a C∞ map. Furthermore suppose
that ϕ is injective and that Dϕ(x) is an invertible matrix at every x ∈ U . Prove that
V = ϕ[U ] is open in Rn and that ϕ is a diffeomorphism from U to V . (That is, ϕ is a
homeomorphism and ϕ−1 is C∞.)

Solution: Let yo ∈ V = ϕ[U ]; then yo = ϕ(xo) for a unique xo ∈ U , and we know
Dϕ(xo) is invertible. Hence by the inverse function theorem there is an open setW ∋ yo
and a smooth function G : W → U such that ϕ(G(y)) = y for all y ∈ W . The only
way this makes sense is if G(y) ∈ U for all y ∈ W , which means W is in the image of
ϕ. Since every yo in ϕ[U ] is contained in an open set W in ϕ[U ], we conclude that ϕ[U ]
is open.

Since continuity and C∞ of ϕ−1 are local properties, we just need to check them in an
open neighborhood of each yo ∈ V . But we just did this: the function G defined on a
neighborhood of yo is smooth, and by uniqueness of inverses must agree with ϕ−1 on
that neighborhood.

3. Let K denote the Klein bottle, defined by the polygon identification in Figure 8.18.

(a) By cutting and pasting polygons, prove that P2#P2 ∼= K.

Solution: There is pretty much only one way to do this; write P2#P2 as a square
aabb, then split along the diagonal to get two triangles abc−1 and bac. Join these
along side a to obtain the word cb−1cb, which is the usual Klein bottle.

(b) By cutting and pasting polygons, prove that P2#K ∼= P2#T2, so that P2#P2#P2 ∼=
P2#T2.

Solution: I start with P2#T2, written as aba−1b−1cc. Then I draw a line between
the two c sides and send it to the opposite side of the hexagon (where it falls
between a and b). I get two squares with words ad−1c−1b and a−1c−1db−1, which
I join along the side a to obtain the hexagon with word db−1d−1c−1bc−1.

Now I use the Third Reduction, cutting from one head of c to the other head of
c. I have a pentagon edbd−1c and a triangle ce−1b−1, which I join along edge c to
get hexagon b−1db−1d−1e−1e−1. Pulling out the projective plane e−1e−1, I obtain
b−1db−1d−1, which is a Klein bottle. So I have P2#K.
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4. Consider a surface generated by a decagon with sides identified according to the word
abca−1deb−1e−1c−1d−1. By using the reductions from Lemmas 8.2.6–8.2.9, reduce the
surface to a connected sum of tori and projective planes, and determine the genus
and orientability. (To avoid having to draw too many decagons, remember to pull out
projective planes or tori as soon as you’ve found them.)

Solution: There are no projective planes in this manifold, since there are no sides
that go in the same direction twice. Thus I have to use the Fourth Reduction. Since
there is a combination eb−1e−1, I’m halfway done with a Fourth Reduction already. So
I join the head of one b to the head of another b with an arrow f . Splitting it up I have
a septagon abf−1b−1e−1c−1d−1 and a pentagon efca−1d, which I join along edge e.

I obtain the decagon abf−1b−1fca−1dc−1d−1. Pulling out the component bf−1b−1f
(which is a torus), I obtain the connected sum of T2 with the hexagon aca−1dc−1d−1.
Again I notice the term aca−1 which means I’m halfway done with a Fourth Reduc-
tion. So I draw an arrow g from one head of c to another head of c, obtaining a pen-
tagon acg−1c−1d−1 and a triangle dga−1. Gluing these along edge d, I obtain hexagon
acg−1c−1ga−1. The edges a cancel out by the First Reduction, and I’m left with
cg−1c−1g, which is another torus.
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5. For a ∈ R, let Ma be the set of 2 × 2 real matrices with trace 2 and determinant a.
Show that Ma is a manifold if and only if a ̸= 1. (Hint for a = 1: show that the
defining condition looks like the equation of a cone in R3.)

Solution: Identify 2× 2 real matrices with R4, and define a function F : R4 → R2 by
F (A) = (TrA, detA). We then want to examine the inverse image of (2, a).

In coordinates where the matrix is A =
(
w x
y z

)
, we have

F (w, x, y, z) = (w + z, wz − xy).

Thus we have

DF (w, x, y, z) =

(
1 0 0 1
z −y −x w

)
.

If either x or y is nonzero, this is obviously rank two. If both x and y are zero, this is
rank two unless w = z. In that case it reduces to rank one.

So with the constraints w = z and w+ z = 2 and x = y = 0 and wz−xy = a, we must
obviously have w = z = 1 and thus a = 1 as well to get rank one. So if a ̸= 1 then DF
has rank two, and the implicit function theorem tells us it’s a manifold.

To see what happens when a = 1, we express the matrix in a slightly different form.
Write A =

(
1+p q−r
q+r 1−p

)
, which can always be done when A has trace two. Then

detA = 1− p2 − (q2 − r2) = 1

implies that
r2 = p2 + q2,
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which is exactly the equation of a cone in 3-space, and clearly not even a topological
manifold (though a rigorous proof is not necessarily easy).
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