
Math 70900 Homework #3 Solutions

1. Consider the function F : R3 → R given by

F (x, y, z) = x2 + y2 + z2 + 2xyz,

and the level surfaces Sc consisting of the points satisfying F (x, y, z) = c for c > 0.

(a) Show using the Implicit Function Theorem that if c ̸= 1, then we can always
locally represent Sc as the graph of a smooth function of one of the variables in
terms of the others.

Solution: We compute DF first and get

DF (x, y, z) =
(
Fx Fy Fz

)
=

(
2x+ 2yz 2y + 2xz 2z + 2xy

)
.

The only way this does not have rank one is if it’s identically zero, and the only
way that can happen is if there is a point (x, y, z) ∈ Sc such that

x+ yz = 0, y + xz = 0, z + xy = 0.

Eliminating z using z = −xy, we get

x(1− y2) = 0, y(1− x2) = 0.

So either x = y = 0 or |x| = |y| = 1. The equations x = y = 0 imply that z = 0,
so that c = 0, but we assumed c > 0. So suppose |x| = |y| = 1. If x and y
have the same sign, then z has the opposite; if x and y have opposite signs then
z is the same as one of them. Thus we must have two signs the same and one
sign different. If two of them are negative and one is positive (for example x, y
negative) then z+xy = 2 and we do not get a critical point. So the only points to
worry about are x = 1, y = 1, z = −1 and permutations of those, which all give
F (1, 1,−1) = 1. We conclude c = 1 is the only point where the Implicit Function
Theorem does not apply.

(b) What happens when c = 1? (Try plotting it.)

Solution: When c = 1 we have the equation

x2 + y2 + z2 + 2xyz = 1,

and from above we know this is a manifold everywhere except at points like
(1, 1,−1) and permutations of it. Solving for z near (1, 1,−1), we would get

z = −xy ±
√

(x+ 1)(y + 1)(x− 1)(y − 1),

and we see that z can be solved in the square x ≥ 1,y ≥ 1 and the square x ≤ 1,
y ≤ 1 with a cusp joining these two squares. Hence the singularity looks roughly
like a cone, as pictured.
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2. For the differential equation

dx

dt
= x2, x(0) = 1,

use Picard iteration to obtain the approximate solutions up to k = 2. Check that
x(t) = 1

1−t
is the exact solution and compare your functions ηk(t) to its Taylor series.

Solution: The Picard iteration algorithm in this case is

ηk+1(t) = 1 +

∫ t

0

ηk(s)
2 ds, η0(t) = 1.

We compute

η1(t) = 1 +

∫ t

0

1 ds = 1 + t

and thus

η2(t) = 1 +

∫ t

0

(1 + s)2 ds = 1 + t+ t2 + 1
3
t3.

To check the exact solution, we just plug in t = 0 to get x(0) = 1 as desired, and check
the derivative x′(t) = (1− t)−2 = x(t)2 as desired.
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The series for x(t) is

x(t) =
∞∑
k=0

tk,

which matches η2(t) in the first three terms.

3. Consider the coordinate chart (x, y) = F (u, v) = (v cosu, sinu/v). Find the largest
open set U around (u, v) = (0, 1) such that F is a diffeomorphism on U (i.e., F is
smooth, invertible, and F−1 is also smooth). What is the image of U in the plane?
What do the coordinate curves look like?

Solution: I meant for this to be interpreted as F (u, v) = (v cosu, v−1 sinu), and I
apologize to everyone who interpreted it as sin (u/v).

The Jacobian determinant is

Jac(u, v) = xuyv − xvyu = (−v sinu)(−v−2 sinu)− (cosu)(v−1 cosu

== v−1(sin2 u− cos2 u) = −v−1 cos (2u).

So we need v > 0 and for −π
4
< u < π

4
to have the largest open set containing (0, 1).

For fixed u, the coordinate curves satisfy xy = sinu cosu = 1
2
sin 2u = const, so they

are hyperbolas. If 0 < u < π
4
then x and y are both positive and we traverse the

hyperbolas xy = C for 0 < C < 1
2
in the first quadrant. If −π

4
< u < 0 then x is

positive while y is negative, and we traverse the hyperbolas xy = −C for 0 < C < 1
2

in the fourth quadrant.

For fixed v, the coordinate curves satisfy

x2

v2
+ v2y2 = 1,

which are ellipses through (v, 0) and (0, v−1), traversed only from −π
4
< u < π

4
.

The image of coordinate curves under the map is shown below.

4. Suppose M is a set, I is some index set, and we have a collection of sets Uα ⊂ M and
bijective functions ϕα which map Uα onto Rn for each α ∈ I. Suppose that the union
of all Uα is M . Define a set Ω ⊂ M to be open if and only if ϕα[Ω ∩ Uα] is open for
every α ∈ I. Check that this definition satisfies the conditions for a topology on M .

If we further demand that whenever Uα ∩ Uβ is nonempty, the set ϕα[Uα ∩ Uβ] is
open in Rn and the function ϕα ◦ ϕ−1

β : ϕβ[Uα ∩ Uβ] ⊂ Rn → ϕα[Uα ∩ Uβ] ⊂ Rn is
a homeomorphism, show that each Uα is open in this topology, and that each ϕα is
continuous in this topology.

Solution: The empty set is trivial, and the entire set Ω = M is open since ϕα[Uα] = Rn

for each α. If Ω1 and Ω2 are open, then for any α,

ϕα[Ω1 ∩ Ω2 ∩ Uα] = ϕα

[
(Ω1 ∩ Uα) ∩ (Ω2 ∩ Uα)

]
= ϕα[Ω1 ∩ Uα] ∩ ϕα[Ω2 ∩ Uα]
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Figure 1: Some u-v coordinate lines in the set (−π
4
, π
4
)× (0,∞), and their image under the

map. Blue curves are portions of ellipses, and red curves are portions of hyperbolas.

since ϕα is a bijection, and this is an intersection of open subsets of Rn, hence open.
The same thing works for arbitrary unions, again since ϕα is a bijection. So we have a
topology.

To show that each Uα is open, we need to show that for any β, the set ϕβ[Uα ∩ Uβ] is
open, but this is precisely one of our assumptions. To show that each ϕα is continuous,
we need to show that for any open set V ⊂ Rn, the set ϕ−1

α [V ] is open in M . But that
set is open in M if and only if ϕβ[ϕ

−1
α [V ] ∩ Uβ] is open in Rn. This latter set can be

rewritten, again since ϕα is a bijection, as

ϕβ[ϕ
−1
α [V ] ∩ Uβ] = ϕβ[ϕ

−1
α [V ] ∩ Uα ∩ Uβ]

= ϕβ

[
ϕ−1
α

[
V ∩ ϕα[Uα ∩ Uβ]

]]
= (ϕα ◦ ϕ−1

β )
[
V ∩ ϕα[Uα ∩ Uβ]

]
.

Since ϕα ◦ ϕ−1
β is assumed continuous, and since ϕα[Uα ∩ Uβ] is open by assumption,

we know this set is open.
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