Math 70900 Homework \#2 Solutions

1. (a) Let V be a two-dimensional vector space, and consider the (2,0) tensor $g: V \times V \rightarrow$ \mathbb{R} given in a basis $\left\{e_{1}, e_{2}\right\}$ by $g_{i j}=g\left(e_{i}, e_{j}\right)=\delta_{i j}$. If a new basis $\left\{f_{1}, f_{2}\right\}$ is given by $f_{1}=3 e_{1}-4 e_{2}, f_{2}=-2 e_{1}+3 e_{2}$, find the coefficients $\tilde{g}_{i j}$ in the new basis.
Solution: By definition, the coefficients are just what we get when we apply the tensor to the new basis vectors. That is,

$$
\begin{aligned}
& \tilde{g}_{11}=g\left(f_{1}, f_{1}\right)=g\left(3 e_{1}-4 e_{2}, 3 e_{1}-4 e_{2}\right)=9-0+16=25 \\
& \tilde{g}_{12}=g\left(f_{1}, f_{2}\right)=g\left(3 e_{1}-4 e_{2},-2 e_{1}+3 e_{2}\right)=-6+0+0-12=-18 \\
& \tilde{g}_{22}=g\left(f_{2}, f_{2}\right)=g\left(-2 e_{1}+3 e_{2},-2 e_{1}+3 e_{2}\right)=4-0+9=13
\end{aligned}
$$

(b) Generally, if g is a $(2,0)$ tensor on an n-dimensional vector space and $g_{i j}=\delta_{i j}$ in a basis $\left\{e_{1}, \ldots, e_{n}\right\}$, what are the components $\tilde{g}_{i j}$ in a new basis $\left\{f_{1}, \ldots, f_{n}\right\}$, related to the e-basis by $f_{i}=\sum_{j} p_{i}^{j} e_{j}$ and $e_{i}=\sum_{j} q_{i}^{j} f_{j}$?
Solution: The components are

$$
\begin{aligned}
\tilde{g}_{i j} & =g\left(f_{i}, f_{j}\right)=g\left(\sum_{k=1}^{n} p_{i}^{k} e_{k}, \sum_{\ell=1}^{n} p_{j}^{\ell} e_{\ell}\right) \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{n} p_{i}^{k} p_{j}^{\ell} g\left(e_{k}, e_{\ell}\right)=\sum_{k=1}^{n} \sum_{\ell=1}^{n} p_{i}^{k} p_{j}^{\ell} g_{k \ell} .
\end{aligned}
$$

2. A symplectic form on a vector space V is a 2 -form ω that is nondegenerate, i.e., $\omega(u, v)=0$ for all $v \in V$ implies that $u=0$.
(a) Which 2-forms are symplectic on a 2-dimensional vector space?

Solution: Every 2-form on a 2-dimensional vector space can be written as $\omega=$ $c \alpha^{1} \otimes \alpha^{2}$ in terms of a dual basis. Write a vector u as $u=a e_{1}+b e_{2}$, and let's see what $\omega\left(u, e_{1}\right)=\omega\left(u, e_{2}\right)=0$ imply. We have

$$
\begin{aligned}
& \omega\left(u, e_{1}\right)=\omega\left(a e_{1}+b e_{2}, e_{1}\right)=-b \omega\left(e_{1}, e_{2}\right)=-b c \\
& \omega\left(u, e_{2}\right)=\omega\left(a e_{1}+b e_{2}, e_{2}\right)=a \omega\left(e_{1}, e_{2}\right)=a c .
\end{aligned}
$$

Now if $-b c=0$ and $a c=0$, then either $c=0$ or $a=b=0$. Hence as long as $c \neq 0$, the assumptions $\omega\left(u, e_{1}\right)=\omega\left(u, e_{2}\right)=0$ imply $a=b=0$ and thus $u=0$. So any nonzero 2 -form is symplectic.
(b) Suppose V is 4 -dimensional with basis $\left\{e_{1}, \ldots, e_{4}\right\}$ and dual basis $\left\{\alpha^{1}, \ldots, \alpha^{4}\right\}$. Write a general 2-form on V as

$$
\omega=a \alpha^{1} \wedge \alpha^{2}+b \alpha^{1} \wedge \alpha^{3}+c \alpha^{1} \wedge \alpha^{4}+d \alpha^{2} \wedge \alpha^{3}+e \alpha^{2} \wedge \alpha^{4}+f \alpha^{3} \wedge \alpha^{4}
$$

What is the condition on the coefficients to make this a symplectic form?

Solution: Let $u=p e_{1}+q e_{2}+r e_{3}+s e_{4}$. If $\omega\left(u, e_{k}\right)=0$ for every k, then we get the four equations

$$
\begin{aligned}
& \omega\left(u, e_{1}\right)=q \omega\left(e_{2}, e_{1}\right)+r \omega\left(e_{3}, e_{1}\right)+s \omega\left(e_{4}, e_{1}\right)=-a q-b r-c s=0 \\
& \omega\left(u, e_{2}\right)=p \omega\left(e_{1}, e_{2}\right)+r \omega\left(e_{3}, e_{2}\right)+s \omega\left(e_{4}, e_{2}\right)=a p-d r-e s=0 \\
& \omega\left(u, e_{3}\right)=p \omega\left(e_{1}, e_{3}\right)+q \omega\left(e_{2}, e_{3}\right)+s \omega\left(e_{4}, e_{3}\right)=b p+d q-f s=0 \\
& \omega\left(u, e_{4}\right)=p \omega\left(e_{1}, e_{4}\right)+q \omega\left(e_{2}, e_{4}\right)+r \omega\left(e_{3}, e_{4}\right)=c p+e q+f r=0 .
\end{aligned}
$$

This translates into the matrix system $A u=0$ where

$$
A u=\left(\begin{array}{cccc}
0 & -a & -b & -c \\
a & 0 & -d & -e \\
b & d & 0 & -f \\
c & e & f & 0
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),
$$

and the question is when this forces the vector u to be 0 . Obviously that's true if and only if the determinant of this 4×4 matrix is nonzero, and Maple helpfully tells me this determinant is

$$
\operatorname{det} A=a^{2} f^{2}+2 a d f c-2 a e b f+b^{2} e^{2}-2 b e d c+d^{2} c^{2}=(a f+d c-b e)^{2} .
$$

So the condition is $a f+d c-b e \neq 0$.
(c) Prove that ω is a symplectic form on a 4-dimensional vector space if and only if $\omega \wedge \omega$ is nonzero.
Solution: We already know the condition for nondegeneracy, so we just need to compute $\omega \wedge \omega$.
Notice that since ω is a 2-form, we know $\omega \wedge \omega$ is a 4 -form, and since the vector space is 4 -dimensional, the only possibility is a multiple of $\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3} \wedge \alpha^{4}$. This means that when we compute $\omega \wedge \omega$ by distributing terms, each term in the first ω will give zero when applied to five out of six terms in the second ω. For example the term $a \alpha^{1} \wedge \alpha^{2}$ gives zero when wedged with anything in ω except for $f \alpha^{3} \wedge \alpha^{4}$, when it gives af $\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3} \wedge \alpha^{4}$.
Expanding the wedge product and transposing until every term is a multiple of $\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3} \wedge \alpha^{4}$, we obtain

$$
\omega \wedge \omega=2(a f+d c-b e) \alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3} \wedge \alpha^{4} .
$$

Hence $\omega \wedge \omega \neq 0$ if and only if $a f+d c-b e \neq 0$, which is precisely the condition for ω to be nondegenerate.
3. (a) If ω is any 2 -form on a 3 -dimensional vector space, prove that there are 1-forms α and β such that $\omega=\alpha \wedge \beta$. (Hint: if you work this out in a basis, it's essentially the same statement as "any vector in \mathbb{R}^{3} is the cross product of two other vectors.")
Solution: As hinted, expand in a basis. Express our unknown 1-forms as $\alpha=$ $p_{1} \alpha^{1}+p_{2} \alpha^{2}+p_{3} \alpha^{3}$ and $\beta=q_{1} \alpha^{1}+q_{2} \alpha^{2}+q_{3} \alpha^{3}$; then we have

$$
\alpha \wedge \beta=\left(p_{1} q_{2}-p_{2} q_{1}\right) \alpha^{1} \wedge \alpha^{2}+\left(p_{2} q_{3}-p_{3} q_{2}\right) \alpha^{2} \wedge \alpha^{3}+\left(p_{3} q_{1}-p_{1} q_{3}\right) \alpha^{3} \wedge \alpha^{1} .
$$

Now our given ω can be expressed as

$$
\omega=r_{1} \alpha^{2} \wedge \alpha^{3}+r_{2} \alpha^{3} \wedge \alpha^{1}+r_{3} \alpha^{1} \wedge \alpha^{2}
$$

so matching these up gives the equations

$$
p_{1} q_{2}-p_{2} q_{1}=r_{3}, \quad p_{2} q_{3}-p_{3} q_{2}=r_{1}, \quad p_{3} q_{1}-p_{1} q_{3}=r_{2}
$$

which is exactly the statement that, as vectors in \mathbb{R}^{3} with the usual cross-product, we have

$$
\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right) \times\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right) .
$$

This makes it easier to visualize what's going on.
To actually prove the statement, let \mathbf{r} be any vector in \mathbb{R}^{3} and choose any unit vector \mathbf{p} which is orthogonal to \mathbf{r}. Define $\mathbf{q}=\mathbf{r} \times \mathbf{p}$; then by standard vector calculus we have

$$
\mathbf{p} \times \mathbf{q}=\mathbf{p} \times(\mathbf{r} \times \mathbf{p})=(\mathbf{p} \cdot \mathbf{p}) \mathbf{r}-(\mathbf{p} \cdot \mathbf{r}) \mathbf{p}=\mathbf{r} .
$$

(b) Use this to show that no 2-form on a 3-dimensional vector space can ever be nondegenerate (as defined in the previous problem).
Solution: Let ω be a 2-form with $\omega=\alpha \wedge \beta$, and assume α and β are both nonzero 1-forms. Let $V_{1} \subset V$ be the kernel of α, and let $V_{2} \subset V$ be the kernel of β. Then V_{1} is a two-dimensional subspace and V_{2} is a two-dimensional subspace, and their intersection is at least a one-dimensional subspace. So there is a nonzero vector u such that $\alpha(u)=\beta(u)=0$. Thus for every vector $v \in V$ we have

$$
\omega(u, v)=(\alpha \wedge \beta)(u, v)=\alpha(u) \beta(v)-\alpha(v) \beta(u)=0 .
$$

Hence ω is degenerate.
(c) Give an explicit example of a 2 -form on a 4-dimensional vector space which cannot be written as a product $\omega=\alpha \wedge \beta$.
Solution: By the same reasoning as in part (b), any 2 -form that can be written as $\omega=\alpha \wedge \beta$ on a space of dimension at least three must be degenerate. Therefore any nondegenerate 2 -form cannot be written as a product.
In the previous problem we found a condition for nondegeneracy in terms of the coefficients $\{a, b, c, d, e, f\}$: that $a f+d c-b e \neq 0$. The simplest choice is $a=f=1$ and $b=c=d=e=0$, so that

$$
\omega=\alpha^{1} \wedge \alpha^{2}+\alpha^{3} \wedge \alpha^{4}
$$

4. Suppose V is two-dimensional and W is three-dimensional, with a linear transformation $T: V \rightarrow W$ expressed in some basis $\left\{e_{1}, e_{2}\right\}$ and $\left\{f_{1}, f_{2}, f_{3}\right\}$ as $T\left(e_{1}\right)=4 f_{1}-5 f_{2}+f_{3}$ and $T\left(e_{2}\right)=2 f_{1}+7 f_{3}$. Let ω be a 2-form satisfying $\omega\left(f_{1}, f_{2}\right)=-2, \omega\left(f_{2}, f_{3}\right)=5$, and $\omega\left(f_{3}, f_{1}\right)=4$. Compute $T^{*} \omega$.

Solution: $T^{*} \omega$ is a 2 -form on a two-dimensional space, which means it is completely determined by $\left(T^{*} \omega\right)\left(e_{1}, e_{2}\right)$. By definition we have

$$
\begin{aligned}
\left(T^{*} \omega\right)\left(e_{1}, e_{2}\right) & =\omega\left(T\left(e_{1}\right), T\left(e_{2}\right)\right) \\
& =\omega\left(4 f_{1}-5 f_{2}+f_{3}, 2 f_{1}+7 f_{3}\right) \\
& =28 \omega\left(f_{1}, f_{3}\right)-10 \omega\left(f_{2}, f_{1}\right)-35 \omega\left(f_{2}, f_{3}\right)+2 \omega\left(f_{3}, f_{1}\right) \\
& =-28 \cdot 4-10 \cdot 2-35 \cdot 5+2 \cdot 4 \\
& =-299
\end{aligned}
$$

Therefore we must have

$$
T^{*} \omega=-299 \alpha^{1} \wedge \alpha^{2}
$$

5. Compute explicitly the map $F(A)=A^{\dagger} A$, from the space of all 2×2 matrices (equivalent to \mathbb{R}^{4}) to the space of symmetric 2×2 matrices (equivalent to \mathbb{R}^{3}). Then find its derivative $D F(A)$.
At what matrices A does $D F(A)$ have maximal rank?
Solution: Let $A=\left(\begin{array}{cc}w \\ y & x \\ \hline\end{array}\right)$ and $A^{\dagger} A=\left(\begin{array}{c}p \\ q \\ q\end{array}\right)$. Then the map is

$$
(p, q, r)=F(w, x, y, z)=\left(w^{2}+x^{2}, w y+x z, y^{2}+z^{2}\right) .
$$

Its derivative is

$$
D F(w, x, y, z)=\left(\begin{array}{llll}
p_{w} & p_{x} & p_{y} & p_{z} \\
q_{w} & q_{x} & q_{y} & q_{z} \\
r_{w} & r_{x} & r_{y} & r_{z}
\end{array}\right)=\left(\begin{array}{cccc}
2 w & 2 x & 0 & 0 \\
y & z & w & x \\
0 & 0 & 2 y & 2 z
\end{array}\right) .
$$

We want to know when this matrix has rank 3, and we will use Proposition 3.3.6 to do it. First compute the left 3×3 determinant to get $4 y(w z-x y)$; then compute the right 3×3 determinant to get $4 x(w z-x y)$.
If $w z-x y \neq 0$, then the only way both of these determinants are zero is if $x=y=0$. Now if $x=y=0$ and $w z-x y \neq 0$, then $w z \neq 0$. The matrix $D F$ becomes

$$
D F(w, 0,0, z)=\left(\begin{array}{cccc}
2 w & 0 & 0 & 0 \\
0 & z & w & 0 \\
0 & 0 & 0 & 2 z
\end{array}\right)
$$

Consider the determinant obtained by deleting the third column: it's $4 w^{2} z \neq 0$, and so in this case the rank is maximal. We have shown that if $w z-x y \neq 0$, then $D F(w, x, y, z)$ has maximal rank.
Suppose $w z-x y=0$. If $w \neq 0$, row reduction gives

$$
D F(w, x, y, z) \sim\left(\begin{array}{cccc}
2 w & 2 x & 0 & 0 \\
0 & 0 & w & x \\
0 & 0 & 2 y & 2 z
\end{array}\right) \sim\left(\begin{array}{cccc}
2 w & 2 x & 0 & 0 \\
0 & 0 & w & x \\
0 & 0 & 0 & 0
\end{array}\right)
$$

which has rank two.

On the other hand if $w=0$ and $w z-x y=0$, then we must have $x y=0$, so either $x=0$ or $y=0$. If $x=0$ then

$$
D F(0,0, y, z)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
y & z & 0 & 0 \\
0 & 0 & y & z
\end{array}\right)
$$

which has rank two if either $y \neq 0$ or $z \neq 0$. If $y=0$ then

$$
D F(0, x, 0, z)=\left(\begin{array}{cccc}
0 & 2 x & 0 & 0 \\
0 & z & 0 & x \\
0 & 0 & 0 & 2 z
\end{array}\right)
$$

which has rank two if either $x \neq 0$ or $z \neq 0$.
In summary, if $w z-x y=0$ but at least one of $\{w, x, y, z\}$ is not zero, then $D F(w, x, y, z)$ has rank two. However if all entries are zero, then $\operatorname{DF}(0,0,0,0)$ is the zero matrix which has rank zero.
6. In the proof of Theorem 5.2.2 (the Implicit Function Theorem), it was claimed that if F has infinitely many continuous derivatives, then so does G. Compute $G^{\prime}(x)$ and $G^{\prime \prime}(x)$ in the case $k=n=1$.
Solution: In the case $k=n=1$, we have

$$
F(x, G(x))=0
$$

for a function $G: U \subset \mathbb{R} \rightarrow \mathbb{R}$. Differentiating using the chain rule, we get

$$
F_{x}(x, G(x))+F_{y}(x, G(x)) G^{\prime}(x)=0
$$

and solving gives

$$
G^{\prime}(x)=-\frac{F_{x}(x, G(x))}{F_{y}(x, G(x))}
$$

which exists in a neighborhood of the point $\left(x_{0}, y_{0}\right)$ since $F_{y}\left(x_{0}, y_{0}\right) \neq 0$ by assumption.
Differentiating again, we get

$$
F_{x x}(x, G(x))+2 F_{x y}(x, G(x)) G^{\prime}(x)+F_{y y}(x, G(x)) G^{\prime}(x)^{2}+F_{y}(x, G(x)) G^{\prime \prime}(x)=0
$$

Solving for $G^{\prime \prime}(x)$ and using our answer for $G^{\prime}(x)$, we get

$$
G^{\prime \prime}(x)=-\frac{F_{y}^{2} F_{x x}-2 F_{x} F_{y} F_{x y}+F_{x}^{2} F_{y y}}{F_{y}^{3}},
$$

where all functions are evaluated at $(x, G(x))$.
7. Suppose that the solution of $x^{\prime}(t)=t^{3}+x(t)^{3}$ with initial condition $x(0)=a$ is denoted by $\Gamma(t, a)$. Find a formula for $Z(t, a):=\frac{\partial \Gamma}{\partial a}(t, a)$ in terms of the function Γ.

Solution: We have

$$
\frac{\partial \Gamma}{\partial t}(t, a)=t^{3}+\Gamma(t, a)^{3}
$$

for all t and a, and thus we can differentiate with respect to a to get an equation for Z : we have

$$
\frac{\partial Z}{\partial t}(t, a)=3 \Gamma(t, a)^{2} Z(t, a)
$$

Since $\Gamma(0, a)=a$ for all a, differentiating this equation with respect to a gives $Z(0, a)=$ 1.

The solution of this linear ODE with this initial condition is

$$
Z(t, a)=\exp \left(3 \int_{0}^{t} \Gamma(s, a)^{2} d s\right)
$$

