
Math 70900 Homework #2 Solutions

1. (a) Let V be a two-dimensional vector space, and consider the (2, 0) tensor g : V×V →
R given in a basis {e1, e2} by gij = g(ei, ej) = δij. If a new basis {f1, f2} is given
by f1 = 3e1 − 4e2, f2 = −2e1 + 3e2, find the coefficients g̃ij in the new basis.

Solution: By definition, the coefficients are just what we get when we apply the
tensor to the new basis vectors. That is,

g̃11 = g(f1, f1) = g(3e1 − 4e2, 3e1 − 4e2) = 9− 0 + 16 = 25

g̃12 = g(f1, f2) = g(3e1 − 4e2,−2e1 + 3e2) = −6 + 0 + 0− 12 = −18

g̃22 = g(f2, f2) = g(−2e1 + 3e2,−2e1 + 3e2) = 4− 0 + 9 = 13.

(b) Generally, if g is a (2, 0) tensor on an n-dimensional vector space and gij = δij
in a basis {e1, . . . , en}, what are the components g̃ij in a new basis {f1, . . . , fn},
related to the e-basis by fi =

∑
j p

j
iej and ei =

∑
j q

j
i fj?

Solution: The components are

g̃ij = g(fi, fj) = g

(
n∑

k=1

pki ek,
n∑

ℓ=1

pℓjeℓ

)

=
n∑

k=1

n∑
ℓ=1

pki p
ℓ
jg(ek, eℓ) =

n∑
k=1

n∑
ℓ=1

pki p
ℓ
jgkℓ.

2. A symplectic form on a vector space V is a 2-form ω that is nondegenerate, i.e.,
ω(u, v) = 0 for all v ∈ V implies that u = 0.

(a) Which 2-forms are symplectic on a 2-dimensional vector space?

Solution: Every 2-form on a 2-dimensional vector space can be written as ω =
c α1 ⊗α2 in terms of a dual basis. Write a vector u as u = ae1 + be2, and let’s see
what ω(u, e1) = ω(u, e2) = 0 imply. We have

ω(u, e1) = ω(ae1 + be2, e1) = −bω(e1, e2) = −bc

ω(u, e2) = ω(ae1 + be2, e2) = aω(e1, e2) = ac.

Now if −bc = 0 and ac = 0, then either c = 0 or a = b = 0. Hence as long as
c ̸= 0, the assumptions ω(u, e1) = ω(u, e2) = 0 imply a = b = 0 and thus u = 0.
So any nonzero 2-form is symplectic.

(b) Suppose V is 4-dimensional with basis {e1, . . . , e4} and dual basis {α1, . . . , α4}.
Write a general 2-form on V as

ω = aα1 ∧ α2 + b α1 ∧ α3 + c α1 ∧ α4 + dα2 ∧ α3 + e α2 ∧ α4 + f α3 ∧ α4.

What is the condition on the coefficients to make this a symplectic form?
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Solution: Let u = pe1 + qe2 + re3 + se4. If ω(u, ek) = 0 for every k, then we get
the four equations

ω(u, e1) = qω(e2, e1) + rω(e3, e1) + sω(e4, e1) = −aq − br − cs = 0

ω(u, e2) = pω(e1, e2) + rω(e3, e2) + sω(e4, e2) = ap− dr − es = 0

ω(u, e3) = pω(e1, e3) + qω(e2, e3) + sω(e4, e3) = bp+ dq − fs = 0

ω(u, e4) = pω(e1, e4) + qω(e2, e4) + rω(e3, e4) = cp+ eq + fr = 0.

This translates into the matrix system Au = 0 where

Au =


0 −a −b −c
a 0 −d −e
b d 0 −f
c e f 0



p
q
r
s

 =


0
0
0
0

 ,

and the question is when this forces the vector u to be 0. Obviously that’s true if
and only if the determinant of this 4× 4 matrix is nonzero, and Maple helpfully
tells me this determinant is

detA = a2f 2 + 2adfc− 2aebf + b2e2 − 2bedc+ d2c2 = (af + dc− be)2.

So the condition is af + dc− be ̸= 0.

(c) Prove that ω is a symplectic form on a 4-dimensional vector space if and only if
ω ∧ ω is nonzero.

Solution: We already know the condition for nondegeneracy, so we just need to
compute ω ∧ ω.

Notice that since ω is a 2-form, we know ω ∧ ω is a 4-form, and since the vector
space is 4-dimensional, the only possibility is a multiple of α1∧α2∧α3∧α4. This
means that when we compute ω∧ω by distributing terms, each term in the first ω
will give zero when applied to five out of six terms in the second ω. For example
the term aα1∧α2 gives zero when wedged with anything in ω except for f α3∧α4,
when it gives af α1 ∧ α2 ∧ α3 ∧ α4.

Expanding the wedge product and transposing until every term is a multiple of
α1 ∧ α2 ∧ α3 ∧ α4, we obtain

ω ∧ ω = 2(af + dc− be)α1 ∧ α2 ∧ α3 ∧ α4.

Hence ω ∧ ω ̸= 0 if and only if af + dc− be ̸= 0, which is precisely the condition
for ω to be nondegenerate.

3. (a) If ω is any 2-form on a 3-dimensional vector space, prove that there are 1-forms α
and β such that ω = α∧β. (Hint: if you work this out in a basis, it’s essentially the
same statement as “any vector in R3 is the cross product of two other vectors.”)

Solution: As hinted, expand in a basis. Express our unknown 1-forms as α =
p1α

1 + p2α
2 + p3α

3 and β = q1α
1 + q2α

2 + q3α
3; then we have

α ∧ β = (p1q2 − p2q1)α
1 ∧ α2 + (p2q3 − p3q2)α

2 ∧ α3 + (p3q1 − p1q3)α
3 ∧ α1.
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Now our given ω can be expressed as

ω = r1 α
2 ∧ α3 + r2 α

3 ∧ α1 + r3 α
1 ∧ α2,

so matching these up gives the equations

p1q2 − p2q1 = r3, p2q3 − p3q2 = r1, p3q1 − p1q3 = r2,

which is exactly the statement that, as vectors in R3 with the usual cross-product,
we have p1

p2
p3

×

q1
q2
q3

 =

r1
r2
r3

 .

This makes it easier to visualize what’s going on.

To actually prove the statement, let r be any vector in R3 and choose any unit
vector p which is orthogonal to r. Define q = r × p; then by standard vector
calculus we have

p× q = p× (r× p) = (p · p)r− (p · r)p = r.

(b) Use this to show that no 2-form on a 3-dimensional vector space can ever be
nondegenerate (as defined in the previous problem).

Solution: Let ω be a 2-form with ω = α ∧ β, and assume α and β are both
nonzero 1-forms. Let V1 ⊂ V be the kernel of α, and let V2 ⊂ V be the kernel of
β. Then V1 is a two-dimensional subspace and V2 is a two-dimensional subspace,
and their intersection is at least a one-dimensional subspace. So there is a nonzero
vector u such that α(u) = β(u) = 0. Thus for every vector v ∈ V we have

ω(u, v) = (α ∧ β)(u, v) = α(u)β(v)− α(v)β(u) = 0.

Hence ω is degenerate.

(c) Give an explicit example of a 2-form on a 4-dimensional vector space which cannot
be written as a product ω = α ∧ β.

Solution: By the same reasoning as in part (b), any 2-form that can be written
as ω = α∧β on a space of dimension at least three must be degenerate. Therefore
any nondegenerate 2-form cannot be written as a product.

In the previous problem we found a condition for nondegeneracy in terms of the
coefficients {a, b, c, d, e, f}: that af+dc−be ̸= 0. The simplest choice is a = f = 1
and b = c = d = e = 0, so that

ω = α1 ∧ α2 + α3 ∧ α4.

4. Suppose V is two-dimensional andW is three-dimensional, with a linear transformation
T : V → W expressed in some basis {e1, e2} and {f1, f2, f3} as T (e1) = 4f1 − 5f2 + f3
and T (e2) = 2f1 +7f3. Let ω be a 2-form satisfying ω(f1, f2) = −2, ω(f2, f3) = 5, and
ω(f3, f1) = 4. Compute T ∗ω.
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Solution: T ∗ω is a 2-form on a two-dimensional space, which means it is completely
determined by (T ∗ω)(e1, e2). By definition we have

(T ∗ω)(e1, e2) = ω
(
T (e1), T (e2)

)
= ω(4f1 − 5f2 + f3, 2f1 + 7f3)

= 28ω(f1, f3)− 10ω(f2, f1)− 35ω(f2, f3) + 2ω(f3, f1)

= −28 · 4− 10 · 2− 35 · 5 + 2 · 4
= −299.

Therefore we must have
T ∗ω = −299α1 ∧ α2.

5. Compute explicitly the map F (A) = A†A, from the space of all 2× 2 matrices (equiv-
alent to R4) to the space of symmetric 2× 2 matrices (equivalent to R3). Then find its
derivative DF (A).

At what matrices A does DF (A) have maximal rank?

Solution: Let A = ( w x
y z ) and A†A = ( p q

q r ). Then the map is

(p, q, r) = F (w, x, y, z) = (w2 + x2, wy + xz, y2 + z2).

Its derivative is

DF (w, x, y, z) =

pw px py pz
qw qx qy qz
rw rx ry rz

 =

2w 2x 0 0
y z w x
0 0 2y 2z

 .

We want to know when this matrix has rank 3, and we will use Proposition 3.3.6 to
do it. First compute the left 3× 3 determinant to get 4y(wz − xy); then compute the
right 3× 3 determinant to get 4x(wz − xy).

If wz − xy ̸= 0, then the only way both of these determinants are zero is if x = y = 0.
Now if x = y = 0 and wz − xy ̸= 0, then wz ̸= 0. The matrix DF becomes

DF (w, 0, 0, z) =

2w 0 0 0
0 z w 0
0 0 0 2z

 .

Consider the determinant obtained by deleting the third column: it’s 4w2z ̸= 0, and
so in this case the rank is maximal. We have shown that if wz − xy ̸= 0, then
DF (w, x, y, z) has maximal rank.

Suppose wz − xy = 0. If w ̸= 0, row reduction gives

DF (w, x, y, z) ∼

2w 2x 0 0
0 0 w x
0 0 2y 2z

 ∼

2w 2x 0 0
0 0 w x
0 0 0 0

 ,

which has rank two.

4



On the other hand if w = 0 and wz − xy = 0, then we must have xy = 0, so either
x = 0 or y = 0. If x = 0 then

DF (0, 0, y, z) =

0 0 0 0
y z 0 0
0 0 y z

 ,

which has rank two if either y ̸= 0 or z ̸= 0. If y = 0 then

DF (0, x, 0, z) =

0 2x 0 0
0 z 0 x
0 0 0 2z

 ,

which has rank two if either x ̸= 0 or z ̸= 0.

In summary, if wz−xy = 0 but at least one of {w, x, y, z} is not zero, thenDF (w, x, y, z)
has rank two. However if all entries are zero, thenDF (0, 0, 0, 0) is the zero matrix which
has rank zero.

6. In the proof of Theorem 5.2.2 (the Implicit Function Theorem), it was claimed that
if F has infinitely many continuous derivatives, then so does G. Compute G′(x) and
G′′(x) in the case k = n = 1.

Solution: In the case k = n = 1, we have

F (x,G(x)) = 0

for a function G : U ⊂ R → R. Differentiating using the chain rule, we get

Fx(x,G(x)) + Fy(x,G(x))G′(x) = 0,

and solving gives

G′(x) = −Fx(x,G(x))

Fy(x,G(x))
,

which exists in a neighborhood of the point (x0, y0) since Fy(x0, y0) ̸= 0 by assumption.

Differentiating again, we get

Fxx(x,G(x)) + 2Fxy(x,G(x))G′(x) + Fyy(x,G(x))G′(x)2 + Fy(x,G(x))G′′(x) = 0.

Solving for G′′(x) and using our answer for G′(x), we get

G′′(x) = −
F 2
yFxx − 2FxFyFxy + F 2

xFyy

F 3
y

,

where all functions are evaluated at (x,G(x)).

7. Suppose that the solution of x′(t) = t3+x(t)3 with initial condition x(0) = a is denoted
by Γ(t, a). Find a formula for Z(t, a) := ∂Γ

∂a
(t, a) in terms of the function Γ.
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Solution: We have
∂Γ

∂t
(t, a) = t3 + Γ(t, a)3

for all t and a, and thus we can differentiate with respect to a to get an equation for
Z: we have

∂Z

∂t
(t, a) = 3Γ(t, a)2Z(t, a).

Since Γ(0, a) = a for all a, differentiating this equation with respect to a gives Z(0, a) =
1.

The solution of this linear ODE with this initial condition is

Z(t, a) = exp

(
3

∫ t

0

Γ(s, a)2 ds

)
.
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