
Math 70900 Homework #1 Solutions

Read “Introduction to Differential Geometry” up to Chapter 4.

1. Suppose you lived on a small sphere of radius R, so that spherical geometry was more
natural than planar geometry. What formulas would children be taught in school
instead of the Euclidean formulas C = 2πr (for circumference of a circle) and A = πr2

(for area of a circle)?

Solution: The circumference is easy. Look at the sphere from the side as in Figure 1.

Figure 1: A circle in the sphere: the residents measure r, but the actual circumference is
determined by the Euclidean result for the circle of radius ρ.

It has some radius R. An arc length r can be measured from the north pole (traced out
by angle θ), and a circle can be drawn on the sphere by the residents. In Euclidean 3-
space that circle will have radius ρ, although the people on the sphere cannot measure
that directly.

From trigonometry we have the relations r = Rθ and R sin θ = ρ. The circumference
of the circle is C = 2πρ, and in terms of the observable quantity r and the parameter
R, the formula is

C = 2πR sin
( r

R

)
.

Now to compute the area of the circle, there are two ways to do it. The more di-
rect vector calculus method would be to view it as a surface area problem in three
dimensions. We write z = f(x, y) =

√
R2 − x2 − y2, and use the surface area formula

A =

∫∫
D

√
1 + f 2

x + f 2
y dx dy =

∫∫
D

Rdx dy√
R2 − x2 − y2

=

∫ 2π

0

∫ ρ

0

Rpdp√
R2 − p2

dp

= −2πR
√
R2 − p2

∣∣∣ρ
0
= 2πR2

[
1− cos

( r

R

)]
.
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The more elegant way is to just notice that area is the integral of circumference with
respect to the radius, which gives the same answer.

Notice that it’s easy to check these formulas in the special cases where we know the
answer (r = Rπ

2
and r = Rπ). It’s also easy to see via Taylor expansions for small r

that we get the Euclidean formula back to lowest order.

2. Recall that in the hyperbolic plane (the upper half-plane model H = {(x, y) : y > 0})
of hyperbolic geometry, “lines” are either semicircles centered on the x-axis or vertical
lines, as shown in Figure 1.5.

Show that for any two points (x1, y1) and (x2, y2) on the hyperbolic plane there is a
unique hyperbolic line passing through the points; compute it explicitly.

Solution: We are looking for either a circle centered on the x-axis or a vertical line.
First we look for a circle: we want

(x1 − a)2 + y21 = r2 and (x2 − a)2 + y22 = r2

for some a ∈ R and r > 0. Eliminating r2 first, if x1 ̸= x2 we get

a =
y22 − y21 + x2

2 − x2
1

2(x2 − x1)
and r2 = y21 +

(
(x1 − x2)

2 + y22 − y21
2(x2 − x1)

)2

.

On the other hand if x1 = x2 then we get a unique vertical line x = x1 passing through.

3. In standard spherical coordinates on S2, with x = sin θ cosϕ, y = sin θ sinϕ, and
z = cos θ, show that sin2 θ is a smooth function on the sphere (because it is the
restriction of a smooth function on R3), but that sin2 ϕ is not a smooth function on
the sphere. (Hint: what does it look like near the north pole in (x, y) coordinates?)

Solution: Since x2 + y2 = sin2 θ for any point (x, y, z) on the sphere, the function
sin2 θ is the restriction of the function f : R3 → R given by f(x, y, z) = x2 + y2, which
is obviously C∞. So the restriction is also smooth.

On the other hand, we have

sin2 ϕ =
y2

sin2 θ
=

y2

x2 + y2
.

Using (x, y) as coordinates, the north pole corresponds to x = y = 0, and this function
is not continuous at the origin. Thus in particular it is not smooth.

4. Consider two possible bases for R2:

e1 =

(
5
2

)
and e2 =

(
2
1

)
vs.

f1 =

(
2
−3

)
and f2 =

(
1
−2

)
.
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(a) Find the transformation matrix P such that fi =
∑2

j=1 p
j
iej, and the transforma-

tion matrix Q such that ei =
∑2

j=1 q
j
i fj.

Solution:

Comparing components of f1 and f2, we need to solve the equations

2 = 5p11 + 2p21 −3 = 2p11 + p21
1 = 5p12 + 2p22 −2 = 2p21 + p22.

It is easy to see that p11 = 8, p21 = −19, p12 = 5, and p22 = −12.

Then Q is the inverse matrix, so that q11 = 12, q21 = −19, q12 = 5, q22 = −8.

(b) How would you express the vector v = 7e1 − 3e2 in the {f}-basis?
Solution:

Easy enough. Just write

v = 7(q11f1 + q21f2)− 3(q12f1 + q22f2) = 69f1 − 109f2.

(c) Compute explicitly the covectors α1 and α2 (satisfying αi(ej) = δij), and the
covectors β1 and β2 satisfying βi(fj) = δij.

Solution:

We write α1 = (a b) and α2 = (c d); then these numbers must satisfy

5a+ 2b = 1 2a+ b = 0

5c+ 2d = 0 2c+ d = 1.

The solution is α1 = (1 −2) and α2 = (−2 5).

Similarly the βs are given by β1 = (2 1) and β2 = (−3 −2).

5. A linear operator T : R3 → R3 is given in the standard basis
(

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
by

T =

 1 −1 2
0 2 −2
−1 0 −1

 .

(a) If you think of the domain and range of T as different vector spaces, show how
to change the bases of both to get T in reduced row echelon form. (Describe the
new bases explicitly.)

Solution:

The matrix equation says that T (e1) = f1 − f3, T (e2) = −f1 + 2f2, and T (e3) =
2f1 − 2f2 − f3.

Doing the row reduction operations we see that T is similar to
(

1 0 1
0 1 −1
0 0 0

)
. (This is

as simple as we can get it without doing column operations, i.e., without changing
the basis of the domain.)
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This corresponds to the new basis of the range f̃1 = f1 − f3, f̃2 = −f1 + 2f2,
while f̃3 can be any vector that is linearly independent from the other two (for
example, f̃3 = f1). Then we have T (e1) = f̃1, T (e2) = f̃2, and T (e3) = f̃1 − f̃2.

If we also change the domain basis, e.g., to ẽ1 = e1, ẽ2 = e2, and ẽ3 = e3− e1+ e2,
then things get even simpler: we have T (ẽ1) = f̃1, T (ẽ2) = f̃2, and T (ẽ3) = 0,

corresponding to the reduced matrix
(

1 0 0
0 1 0
0 0 0

)
.

(b) If you think of the domain and range of T as the same vector space, show how to
change the basis to get T in Jordan form.

Solution: To find the Jordan form, we need to compute the characteristic poly-
nomial

det(λI − T ) = λ3 − 2λ2 + λ.

The roots of this are λ = 0, λ = 1, and λ = 1 (a double root).

An eigenvector corresponding to λ = 0 is v1 =
(

1
−1
−1

)
, while an eigenvector corre-

sponding to λ = 1 is v2 =
(

2
−2
−1

)
. Unfortunately we don’t have a third eigenvector

corresponding to the degenerate eigenvalue λ = 1, so instead we use the Jordan
block form, corresponding to asking for a vector v3 satisfying Tv3 = v3+ v2. This

can be done; one such vector is v3 =
(

1
−2
0

)
.

In the new basis {v1, v2, v3}, T takes the form T (v1) = 0, T (v2) = v2, and T (v3) =

v3 + v2, corresponding to the Jordan form matrix
(

0 0 0
0 1 1
0 0 1

)
.

6. Prove directly, imitating Proposition 3.3.1, that if T : V → V is a linear operator, then
the number Tr(T 2) =

∑n
i=1

∑n
j=1 T

j
i T

i
j does not depend on choice of basis.

Solution: Suppose T (ei) =
∑n

j=1 T
j
i ej in the given basis {e1, . . . , en}, and that in

some new basis {f1, . . . , fn} we have T (fi) =
∑n

j=1 T̃
j
i fj. If the bases are related by

fi =
n∑

j=1

pjiej, ei =
n∑

j=1

qji fj,

then we have

T (fi) =
n∑

ℓ=1

pℓiT (eℓ) =
n∑

ℓ=1

n∑
k=1

pℓiT
k
ℓ ek =

n∑
ℓ=1

n∑
k=1

n∑
j=1

pℓiT
k
ℓ q

j
kfj,

and we conclude that

T̃ j
i =

n∑
ℓ=1

n∑
k=1

pℓiT
k
ℓ q

j
k.

Applying T twice to a basis vector, we get

T 2(ei) = T

(
n∑

k=1

T k
i ek

)
=

n∑
k=1

T k
i T (ek) =

n∑
k=1

n∑
j=1

T k
i T

j
kej,
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and thus if we write U = T 2 and its coefficients as U j
i , we get

U j
i =

n∑
k=1

T k
i T

j
k

and

Ũ j
i =

n∑
k=1

T̃ k
i T̃

j
k =

n∑
k=1

n∑
ℓ=1

n∑
m=1

n∑
a=1

n∑
b=1

pℓiT
m
ℓ qkmp

a
kT

b
aq

j
b .

Then the trace in the e basis is

Tr(T 2) =
n∑

i=1

U i
i =

n∑
k=1

n∑
i=1

T k
i T

i
k,

while the trace in the f basis is

Tr(T 2) =
n∑

i=1

Ũ i
i =

n∑
i=1

n∑
k=1

n∑
ℓ=1

n∑
m=1

n∑
a=1

n∑
b=1

pℓiT
m
ℓ qkmp

a
kT

b
aq

i
b

=
n∑

ℓ=1

n∑
m=1

n∑
a=1

n∑
b=1

Tm
ℓ T b

a

(
n∑

k=1

qkmp
a
k

)(
n∑

i=1

pℓiq
i
b

)

=
n∑

ℓ=1

n∑
m=1

n∑
a=1

n∑
b=1

Tm
ℓ T b

aδ
a
mδ

ℓ
b

=
n∑

ℓ=1

n∑
m=1

Tm
ℓ T ℓ

m,

and this is the same as the formula in the e basis (with different dummy indices).
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