
Math 70900 Homework #10 Solutions

1. Let

ω =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2

on R3\{(0, 0, 0)}. Show that ω is closed but not exact. Hint: to show it’s not exact,
integrate it over a parametrized 2-sphere and obtain a nonzero number.

Solution: To show ω is closed, we just perform a computation: if ω = u(x, y, z) dy ∧
dz + v(x, y, z) dz ∧ dx+ w(x, y, z) dx ∧ dy, then

dω =

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
dx ∧ dy ∧ dz

=

(
∂

∂x

( x

(x2 + y2 + z2)3/2

)
+

∂

∂y

( y

(x2 + y2 + z2)3/2

)
+

∂

∂z

( z

(x2 + y2 + z2)3/2

))
dx ∧ dy ∧ dz

=

(
3

(x2 + y2 + z2)3/2
− 3

2

2x2 + 2y2 + 2z2

(x2 + y2 + z2)5/2

)
dx ∧ dy ∧ dz

= 0.

Now assume ω is exact. Then ω = dα for some 1-form α on R3\{(0, 0, 0)}. Furthermore
if c is any 2-chain which maps into R3 without hitting the origin, then by Stokes’
Theorem we have ∫

c

ω =

∫
c

dα =

∫
∂c

α.

In particular if ∂c = 0 then
∫
c
ω = 0. To obtain a contradiction, we will therefore find

a 2-cube c with empty boundary such that
∫
c
ω ̸= 0.

Take c =
(
sin (πu) cos (2πv), sin (πu) sin (2πv), cos (πu)

)
defined on [0, 1]× [0, 1]. Then

∂c(t) = c(1, t)− c(t, 1)− c(0, t) + c(t, 0)

= (0, 0,−1)−
(
sin (πt), 0, cos (πt)

)
− (0, 0, 1) +

(
sin (πt), 0, cos (πt)

)
= (0, 0,−1)− (0, 0, 1).

This is not exactly zero, but it’s equivalent to zero: since it’s degenerate (the push-
forward c∗ is always zero and hence the pull-back c# is always zero) we will have∫
∂c
α = 0 for any 1-form α.

Now actually compute
∫
c
ω for this ω and this c. We get

c#dx = π cos (πu) cos (2πv) du− 2π sin (πu) sin (2πv) dv

c#dy = π cos (πu) sin (2πv) du+ 2π sin (πu) cos (2πv) dv

c#dz = −π sin (πu) du.

Therefore we have

c#(dy ∧ dz) = 2π2 sin2 (πu) cos (2πv) du ∧ dv

c#(dz ∧ dx) = 2π2 sin2 (πu) sin (2πv) du ∧ dv

c#(dx ∧ dy) = 2π2 sin (πu) cos (πu) du ∧ dv.
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Finally we obtain

c#(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy)

= 2π2
(
sin3 (πu) cos2 (2πv) + sin3 (πu) sin2 (2πv) + sin (πu) cos2 (πu)

)
du ∧ dv

= 2π2 sin (πu) du ∧ dv.

This is also equal to c#ω since x2 + y2 + z2 = 1 on the image of c. Hence our integral
is ∫

c

ω =

∫ 1

0

∫ 1

0

2π2 sin (πu) du dv = 4π.

This isn’t zero, so ω can’t be exact.

2. (a) Suppose α is a closed k-form and β is an exact ℓ-form; show that α∧β is an exact
(k + ℓ)-form.

Solution: By assumption we have dα = 0 and β = dγ for some (ℓ − 1)-form γ.
Therefore

α ∧ β = α ∧ dγ = (−1)kd(α ∧ γ)− (−1)kdα ∧ γ = d((−1)kα ∧ γ),

and α ∧ β is exact.

(b) Now consider the cohomology quotient spaces Hk(M), where we say that two
closed forms α1 and α2 are equivalent, α1 ≡ α2, if α1 − α2 = dϕ for some (k− 1)-
form ϕ. Show that if α1 ≡ α2 as closed k-forms and β1 ≡ β2 as closed ℓ-forms, then
α1∧β1 ≡ α2∧β2 as closed (k+ℓ)-forms. The product induced on the cohomology
spaces by the wedge is called the cup product on de Rham cohomology.

Solution: We suppose α1 = α2 + dϕ and β1 = β2 + dγ for some (k − 1)-form ϕ
and (ℓ− 1)-form γ. Now we compute

α1 ∧ β1 − α2 ∧ β2 = (α2 + dϕ) ∧ (β2 + dγ)− α2 ∧ β2

= dϕ ∧ β2 + α2 ∧ dγ + dϕ ∧ dγ

= d
(
ϕ ∧ β2 + (−1)kα2 ∧ γ + ϕ ∧ dγ

)
since α2 and β2 are closed. Thus α1 ∧ β1 ≡ α2 ∧ β2.

3. A smooth closed curve γ : [0, 1] → M (with γ(0) = γ(1)) is called smoothly contractible
if there is a point p ∈ M and a smooth map H : [0, 1]× [0, 1] → M such that

� H(0, t) = p for all t ∈ [0, 1];

� H(1, t) = γ(t) for all t ∈ [0, 1];

� H(s, 0) = H(s, 1) for all s ∈ [0, 1].

If γ is smoothly contractible, show that γ = ∂H. Conversely if γ is the boundary of a
disc (that is, a map c : [0, 1]× [0, 1] → M of the form c(r, θ) = b

(
r cos (2πθ), r sin (2πθ)

)
for some smooth b : R2 → M), show that γ is smoothly contractible.
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Solution: Assuming such a homotopy, we have

∂H(t) = H(1, t)−H(t, 1)−H(0, t) +H(t, 0)

= γ(t)−H(t, 1) +H(t, 0)− p.

Since H(t, 1) = H(t, 0) by assumption, we conclude that ∂H(t) = γ(t) − p. Now p is
just a point, and the integral of any 1-form over a single point is zero, so γ is equivalent
to ∂H from the point of view of integration.

Conversely suppose that ∂c(t) = γ(t) for c of the form specified. We have

∂c(t) = c(1, t)−c(t, 1)−c(0, t)+c(t, 0) = b(cos (2πt), sin (2πt))−b(t, 0)+b(0, 0)+b(t, 0).

Thus the statement is that, up to an irrelevant point, γ(t) = b
(
cos (2πt), sin (2πt)

)
.

Now let’s build a homotopy. Fortunately c itself is already a homotopy: we just check
the three conditions c(0, t) = b(0, 0), c(1, t) = b

(
cos (2πt), sin (2πt)

)
, and c(s, 0) =

b(s cos 0, s sin 0) = b(s cos 2π, s sin 2π) = c(s, 1).

4. Prove that the right side of Koszul formula (19.3.5) really does satisfy the conditions
(19.3.4) (that is, tensorial in U and a derivation in V ).

Solution: Recall the formula [fU, V ] = f [U, V ] − V (f)U , which is easy to derive.
From this we have for any vector field W that

⟨∇fUV,W ⟩ = 1
2

(
fU⟨V,W ⟩ − ⟨V, [fU,W ]⟩ −W ⟨V, fU⟩+ ⟨[W,V ], fU⟩

+ V ⟨W, fU⟩ − ⟨W, [V, fU ]⟩
)

= 1
2

(
fU⟨V,W ⟩ − ⟨V, f [U,W ]⟩+W (f)⟨V, U⟩ −W (f)⟨V, U⟩

− fW ⟨V, U⟩+ f⟨[W,V ], U⟩+ V (f)⟨W,U⟩+ fV ⟨W,U⟩

− V (f)⟨W,U⟩ − f⟨W, [V, U ]⟩
)

= 1
2

(
fU⟨V,W ⟩ − f⟨V, [U,W ]⟩ − fW ⟨V, U⟩+ f⟨[W,V ], U⟩

+ fV ⟨W,U⟩ − f⟨W, [V, U ]⟩
)

= f⟨∇UV,W ⟩.

Since this is true for every W and the inner product is nondegenerate, we must actually
have ∇fUV = f∇UV for any U and V .
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The computation for ∇U(fV ) is similar. We have

⟨∇U(fV ),W ⟩ = 1
2

(
U⟨fV,W ⟩ − ⟨fV, [U,W ]⟩ −W ⟨fV, U⟩+ ⟨[W, fV ], U⟩

+ fV ⟨W,U⟩ − ⟨W, [fV, U ]⟩
)

= 1
2

(
U(f)⟨V,W ⟩+ fU⟨V,W ⟩ − f⟨V, [U,W ]⟩ −W (f)⟨V, U⟩

− fW ⟨V, U⟩+W (f)⟨V, U⟩+ f⟨[W,V ], U⟩+ fV ⟨W,U⟩

− f⟨W, [V, U ]⟩+ U(f)⟨W,V ⟩
)

= 1
2

(
2U(f)⟨V,W ⟩+ fU⟨V,W ⟩ − f⟨V, [U,W ]⟩ − fW ⟨V, U⟩

+ f⟨[W,V ], U⟩+ fV ⟨W,U⟩ − f⟨W, [V, U ]⟩
)

= U(f)⟨V,W ⟩+ f⟨∇UV,W ⟩.

Since this is true for all vector fields W , we must have ∇U(fV ) = U(f)V + f∇UV as
desired.

5. Suppose a surface in R3 is described by z = x2 − y2, so that it can be parametrized
as (u, v) 7→

(
u, v, u2 − v2

)
. Compute the metric induced on the surface (u, v) by the

metric on R3, as in the general formula in the middle of page 258 (between Examples
19.1.6 and 19.1.7). That is, find E, F , and G explicitly.

Plug into formula (19.2.15) to find the sectional curvature K in this case; show that
it’s always negative.

Solution: Here we have f(u, v) = u, g(u, v) = v, and h(u, v) = u2 − v2. From the
cited formula, we have

E = f 2
u + g2u + h2

u = 1 + 4u2

F = fufv + gugv + huhv = −4uv

G = f 2
v + g2v + h2

v = 1 + 4v2.

Plugging into the formula to end all formulas, we note that the nonzero terms are
(since Ev = Gu = 0)

K = − 1

4(EG− F 2)2

(
− 4EGFuv + 4F 2Fuv − FEuGv + 2GEuFv − 4FFuFv + 2EFuGv

)
= − 1

4(1 + 4u2 + 4v2)2

(
16(1 + 4u2)(1 + 4v2) + 64u2v2(−4) + 4uv(8u)(8v)

+ 2(1 + 4v2)(8u)(−4u)− 4(−4uv)(−4v)(−4u) + 2(1 + 4u2)(−4v)(8v)
)

= − 1

4(1 + 4u2 + 4v2)2

(
16(1 + 4u2 + 4v2) + 256u2v2 − 64u2 − 256u2v2

+ 256u2v2 − 64v2 − 256u2v2
)

= − 4

(1 + 4u2 + 4v2)2
.
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It certainly is negative.

6. For the metric

ds2 =
dx2 + dy2

y2

on the upper half-plane, find all the nonzero Christoffel symbols either from formulas

(19.2.11) or (19.3.8), and verify that the geodesic equation
D

dt

dγ

dt
= 0 from the middle

of page 270 takes the form

d2x

dt2
− 2

y

dx

dt

dy

dt
= 0,

d2y

dt2
+

1

y

(dx
dt

)2

− 1

y

(dy
dt

)2

= 0.

Check that x(t) = a + (tanh t)/b and y(t) = (sech t)/b are solutions for any constants
a and b, thus showing that the geodesics are upper semicircles.

Solution: The metric components are g11 = g22 = 1/y2 and g12 = 0. As a matrix

it’s given by g =
(
y−2 0
0 y−2

)
. This is a diagonal matrix, so its inverse components are

easy to compute: we have g11 = g22 = y2 and g12 = 0. Plugging into formula (19.2.11)
(with u = x and v = y) we get

Γ1
11 = 0, Γ2

11 = −EEy

2y−4
=

1

y
, Γ1

12 =
GEy

2y−4
= −1

y

Γ2
12 = 0, Γ1

22 = 0, Γ2
22 =

EGy

2y−4
= −1

y
.

The geodesic equation is

d2x

dt2
+ Γ1

11

(dx
dt

)2

+ 2Γ1
12

dx

dt

dy

dt
+ Γ1

22

(dy
dt

)2

= 0

d2x

dt2
− 2

y

dx

dt

dy

dt
= 0

d2y

dt2
+ Γ2

11

(dx
dt

)2

+ 2Γ2
12

dx

dt

dy

dt
+ Γ2

22

(dy
dt

)2

= 0

d2y

dt2
+

1

y

(dx
dt

)2

− 1

y

(dy
dt

)2

= 0,

which is what we wanted to show.

Now let’s just try plugging in x = a+(tanh t)/b and y = (sech t)/b. For the x equation
we obtain −2 sinh t/(b cosh3 t) − 2/b cosh t · / cosh2 t(−2 sech t tanh t) = 0, and for the
y equation we obtain

sinh2 t− 1

b cosh3 t
+

cosh t

b

( 1

cosh4 t
− sinh2 t

cosh4 t

)
= 0.

Hence the given formulas actually do satisfy the geodesic equations.
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