1. Let

$$
\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$. Show that ω is closed but not exact. Hint: to show it's not exact, integrate it over a parametrized 2 -sphere and obtain a nonzero number.
Solution: To show ω is closed, we just perform a computation: if $\omega=u(x, y, z) d y \wedge$ $d z+v(x, y, z) d z \wedge d x+w(x, y, z) d x \wedge d y$, then

$$
\begin{aligned}
d \omega & =\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) d x \wedge d y \wedge d z \\
& =\left(\frac{\partial}{\partial x}\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)+\frac{\partial}{\partial y}\left(\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)+\frac{\partial}{\partial z}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)\right) d x \wedge d y \wedge d z \\
& =\left(\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{2} \frac{2 x^{2}+2 y^{2}+2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right) d x \wedge d y \wedge d z \\
& =0
\end{aligned}
$$

Now assume ω is exact. Then $\omega=d \alpha$ for some 1-form α on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$. Furthermore if c is any 2-chain which maps into \mathbb{R}^{3} without hitting the origin, then by Stokes' Theorem we have

$$
\int_{c} \omega=\int_{c} d \alpha=\int_{\partial c} \alpha
$$

In particular if $\partial c=0$ then $\int_{c} \omega=0$. To obtain a contradiction, we will therefore find a 2-cube c with empty boundary such that $\int_{c} \omega \neq 0$.
Take $c=(\sin (\pi u) \cos (2 \pi v), \sin (\pi u) \sin (2 \pi v), \cos (\pi u))$ defined on $[0,1] \times[0,1]$. Then

$$
\begin{aligned}
\partial c(t) & =c(1, t)-c(t, 1)-c(0, t)+c(t, 0) \\
& =(0,0,-1)-(\sin (\pi t), 0, \cos (\pi t))-(0,0,1)+(\sin (\pi t), 0, \cos (\pi t)) \\
& =(0,0,-1)-(0,0,1)
\end{aligned}
$$

This is not exactly zero, but it's equivalent to zero: since it's degenerate (the pushforward c_{*} is always zero and hence the pull-back $c^{\#}$ is always zero) we will have $\int_{\partial c} \alpha=0$ for any 1 -form α.
Now actually compute $\int_{c} \omega$ for this ω and this c. We get

$$
\begin{aligned}
& c^{\#} d x=\pi \cos (\pi u) \cos (2 \pi v) d u-2 \pi \sin (\pi u) \sin (2 \pi v) d v \\
& c^{\#} d y=\pi \cos (\pi u) \sin (2 \pi v) d u+2 \pi \sin (\pi u) \cos (2 \pi v) d v \\
& c^{\#} d z=-\pi \sin (\pi u) d u .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& c^{\#}(d y \wedge d z)=2 \pi^{2} \sin ^{2}(\pi u) \cos (2 \pi v) d u \wedge d v \\
& c^{\#}(d z \wedge d x)=2 \pi^{2} \sin ^{2}(\pi u) \sin (2 \pi v) d u \wedge d v \\
& c^{\#}(d x \wedge d y)=2 \pi^{2} \sin (\pi u) \cos (\pi u) d u \wedge d v
\end{aligned}
$$

Finally we obtain

$$
\begin{aligned}
c^{\#}(x d y \wedge & d z+y d z \wedge d x+z d x \wedge d y) \\
& =2 \pi^{2}\left(\sin ^{3}(\pi u) \cos ^{2}(2 \pi v)+\sin ^{3}(\pi u) \sin ^{2}(2 \pi v)+\sin (\pi u) \cos ^{2}(\pi u)\right) d u \wedge d v \\
& =2 \pi^{2} \sin (\pi u) d u \wedge d v
\end{aligned}
$$

This is also equal to $c^{\#} \omega$ since $x^{2}+y^{2}+z^{2}=1$ on the image of c. Hence our integral is

$$
\int_{c} \omega=\int_{0}^{1} \int_{0}^{1} 2 \pi^{2} \sin (\pi u) d u d v=4 \pi
$$

This isn't zero, so ω can't be exact.
2. (a) Suppose α is a closed k-form and β is an exact ℓ-form; show that $\alpha \wedge \beta$ is an exact ($k+\ell$)-form.
Solution: By assumption we have $d \alpha=0$ and $\beta=d \gamma$ for some $(\ell-1)$-form γ. Therefore

$$
\alpha \wedge \beta=\alpha \wedge d \gamma=(-1)^{k} d(\alpha \wedge \gamma)-(-1)^{k} d \alpha \wedge \gamma=d\left((-1)^{k} \alpha \wedge \gamma\right)
$$

and $\alpha \wedge \beta$ is exact.
(b) Now consider the cohomology quotient spaces $H^{k}(M)$, where we say that two closed forms α_{1} and α_{2} are equivalent, $\alpha_{1} \equiv \alpha_{2}$, if $\alpha_{1}-\alpha_{2}=d \phi$ for some $(k-1)$ form ϕ. Show that if $\alpha_{1} \equiv \alpha_{2}$ as closed k-forms and $\beta_{1} \equiv \beta_{2}$ as closed ℓ-forms, then $\alpha_{1} \wedge \beta_{1} \equiv \alpha_{2} \wedge \beta_{2}$ as closed $(k+\ell)$-forms. The product induced on the cohomology spaces by the wedge is called the cup product on de Rham cohomology.
Solution: We suppose $\alpha_{1}=\alpha_{2}+d \phi$ and $\beta_{1}=\beta_{2}+d \gamma$ for some $(k-1)$-form ϕ and $(\ell-1)$-form γ. Now we compute

$$
\begin{aligned}
\alpha_{1} \wedge \beta_{1}-\alpha_{2} \wedge \beta_{2} & =\left(\alpha_{2}+d \phi\right) \wedge\left(\beta_{2}+d \gamma\right)-\alpha_{2} \wedge \beta_{2} \\
& =d \phi \wedge \beta_{2}+\alpha_{2} \wedge d \gamma+d \phi \wedge d \gamma \\
& =d\left(\phi \wedge \beta_{2}+(-1)^{k} \alpha_{2} \wedge \gamma+\phi \wedge d \gamma\right)
\end{aligned}
$$

since α_{2} and β_{2} are closed. Thus $\alpha_{1} \wedge \beta_{1} \equiv \alpha_{2} \wedge \beta_{2}$.
3. A smooth closed curve $\gamma:[0,1] \rightarrow M$ (with $\gamma(0)=\gamma(1)$) is called smoothly contractible if there is a point $p \in M$ and a smooth map $H:[0,1] \times[0,1] \rightarrow M$ such that

- $H(0, t)=p$ for all $t \in[0,1]$;
- $H(1, t)=\gamma(t)$ for all $t \in[0,1]$;
- $H(s, 0)=H(s, 1)$ for all $s \in[0,1]$.

If γ is smoothly contractible, show that $\gamma=\partial H$. Conversely if γ is the boundary of a disc (that is, a map $c:[0,1] \times[0,1] \rightarrow M$ of the form $c(r, \theta)=b(r \cos (2 \pi \theta), r \sin (2 \pi \theta))$ for some smooth $b: \mathbb{R}^{2} \rightarrow M$), show that γ is smoothly contractible.

Solution: Assuming such a homotopy, we have

$$
\begin{aligned}
\partial H(t) & =H(1, t)-H(t, 1)-H(0, t)+H(t, 0) \\
& =\gamma(t)-H(t, 1)+H(t, 0)-p
\end{aligned}
$$

Since $H(t, 1)=H(t, 0)$ by assumption, we conclude that $\partial H(t)=\gamma(t)-p$. Now p is just a point, and the integral of any 1-form over a single point is zero, so γ is equivalent to ∂H from the point of view of integration.

Conversely suppose that $\partial c(t)=\gamma(t)$ for c of the form specified. We have
$\partial c(t)=c(1, t)-c(t, 1)-c(0, t)+c(t, 0)=b(\cos (2 \pi t), \sin (2 \pi t))-b(t, 0)+b(0,0)+b(t, 0)$.
Thus the statement is that, up to an irrelevant point, $\gamma(t)=b(\cos (2 \pi t), \sin (2 \pi t))$. Now let's build a homotopy. Fortunately c itself is already a homotopy: we just check the three conditions $c(0, t)=b(0,0), c(1, t)=b(\cos (2 \pi t), \sin (2 \pi t))$, and $c(s, 0)=$ $b(s \cos 0, s \sin 0)=b(s \cos 2 \pi, s \sin 2 \pi)=c(s, 1)$.
4. Prove that the right side of Koszul formula (19.3.5) really does satisfy the conditions (19.3.4) (that is, tensorial in U and a derivation in V).

Solution: Recall the formula $[f U, V]=f[U, V]-V(f) U$, which is easy to derive. From this we have for any vector field W that

$$
\begin{aligned}
\left\langle\nabla_{f U} V, W\right\rangle= & \frac{1}{2}(f U\langle V, W\rangle-\langle V,[f U, W]\rangle-W\langle V, f U\rangle+\langle[W, V], f U\rangle \\
& \quad+V\langle W, f U\rangle-\langle W,[V, f U]\rangle) \\
= & \frac{1}{2}(f U\langle V, W\rangle-\langle V, f[U, W]\rangle+W(f)\langle V, U\rangle-W(f)\langle V, U\rangle \\
& \quad-f W\langle V, U\rangle+f\langle[W, V], U\rangle+V(f)\langle W, U\rangle+f V\langle W, U\rangle \\
& \quad-V(f)\langle W, U\rangle-f\langle W,[V, U]\rangle) \\
= & \frac{1}{2}(f U\langle V, W\rangle-f\langle V,[U, W]\rangle-f W\langle V, U\rangle+f\langle[W, V], U\rangle \\
& \quad+f V\langle W, U\rangle-f\langle W,[V, U]\rangle) \\
= & f\left\langle\nabla_{U} V, W\right\rangle .
\end{aligned}
$$

Since this is true for every W and the inner product is nondegenerate, we must actually have $\nabla_{f U} V=f \nabla_{U} V$ for any U and V.

The computation for $\nabla_{U}(f V)$ is similar. We have

$$
\begin{aligned}
\left\langle\nabla_{U}(f V), W\right\rangle= & \frac{1}{2}(U\langle f V, W\rangle-\langle f V,[U, W]\rangle-W\langle f V, U\rangle+\langle[W, f V], U\rangle \\
& \quad+f V\langle W, U\rangle-\langle W,[f V, U]\rangle) \\
= & \frac{1}{2}(U(f)\langle V, W\rangle+f U\langle V, W\rangle-f\langle V,[U, W]\rangle-W(f)\langle V, U\rangle \\
& \quad-f W\langle V, U\rangle+W(f)\langle V, U\rangle+f\langle[W, V], U\rangle+f V\langle W, U\rangle \\
& \quad-f\langle W,[V, U]\rangle+U(f)\langle W, V\rangle) \\
= & \frac{1}{2}(2 U(f)\langle V, W\rangle+f U\langle V, W\rangle-f\langle V,[U, W]\rangle-f W\langle V, U\rangle \\
& \quad+f\langle[W, V], U\rangle+f V\langle W, U\rangle-f\langle W,[V, U]\rangle) \\
= & U(f)\langle V, W\rangle+f\left\langle\nabla_{U} V, W\right\rangle .
\end{aligned}
$$

Since this is true for all vector fields W, we must have $\nabla_{U}(f V)=U(f) V+f \nabla_{U} V$ as desired.
5. Suppose a surface in \mathbb{R}^{3} is described by $z=x^{2}-y^{2}$, so that it can be parametrized as $(u, v) \mapsto\left(u, v, u^{2}-v^{2}\right)$. Compute the metric induced on the surface (u, v) by the metric on \mathbb{R}^{3}, as in the general formula in the middle of page 258 (between Examples 19.1.6 and 19.1.7). That is, find E, F, and G explicitly.

Plug into formula (19.2.15) to find the sectional curvature K in this case; show that it's always negative.
Solution: Here we have $f(u, v)=u, g(u, v)=v$, and $h(u, v)=u^{2}-v^{2}$. From the cited formula, we have

$$
\begin{aligned}
& E=f_{u}^{2}+g_{u}^{2}+h_{u}^{2}=1+4 u^{2} \\
& F=f_{u} f_{v}+g_{u} g_{v}+h_{u} h_{v}=-4 u v \\
& G=f_{v}^{2}+g_{v}^{2}+h_{v}^{2}=1+4 v^{2}
\end{aligned}
$$

Plugging into the formula to end all formulas, we note that the nonzero terms are (since $E_{v}=G_{u}=0$)

$$
\begin{aligned}
K= & -\frac{1}{4\left(E G-F^{2}\right)^{2}}\left(-4 E G F_{u v}+4 F^{2} F_{u v}-F E_{u} G_{v}+2 G E_{u} F_{v}-4 F F_{u} F_{v}+2 E F_{u} G_{v}\right) \\
= & -\frac{1}{4\left(1+4 u^{2}+4 v^{2}\right)^{2}}\left(16\left(1+4 u^{2}\right)\left(1+4 v^{2}\right)+64 u^{2} v^{2}(-4)+4 u v(8 u)(8 v)\right. \\
& \left.\quad+2\left(1+4 v^{2}\right)(8 u)(-4 u)-4(-4 u v)(-4 v)(-4 u)+2\left(1+4 u^{2}\right)(-4 v)(8 v)\right) \\
= & -\frac{1}{4\left(1+4 u^{2}+4 v^{2}\right)^{2}}\left(16\left(1+4 u^{2}+4 v^{2}\right)+256 u^{2} v^{2}-64 u^{2}-256 u^{2} v^{2}\right. \\
& \left.\quad+256 u^{2} v^{2}-64 v^{2}-256 u^{2} v^{2}\right) \\
= & -\frac{4}{\left(1+4 u^{2}+4 v^{2}\right)^{2}} .
\end{aligned}
$$

It certainly is negative.
6. For the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

on the upper half-plane, find all the nonzero Christoffel symbols either from formulas (19.2.11) or (19.3.8), and verify that the geodesic equation $\frac{D}{d t} \frac{d \gamma}{d t}=0$ from the middle of page 270 takes the form

$$
\frac{d^{2} x}{d t^{2}}-\frac{2}{y} \frac{d x}{d t} \frac{d y}{d t}=0, \quad \frac{d^{2} y}{d t^{2}}+\frac{1}{y}\left(\frac{d x}{d t}\right)^{2}-\frac{1}{y}\left(\frac{d y}{d t}\right)^{2}=0
$$

Check that $x(t)=a+(\tanh t) / b$ and $y(t)=(\operatorname{sech} t) / b$ are solutions for any constants a and b, thus showing that the geodesics are upper semicircles.
Solution: The metric components are $g_{11}=g_{22}=1 / y^{2}$ and $g_{12}=0$. As a matrix it's given by $g=\left(\begin{array}{cc}y^{-2} & 0 \\ 0 & y^{-2}\end{array}\right)$. This is a diagonal matrix, so its inverse components are easy to compute: we have $g^{11}=g^{22}=y^{2}$ and $g^{12}=0$. Plugging into formula (19.2.11) (with $u=x$ and $v=y$) we get

$$
\begin{aligned}
\Gamma_{11}^{1}=0, & \Gamma_{11}^{2}=-\frac{E E_{y}}{2 y^{-4}}=\frac{1}{y},
\end{aligned} \quad \Gamma_{12}^{1}=\frac{G E_{y}}{2 y^{-4}}=-\frac{1}{y} .
$$

The geodesic equation is

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}}+\Gamma_{11}^{1}\left(\frac{d x}{d t}\right)^{2}+2 \Gamma_{12}^{1} \frac{d x}{d t} \frac{d y}{d t}+\Gamma_{22}^{1}\left(\frac{d y}{d t}\right)^{2} & =0 \\
\frac{d^{2} x}{d t^{2}}-\frac{2}{y} \frac{d x}{d t} \frac{d y}{d t} & =0 \\
\frac{d^{2} y}{d t^{2}}+\Gamma_{11}^{2}\left(\frac{d x}{d t}\right)^{2}+2 \Gamma_{12}^{2} \frac{d x}{d t} \frac{d y}{d t}+\Gamma_{22}^{2}\left(\frac{d y}{d t}\right)^{2} & =0 \\
\frac{d^{2} y}{d t^{2}}+\frac{1}{y}\left(\frac{d x}{d t}\right)^{2}-\frac{1}{y}\left(\frac{d y}{d t}\right)^{2} & =0
\end{aligned}
$$

which is what we wanted to show.
Now let's just try plugging in $x=a+(\tanh t) / b$ and $y=(\operatorname{sech} t) / b$. For the x equation we obtain $-2 \sinh t /\left(b \cosh ^{3} t\right)-2 / b \cosh t \cdot / \cosh ^{2} t(-2 \operatorname{sech} t \tanh t)=0$, and for the y equation we obtain

$$
\frac{\sinh ^{2} t-1}{b \cosh ^{3} t}+\frac{\cosh t}{b}\left(\frac{1}{\cosh ^{4} t}-\frac{\sinh ^{2} t}{\cosh ^{4} t}\right)=0
$$

Hence the given formulas actually do satisfy the geodesic equations.

