Math 70900 Final Exam Due Monday, December 8 by email

- Do all six questions.
- You may use only class notes (Introduction to Differential Geometry) and homework solutions.
- You may not consult with anyone except me.
- 1. Suppose $Q \colon \mathbb{R}^2 \to \mathbb{R}$ is a C^{∞} function, and let M be the surface

$$M = \{ (x, y, z) \in \mathbb{R}^3 \, | \, z = Q(x, y) \}$$

- (a) Compute the induced Riemannian metric on M in coordinates.
- (b) At a critical point of Q, compute the sectional curvature.
- (c) Show that if Q has a local maximum or minimum, the sectional curvature must be positive.
- (d) Why does this prove that no compact surface of negative curvature can be embedded isometrically in \mathbb{R}^3 ?
- 2. Let M be a smooth manifold and α a smooth 1-form on M.
 - (a) If M is two-dimensional with $d\alpha|_p \neq 0$ and $\alpha_p \neq 0$, show that there is a coordinate chart (ϕ, U) around p such that $\alpha = y \, dx$ in terms of the coordinates (x, y). (Hint: find a vector field X such that $\alpha(X) \equiv 0$, and straighten it.)
 - (b) If M is three-dimensional and α is a contact form (see Homework #9 problem 4), then there is a coordinate chart (ϕ, U) such that $\alpha = dz + y \, dx$ in coordinates (x, y, z). (Hint: straighten the Reeb field to $\xi = \frac{\partial}{\partial w}$, and show that $\alpha = dw + f(u, v) \, du + g(u, v) \, dv$. Then apply part (a).)
- 3. Suppose ω is a k-form on a smooth manifold M. Consider a covariant derivative ∇ which is torsion-free and compatible with ω , i.e.,

$$\nabla_U V - \nabla_V U = [U, V], \qquad U(\omega(V_1, \dots, V_k)) = \sum_{j=1}^k \omega(V_1, \dots, \nabla_U V_j, \dots, V_k)$$

- (a) Show that if k = 1 or k = 2, and such a covariant derivative exists, then ω must be closed.
- (b) If $\omega = dx$ on \mathbb{R}^2 , is the covariant derivative uniquely determined by these two conditions?
- (c) What if $\omega = dx \wedge dy$ on \mathbb{R}^2 ?
- 4. If G is a Lie group, let us say a 1-form α is *left-invariant* if $\alpha(V_1, \ldots, V_k)$ is a constant function on G for all left-invariant vector field V_1, \ldots, V_k .
 - (a) Show that if ω is a left-invariant k-form, then so is $d\omega$.
 - (b) Define the left-invariant cohomology to be the space of closed left-invariant forms modulo the space of exact left-invariant forms. Suppose G is three-dimensional with left-invariant fields E₁, E₂, and E₃, satisfying [E₁, E₂] = λ₃E₃, [E₂, E₃] = λ₁E₁, and [E₃, E₁] = λ₂E₂. Show that the left-invariant cohomology of G is nontrivial if and only if at least one of the λ_i is zero.
- 5. Suppose α is a 1-form on \mathbb{R}^3 which is invariant under all rotations, i.e., $R^*\alpha = \alpha$ for every rotation $R: \mathbb{R}^3 \to \mathbb{R}^3$. Prove that α must be zero everywhere.
- 6. Let M be the manifold which is the 2-sphere with the north and south pole removed.
 - (a) Show that M is smoothly homotopic to the circle (around the equator), i.e., find a smooth map $H: [0,1] \times M \to M$ such that H(0,x) = x for all $x \in M$ and $H(1,x) \in S^1 \times \{0\} \subset \mathbb{R}^3$ for all $x \in M$.
 - (b) Describe an explicit 1-form on M which is closed but not exact, and prove both properties.