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1. Historical overview

“When nine hundred years old you reach, look as good you will not.”

Geometry is just about as old as mathematics gets; only number theory could
reasonably claim to be older. The first geometry results (at least four thousand
years ago) involved word problems and specific numbers; students were expected to
be able to substitute any other desired numbers for other problems. They got much
further with plane geometry since drawing pictures made things easier, although
surfaces or three-dimensional objects were always considered when results were
possible. (One of the oldest known results is the volume of a frustum, for example.)

The invention of coordinates by Descartes made some problems a lot easier, and
the invention of calculus opened up a lot of possibilities. Before this, there were
tangent problems, and computations of areas and volumes through exhaustion, but
they required some special structures since each new formula involved inventing
a whole new technique. Calculus allowed mathematicians to approximate every-
thing locally, then build back up to global structures, using formulas that could be
systematized.

Two problems were first noticed two thousand years ago and could be considered
to have led to the modern development of differential geometry: constructing a map
of the earth, and Euclid’s parallel postulate.

1.1. Mapping the planet. The Greeks knew the earth was not flat, since there
were stars that could be seen in the north and not the south. They assumed
it was a sphere, partly because it cast a round shadow on the moon during an
eclipse, but mostly because it seemed philosophically the most elegant possibility.
(Using reports of shadows from the sun in various places, Eratosthenes computed
the radius to a respectable accuracy.) The problem of making a map of the earth
then surfaced; it’s easier to carry around a map than a globe, but there’s no way
to draw an accurate map of a sphere. You can see this experimentally: try to lay
a piece of paper on a globe, and you’ll find it has to be folded to avoid gaps. A
common trick is to cut out pieces of the paper to avoid folds, but if you’re careful
you’ll see that this doesn’t work either. No matter how what you cut or where, you
never quite seem to make it fit.

Ptolemy was the first to worry about this. The earliest solutions involved project-
ing onto a disc tangent at a pole: via orthographic projection (drawing a line from
a point on the sphere perpendicular to the disc, i.e., sending (x, y, z) to (x, y, 1));
or stereographic projection (drawing a line from a point on the sphere to the far-
ther pole and marking where it crosses the equatorial disc, i.e., sending (x, y, z) to
( x

1−z ,
y

1−z , 1)); or gnomonic projection (drawing a line from a point on the sphere
through the origin and marking where it crosses a disc tangent to the nearer pole,
i.e., sending (x, y, z) to (xz ,

y
z , 1)). This is useful if you only really care about half of

the globe. Stereographic projection is nice since it preserves angles; orthographic
projection is nice because it reflects how you’d see a globe; gnomonic projection is
nice because it maps shortest paths on the sphere to straight lines on the map. See
Figures 1.1 and 1.2.

We can also wrap a cylinder around the sphere at the equator and project every-
thing outward via some function from latitudes to heights. The Mercator projection
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Figure 1.1. Orthographic, stereographic, and gnomonic projec-
tions, schematically from the side.

Figure 1.2. Orthographic, stereographic, and gnomonic maps of
the world.

is what we get if we choose it to be angle-preserving, while the Gall-Peters pro-
jection is what we get if we choose it to be area-preserving. See Figure 1.3. (The
area distortion in the Mercator projection was considered a political issue for years;
the colonial powers all happened to be far from the equator and hence looked as
large as the colonies near the equator. Cartographers generally advocate teaching
geography using maps that compromise between the area-distortion of Mercator
and the shape-distortion of Gall-Peters.)

More generally, the question is which surfaces are “developable,” or isometric
to a portion of a flat plane. You can generate accurate maps which preserve all
lengths, shapes, and distances if you live on a developable surface, and you can wrap
a developable surface efficiently if you have to give one as a gift. The discussion
above shows that spheres are not developable, while there are several common
surfaces that are developable despite looking curved in three-dimensional space.
See Figure 1.4. Gauss, who worked as a surveyor as well as a mathematician, found
an invariant of surfaces which could distinguish between those surfaces developable
onto a flat plane and those which could not. In so doing he invented Gaussian
curvature, as well as clarifying the notions of “intrinsic” and “extrinsic” geometry:
that is, the distinction between geometric features that can be observed by people
living on the surface, and those which depend on how the surface is bent in space.
His insight served as the basis for Riemann’s generalization of curvature as well as
the idea that a manifold could be understood independently of its position in space.

1.2. The parallel postulate. The other ancient problem was the independence
of Euclid’s parallel (fifth) postulate from the other axioms. Playfair’s version of the
parallel postulate states that given any line L and any point P not on L, there is a
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Figure 1.3. The Mercator projection (which preserves angles and
distorts areas) vs. the Gall-Peters projection (which preserves ar-
eas and distorts angles).

Figure 1.4. Three developable surfaces: although they appear
curved in three-dimensional space, they can be unwrapped onto a
plane, and geometers living on the surface would perceive each one
as Euclidean.

unique line L′ through P which never intersects L. For 1500 years, mathematicians
tried to prove this uniqueness without success. (Spherical geometry with lines given
by great circles seems like an obvious counterexample, but it wasn’t considered
valid since it violates the uniqueness of a line joining two points and the infinite
extensibility of any line.) Eventually Bolyai and Lobachevsky effectively replaced
the fifth postulate with the statement that there is at least one line L and point P
such that there are two lines L′ and L′′ through P and not intersecting L. Following
this through a long chain of arguments to its logical conclusion, one ends up with
hyperbolic geometry. The development of this axiomatically is fascinating and
fun, although it doesn’t really fit in this course since it uses completely different
techniques.

To prove there are no self-contradictions in the theory, one must eventually
construct a model for it in some explicit way; this was first done by Beltrami and
more rigorously by Klein, combining Bolyai’s work with Gauss’ and Riemann’s.
This was all in the mid-to-late 1800s. The simplest model is the upper half-plane
(i.e., the set of (x, y) such that y > 0), where “lines” are semicircles centered on the
x-axis. Playing around with this model, one can see that it’s easy to draw infinitely
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many lines through any given point that don’t intersect a given one. See Figure
1.5.

Figure 1.5. The parallel postulate on the hyperbolic plane (where
“lines” are semicircles centered on the x-axis) and on the sphere
(where “lines” are great circles). Given the black line and the
black point, there are infinitely many nonintersecting red lines in
hyperbolic space and no nonintersecting red lines on the sphere.

1.3. Coordinates and manifolds. In the mid-1800s, most geometric results were
either on surfaces or on spaces with a lot of symmetry, partly since all the nota-
tion of vector calculus was still being invented, partly since it wasn’t clear how to
best parametrize objects, and partly since curvature was defined in a geometrically
intuitive but computationally intimidating way. The theory of elasticity helped
motivate progress, since it was essential to understand things like divergence and
gradients in different coordinate systems. Complex analysis and the equations of
electromagnetism also developed around the same time and motivated new coor-
dinate systems and higher-dimensional computations. The work of Lamé, Ricci,
and Levi-Civita led to a much better understanding of coordinate invariance, and
through this eventually came the idea that coordinates were just a way of describing
some underlying object, which ultimately led to the understanding of manifolds.

A major impetus to progress in geometry came from the idea that perhaps the
space we live in is curved. Gauss actually tried to measure this, but it turned out
space was too flat to actually notice curvature through measurements at earth-
scales. Riemann casually suggested the idea that the sun might actually curve
space itself, and that planets were not being pulled away from straight lines by a
force but rather were following geodesics in a curved space. (For a model of this,
imagine a sheet of rubber stretched out horizontally, with a heavy weight pulling
it down in the center. If you slide a ball bearing across it at the right speed, it
will spiral around the center for a while. So what if that’s how the planets move,
and we just can’t see the rubber? See Figure 1.6.) It wasn’t until relativity was
discovered that Einstein was able to get this to work out correctly. See Misner,
Thorne, and Wheeler’s Gravitation for a nice discussion of these issues.

Since then, manifolds have come to be viewed as the central objects. Historically
one worked in coordinates, which tended to obscure the global structure of things,
and so manifolds were just a complication. Eventually in the 1900s it was realized
that global structures really were important, and tools of algebraic topology such
as index theorems were devised to study these systematically. The basic issue can
already be seen in the problem of whether every curl-free field is a gradient. More
precisely, if∇×X = 0 for a vector field X on an open set Ω ⊂ R2, is there a function
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Figure 1.6. A common picture of gravitation as curved space:
we imagine the sun in the center pulls the rubber sheet and causes
celestial body trajectories to appear curved.

f : Ω → R such that X = ∇f? This is almost true, but there are exceptions such
as

X =
−y

x2 + y2
i +

x

x2 + y2
j

if Ω is the plane minus the origin. Here X is the gradient of θ(x, y) = arctan (y/x),
the usual angle function in polar coordinates, except θ is not an actual function
on the plane with the origin deleted. Poincaré was the first to notice that these
exceptions were actually the important part of the theory.

Mechanics has also motivated the study of manifolds. The study of constraints
on a mechanical system is almost as old as mechanics itself, and they are frequently
convenient to express as a manifold. For example, you could think of a pendulum
as a system in R2 which happens to have a force generated along the rod which is
just exactly enough to keep it from stretching, but it’s actually easier to think of it
as a system on the circle S1. More generally one can reduce multiparticle systems
with constraints to other types of manifolds; you end up with fewer coordinates
and simpler systems. This works quite well for objects like rigid bodies (with six
degrees of freedom) and even for things like fluids (with infinitely many degrees of
freedom, but still constrained to be incompressible).

Starting with mechanics, but now with other motivations as well, mathematicians
have begun to study manifolds with other structures aside from the metric that
Riemann was originally interested in. Hence for example symplectic geometry and
contact geometry have split off from Riemannian geometry, and both have been
subsumed into “differential geometry.” (Thus we teach you about manifolds first,
in spite of the fact that they were basically the last things to be understood.)
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Differential geometry has since found many other applications. Manifolds are
useful in electrical engineering: for example, Stiefel manifolds arise in figuring out
how to place cell phone towers. They also appear when one wants to define distances
between objects in some way, such as when trying to get a computer to recognize a
shape. Statisticians and economists have also found uses for them. Finally, many
models in theoretical physics are quite naturally thought of as differential geometric
structures on manifolds.
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2. Introduction

“Fear is the path to the dark side. Fear leads to anger; anger leads to hate; hate
leads to suffering. I sense much fear in you.”

Differential geometry can be a difficult subject for students, for a couple of
reasons. First, the notation can appear very cumbersome, and even seemingly
familiar operations can look quite foreign. Second, the notions of manifold and
curved geometry are new to students, and the idea that a manifold’s geometry is
best studied intrinsically (rather than, say, as something curved inside something
else) is a huge conceptual leap to make. However, these two difficulties have nothing
to do with each other, and it’s my belief that they are best separated out. Once
one has a handle on the notation, a lot of the genuinely new objects will seem very
natural.

In these notes, my goal is to present the ideas of standard multivariable calculus
in a way that can be generalized easily to manifolds. The vast majority of the
issues that arise already appear in Rn, the simplest manifold, when one tries to
make notions such as vector fields, gradients, curls, divergences, Stokes’ Theorem,
etc., coordinate-independent. Thus we will obtain coordinate-independent versions
of all these things on Rn; when we generalize to do Riemannian geometry, the only
things that will change will be the global manifold structure (which will introduce
topological issues such as cohomology) and the metric (which will lead to curvature).
Much of Riemannian geometry will then focus on the interplay between these two
concepts.

Notation already becomes an issue when trying to do vector calculus on Rn in a
coordinate-independent way: the standard notation does not generalize easily, since
so much of it depends on the special structure of Euclidean space. (The Cartesian
coordinates on Euclidean space have many special properties, most of which do not
generalize to other coordinate systems such as polar coordinates; figuring out which
properties we don’t need will not only help us generalize, it will also give us greater
insight into why vector calculus works the way it does.)

In doing this, we will need to give up certain things. First of all, we will no longer
be able to say vectors with different base points are equivalent. (This property relies
on the translation invariance of Euclidean space; since most other manifolds do not
have anything similar, we want to avoid using it.) This has serious consequences;
for example, differentiating vector fields no longer makes sense: in the definition
of the derivative, we need to subtract vectors with different base points. Similarly,
vector fields cannot be integrated. Eventually we will find a way to differentiate
vector fields, which will look rather different from what we are used to. We will
also find a way to integrate vectors in certain cases (the ones needed for Stokes’
theorem and the divergence theorem), and this will help explain why operators like
curl and divergence are special.

Most of the material here should be very familiar; only the way of thinking
about it will be new. Until you learn this new way of thinking, little of differential
geometry will make sense. And when we get to the material that is genuinely new,
you won’t have to make such large conceptual leaps. And then you’ll be happy.
And then you can make the world happier.
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Part of the difficulty with this subject is that it is historically rather convoluted.
Many false starts were made, with special results that were interesting but didn’t
seem to lead anywhere. Euler and Gauss were doing differential geometry, but their
work is almost unreadable because they were inventing the notation as they went.
Riemann must have done differential geometry, but his work is almost unreadable
because he hardly wrote anything down. The tensor calculus (which is what most
physicists still use when they do differential geometry) was not invented until the
late 1800s (by Ricci and other Italian mathematicians). The notion of a manifold
was not really clear until the 1930s. Even the true meaning of coordinate-invariance
was not fully understood until the 1950s, which is around the same time that math-
ematicians started thinking of differential geometry in very abstract terms that still
scare some physicists. The fact that vector calculus itself went through a number of
competing developments (e.g., quaternions, which are no longer fashionable) hardly
helps. Because of all this, differential geometry is a strange subject, with a fairly
recent history filled with drastic upheavals in our understanding of what, exactly,
it is.

By now mathematicians have pretty much settled on the notation that’s most
useful, but if we just skipped right to that, it wouldn’t make sense to you, and you
probably wouldn’t be able to do much with it. The elegance of the modern theory
obscures its intuitive basis, and without intuition, why do geometry? Thus the
focus here will be on the history of the field and how successive generalizations led
to the modern theory. We will skip the dead ends (things which are interesting by
themselves but can’t be generalized), and in so doing it will hopefully take us less
than a hundred years to understand the subject. Good luck, and don’t be afraid!

P.S. I will try to be quite detailed, but my interest is more in getting you to
understand and use these tools; as such I will be somewhat less focused on giving
the most general theorems or exploring technical results that aren’t immediately
applicable. My original motivation for writing this text was that the standard
differential geometry books required prerequisites like tensor analysis, topology,
calculus on manifolds, and curves and surfaces to really understand, and there was
no course offered where the essential tools were fully covered. This text was thus
originally designed to be used for the first month or so of a semester, but has since
expanded to cover an entire course in differential geometry with fairly minimal
prerequisites. Thus it’s rather unique.

All students are assumed to have had at least undergraduate one-variable real
analysis, vector calculus, and abstract linear algebra (beyond just matrices). Op-
tional but helpful courses include multivariable real analysis, topology, curves and
surfaces, and differential equations; we will briefly review the required results from
these courses as needed. For alternative perspectives and greater depth on this
material, I recommend the following books. Spivak’s “Calculus on Manifolds” and
Munkres’ “Analysis on Manifolds” cover the earlier parts of the text, while Spivak’s
“Comprehensive Introduction to Differential Geometry” and Lee’s “Introduction to
Smooth Manifolds” cover the later parts. Other books you may want to consult are
Munkres’ “Topology” and Oprea’s “Differential Geometry of Curves and Surfaces.”



10 STEPHEN C. PRESTON

3. Linear algebra: Bases and linear transformations

“You must unlearn what you have learned.”

3.1. The role of a basis. The vast majority of things we’ll do in differential
geometry will involve vectors, and thus you will need a good understanding of linear
algebra to continue. We’ll review the things we need and emphasize in particular
the things that are most important for this subject.

First, we want to think of vector spaces as abstract things. A finite-dimensional
vector space always has many possible choices of basis, and we want to think of any
one of them as being equally valid for describing vectors. Thus we will rarely use
the “standard basis” of Rn, partly since that tends to bias us, and partly because
it tends to obscure the more fundamental properties of linear transformations. A
basic analogy that I’ll repeat through the book is Plato’s idea of us as only able to
perceive the shadows of objects on a cave wall rather than the objects themselves:
if you let go now of the idea that a vector is “really” a column of numbers in the
standard basis and instead embrace the idea that an abstract vector is something
not directly perceivable but rather expressible in many forms depending on where
in the cave you’re standing, you’ll be well on your way to understanding differential
geometry the right way.

So let’s suppose we have a particular basis {e1, e2, . . . , en} of an n-dimensional
vector space V . Then any vector v ∈ V may be written as v =

∑n
k=1 a

kek for
some unique real numbers {a1, . . . , an}. (The reason for using both subscripts
and superscripts will become clearer later. In general it helps us remember which
objects are supposed to be invariant and which are not.) If we have some other
basis {f1, f2, . . . , fn}, then we can write the f -vectors as linear combinations of the
e-vectors, via

(3.1.1) fi =

n∑
j=1

pjiej , for every i,

for some real numbers pji . In a linear algebra course you’d write this as a matrix
f1

f2

...
fn

 =


p1

1 p2
1 · · · pn1

p1
2 p2

2 · · · pn2
...

...
...

p1
n p2

n · · · pnn



e1

e2

...
en

 .

(Again, please get used to the idea of writing both subscripts and superscripts to
represent vectors, components, and matrices. It really is useful this way. Also get
used to the idea that the summation (3.1.1) is going to be more useful than the
matrix form.)

On the other hand, we also have a matrix of numbers qkj which give the vectors
{ej} in terms of the vectors {fk}, by

ej =

n∑
k=1

qkj fk.
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Combining both formulas, we get

fi =

n∑
j=1

pjiej =

n∑
j=1

n∑
k=1

pji q
k
j fk =

n∑
k=1

 n∑
j=1

pji q
k
j

 fk,

and therefore since the {fi} are linearly independent, we must have

n∑
j=1

pji q
k
j =

{
1 if i = k

0 otherwise
.

This just means that as matrices, P = (pji ) and Q = (qji ) are inverses: PQ = In.
Now if the same vector v is written as v =

∑n
j=1 a

jej =
∑n
i=1 b

ifi, then the

numbers ai and bj must be related by

n∑
j=1

ajej =

n∑
j=1

n∑
k=1

ajqkj fk =

n∑
i=1

bifi =

n∑
k=1

bkfk.

(In the last equality, we just changed the index from i to k; the index is a dummy
variable, and so it doesn’t matter which letter we use.) We therefore have

n∑
k=1

 n∑
j=1

ajqkj

 fk =

n∑
k=1

bkfk,

and this implies that

(3.1.2) bk =

n∑
j=1

ajqkj .

Notice what happens here: to get the coefficients in the f -basis from the coefficients
in the e-basis, we use Q as in (3.1.2); to get the basis vectors in the f -basis from the
basis vectors in the e-basis, we use P as in (3.1.1). This must happen since when we
transform both components and basis vectors at the same time, we have to end up
with the same vector, and this will only happen if the two transformations cancel
each other out.

Example 3.1.1. Suppose v =
(

3
−4

)
. In the standard basis e1 =

(
1
0

)
and e2 =

(
0
1

)
,

we have v = a1e1 + a2e2 where a1 = 3 and a2 = −4.
Let f1 =

(
1
−2

)
and f2 =

(
3
2

)
. Then we have f1 = p1

1e1 + p2
1e2 where p1

1 = 1

and p2
1 = −2. Similarly p1

2 = 3 and p2
2 = 2. To express the vector v in the basis

{f1, f2} we would write v = b1f1 +b2f2 for some numbers b1 and b2 and solve. More
explicitly, in components we get 3 = b1 + 3b2 and −4 = −2b1 + 2b2 with solution
b1 = 9

4 and b2 = 1
4 .

Alternatively we could express the vectors e1 and e2 in terms of f1 and f2,
obtaining

e1 = q1
1f1 + q2

1f2, e2 = q1
2f1 + q2

2f2,

where q1
1 = 1

4 , q2
1 = 1

4 , q1
2 = − 3

8 , and q2
2 = 1

8 . We can then check the formulas

b1 = q1
1a

1 + q1
2a

2, b2 = q2
1a

1 + q2
2a

2

derived above. ,
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Observe that in all of these formulas, summing over the same index, appearing
once on top and once on the bottom, has the effect of “canceling them out.” We
already see this in the formula v =

∑n
j=1 a

jej , where the summation cancels out the
basis-dependent parts to give an invariant vector. Part of the usefulness of using
both subscripts and superscripts is that it makes these transformation formulas
somewhat easier to remember: we will find that any formula which has an index
summed over without appearing once on top and once on the bottom is not correct
in general.

The computations above will appear again and again whenever we work with
indices, so it is convenient to have a general definition.

Definition 3.1.2. The notation δji or δij is called the Kronecker delta for indices
1 ≤ i, j ≤ n. It simply means

δji =

{
1 i = j,

0 i 6= j.

The formula for δij is the same.

You should think of the Kronecker delta as pretty much the same thing as the
n × n identity matrix in linear algebra. Here are some basic properties of the
Kronecker delta, which we will use repeatedly (and have already used once above).

Proposition 3.1.3. Suppose (ai) = (a1, . . . , an) and (bj) = (b1, . . . , bn) are any
lists of numbers, vectors, or other quantities, for 1 ≤ i ≤ n. Then for every j we
have

(3.1.3)

n∑
i=1

δji a
i = aj ,

and for every i we have

(3.1.4)

n∑
j=1

δji bj = bi.

Conversely, suppose φji is a list of numbers for 1 ≤ i, j ≤ n such that, for every
list of numbers (ai), we have

(3.1.5)

n∑
i=1

φjia
i = aj

for every i. Then φji = δji .

As another converse, suppose φji is a list of numbers for 1 ≤ i, j ≤ n such that,
for some basis (e1, . . . , en) of an n-dimensional vector space, we have

(3.1.6)

n∑
j=1

φjiej = ei

for every i. Then φji = δji .

Proof. To prove (3.1.3), we note that no matter what ai is, the quantity δji a
i is

zero if i 6= j, and is equal to aj if i = j. So we have
n∑
i=1

δji a
i =

∑
i6=j

δji a
i +
∑
i=j

δji a
i =

∑
i 6=j

0 · ai + 1 · aj = aj .
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The proof of (3.1.4) is similar.
To prove (3.1.5), just use the fact that it’s true for any list of numbers, and pick

a simple list such as a1 = 1 and a2 = · · · = an = 0. With this list we get

n∑
i=1

φjia
i = φj1 = aj ,

which implies that φj1 = 1 if j = 1 and φj1 = 0 otherwise. Similarly we get φji = 1
if j = i and 0 otherwise.

The difference between (3.1.5) and (3.1.6) is that (3.1.5) is assumed true for any
list of numbers while (3.1.6) is assumed true for one particular set of basis vectors.
Notice that assuming (3.1.6) means that

n∑
j=1

φjiej =

n∑
j=1

δji ej

using (3.1.4). By linearity of summations, we can write

n∑
j=1

(φji − δ
j
i )ej = 0.

Let i be any integer in {1, . . . , n}. Then the equation says there is some linear
combination of the {e1, . . . , en} which is zero, and linear independence means that

φji − δ
j
i = 0 for every j. But this is also true for any i since i was arbitrary. �

3.2. Linear transformations. Now suppose we have a linear transformation T
from an m-dimensional vector space V to another n-dimensional vector space W .
(Even if m = n, it is useful to treat V and W as being two different spaces in
general.) If we choose a particular basis {e1, . . . , em} of V and {h1, . . . , hn} of W ,

then T will have some coefficients T ji defined by the formula T (ei) =
∑n
j=1 T

j
i hj .

Obviously if we change either the {ei} or the {hj}, the coefficients T ji will change.
In fact the ability to do this is what allows us to perform the standard reduction
operations on matrices.

Example 3.2.1. Suppose for example V = R3 and W = R2. In the basis
{e1, e2, e3} of V and {h1, h2} of W , suppose we can write T as the matrix

T ∼
(

1 1 2
2 5 −5

)
.

Explicitly, this means T (e1) = h1 + 2h2, T (e2) = h1 + 5h2, and T (e3) = 2h1 − 5h2.
The obvious row-reduction—replacing row two (R2) with (R2−2R1)—corresponds
to changing the basis of the range space to the new basis {h′1, h′2} given by h′1 =
h1 + 2h2 and h′2 = h2, since then the matrix is

T ∼
(

1 1 2
0 3 −9

)
,

and the corresponding vector equations are T (e1) = h′1, T (e2) = h′1 + 3h′2, and
T (e3) = 2h′1 − 9h′2.

Dividing the second row through by 3 corresponds to another change of basis of
the range, to h′′1 = h′1 and h′′2 = 3h′2. Then we get T (e1) = h′′1 , T (e2) = h′′1 + h′′2 ,
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and T (e3) = 2h′′1 − 3h′′2 , corresponding to matrix

T ∼
(

1 1 2
0 1 −3

)
.

The last row reduction is subtracting row two from row one, which gives the basis
h′′′1 = h′′1 and h′′′2 = h′′1 + h′′2 with matrix

T ∼
(

1 0 5
0 1 −3

)
.

So T (e1) = h′′′1 , T (e2) = h′′′2 , and T (e3) = 5h′′′1 − 3h′′′2 .
This is reduced row echelon form, and as much as we can do with row operations.

With column operations we can clear out more, by replacing column three (C3) with
(C3 − 5C1 + 3C2). This corresponds to a change of basis on V , given by e′1 = e1,
e′2 = e2, and e′3 = e3 − 5e1 + 3e2, which gives

T (e′1) = h′′′1 , T (e′2) = h′′′2 , T (e′3) = 0,

and the final simplest possible form of the matrix

T ∼
(

1 0 0
0 1 0

)
.

In summary, every row operation corresponds to a change of basis of the range,
and every column operation corresponds to a change of basis in the domain.

,

It is in this sense that elementary row operations do not change the linear trans-
formation. There is nothing special about row operations either; you could do
everything in terms of column operations and get the same result. The only reason
row operations were historically preferred and are still primarily taught is that,
when your matrix comes from a system of linear equations, the row operations do
not change the unknowns while column operations do.

We now come to a very important set of concepts whose relationship forms
the foundation of linear algebra. They get used most importantly in the Implicit
Function Theorem.

Definition 3.2.2. Suppose T : V → W is a linear transformation from an m-
dimensional vector space V to an n-dimensional vector space W . The kernel of T
is

kerT = {v ∈ V |T (v) = 0},
the image of T is

imT = {w ∈W | ∃ v ∈ V s.t. T (v) = w},

and the rank of T is the dimension of the image. The maximal rank of a linear
transformation is min{m,n}. The Fundamental Theorem of Linear Algebra says
that

(3.2.1) rankT + dim kerT = dimW.

Following the technique of Example 3.2.1, every matrix can be written in reduced
row echelon form, which means that there is a basis {e′1, e′2, . . . , e′m} of V and a basis
{h′1, h′2, . . . , h′n} of W for which T (e′i) = h′i for i ≤ r and T (e′i) = 0 for i ≥ r, where r
is the rank. Since r is the dimension of the image of T , it is obviously not dependent



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 15

on any particular basis, and hence any method of reducing the matrix must yield
the same final reduced form.

All this depends on being able to change the bases for V and W separately. If T
is a transformation from V to itself, then we are much more limited in the changes
we can make to the matrix: for any basis {ei} of V , we write T (ei) =

∑n
j=1 T

j
i ej ,

and since both domain and range are expressed in the same basis, any change of
the domain basis must be accompanied by the same change of the range basis. So
if as before we have a new basis {fj}, then the linear operator T can be written as

T (fi) =
∑n
j=1 T̃

j
i fj for some coefficients T̃ ji . Let’s compute T̃ ji in terms of T ji .

Proposition 3.2.3. Suppose V is a vector space with bases {fi} and {ei} related

by the formulas fj =
∑n
i=1 p

i
jei and ei =

∑n
j=1 q

j
i fj. Let T : V → V be a linear

transformation expressed as

T (ei) =

n∑
j=1

T ji ej and T (fi) =

n∑
j=1

T̃ ji fj .

Then for every indices i and `,

(3.2.2) T̃ `i =

n∑
j=1

n∑
k=1

pji q
`
kT

k
j .

Proof. We just write

T (fi) =

n∑
j=1

pjiT (ej)

=

n∑
j=1

n∑
k=1

pjiT
k
j ek

=

n∑
j=1

n∑
k=1

n∑
`=1

pjiT
k
j q

`
kf`.

Since this right-hand side must be equal to
∑n
`=1 T̃

`
i f` for every i, we must have

n∑
`=1

 n∑
j=1

n∑
k=1

pjiT
k
j q

`
k − T̃ `i

 f` = 0.

Now linear independence of the {f`} implies (3.2.2). �

In matrix algebra formula (3.2.2) might be written as Tf = PTeQ = PTeP
−1.

Because of this formula, if T : V → V , then we cannot transform T into the identity
in a new basis unless T was already the identity in the old basis. Thus for example
we have eigenvalues which are well-defined independently of basis. We will discuss
this more in the next Section.

3.3. Transformation invariants. The coefficients of a linear transformation in
a particular basis have no real meaning. For a transformation T : V → W , the
only invariant is the rank, although for transformations T : V → V there are more.
Although all the important ones reduce to the determinant, we will prove that the
trace is invariant independently since the technique illustrates the general concept
better and is frequently used on its own. We first discuss transformations from a
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space V to itself, then at the end discuss how these invariants can be used for more
general transformations.

The trace is used frequently for “averaging” a linear transformation, or more
generally for averaging a tensor in certain directions.

Proposition 3.3.1. If T : V → V , then the trace of T is defined to be

Tr(T ) =

n∑
i=1

T ii ,

in any basis, and does not depend on choice of basis.

Proof. We just have to check that Tr(T ) does not change when we change the basis.
Let {ei} and {fi} be two bases as in Proposition 3.2.3. Then in the f -basis, the
trace is

Tr(T̃ ) =

n∑
i=1

T̃ ii =
n∑
i=1

n∑
j=1

n∑
k=1

pji q
i
kT

k
j =

n∑
j=1

n∑
k=1

T kj

n∑
i=1

pji q
i
k

=

n∑
j=1

n∑
k=1

T kj δ
j
k =

n∑
j=1

T jj = Tr(T ),

which is the trace in the e-basis. �

Similarly the determinant of T is basis-invariant. This will be very important
when we get to Stokes’ Theorem in Chapter 17. Before proceeding with the awk-
ward but systematic definition, we recall some group theory: the permutations of
the set {1, · · · , n} form a group Sn, with n! elements. Furthermore, each permu-
tation σ has a sign sgn (σ) = (−1)k, where k is the number of transpositions, i.e.,
the number of distinct pairs {i, j} with i < j and σ(i) > σ(j). Finally, the sign is
a homomorphism: sgn(σ ◦ τ) = sgn (σ) · sgn (τ). The definition of determinant is
then as follows.

Definition 3.3.2. Suppose T : V → V is a linear transformation expressed in some
basis {ei} of V . Then the determinant of T is defined by

(3.3.1) detT =
∑
σ∈Sn

sgn (σ) T 1
σ(1)T

2
σ(2) · · ·T

n
σ(n)

This is not a real definition until we know that detT does not depend on the
choice of basis, which we will check in a moment. First let’s work out an example.

Example 3.3.3. Suppose V is two-dimensional. Any linear transformation T : V →
V is determined by the four numbers T 1

1 , T 2
1 , T 1

2 , and T 2
2 , which we can write in

the matrix form as (
T 1

1 T 1
2

T 2
1 T 2

2

)
=

(
a b
c d

)
.

There are only two permutations of the two-element set {1, 2}: the identity ι and
the transposition τ that exchanges them. (In other words, ι(1) = 1, ι(2) = 2,
τ(1) = 2, and τ(2) = 1.) The identity has positive sign and the switcher has
negative sign.

The formula (3.3.1) then gives

detT = sgn (ι)T 1
ι(1)T

2
ι(2) + sgn (τ)T 1

τ(1)T
2
τ(2) = T 1

1 T
2
2 − T 1

2 T
2
1 = ad− bc,

which is the usual formula.
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As a simple computation, let’s show that the determinant of a product is the
product of the determinants for 2 × 2 matrices. (We will do this in full generality

in the next proof.) If A =

(
a b
c d

)
and B =

(
e f
g h

)
, then

AB =

(
ae+ bg af + bh
ce+ dg cf + dh

)
,

and the determinant is

det (AB) = (ae+ bg)(cf + dh)− (af + bh)(ce+ dg)

= aecf + bgcf + aedh+ bgdh− afce− bhce− afdg − bhdg
= bgcf + aedh− bhce− afdg
= (ad− bc)(eh− fg)

= (detA)(detB)

The important thing here is the cancellation of the terms aecf and bhdg: we can
then factor the rest. In the next Proposition we will see why this cancellation
happens and how it leads to the basis-invariance of the Definition 3.3.2. ,

Proposition 3.3.4. The determinant defined by Definition 3.3.2 does not depend
on choice of basis.

Proof. The first step is to prove that if A and B are two matrices, then det (AB) =
detA detB. This is often done by breaking up a matrix into elementary compo-
nents, but we’ll just plow through it using the definition (3.3.1). So suppose the

components of A are (aji ) and the components of B are (bji ) in some basis.

Then C = AB has components (cji ) = (
∑n
k=1 a

j
kb
k
i ). Thus the determinant of

the product AB is

det (AB) =
∑
σ∈Sn

sgn (σ) c1σ(1) · · · c
n
σ(n)

=
∑
σ∈Sn

n∑
k1=1

· · ·
n∑

kn=1

sgn (σ) a1
k1b

k1
σ(1) · · · a

n
knb

kn
σ(n).

(3.3.2)

On the other hand, we know that the product of the determinants is

(3.3.3) detA detB =

(∑
κ∈Sn

sgn (κ) a1
κ(1) · · · a

n
κ(n)

)(∑
τ∈Sn

sgn (τ) b1τ(1) · · · b
n
τ(n)

)
.

So to get (3.3.2) to simplify to (3.3.3), the first thing we have to do is show that
of the nn terms in the sum over k1 through kn, all but n! of them drop out. So
observe that

(3.3.4) det (AB) =

n∑
k1,··· ,kn=1

a1
k1 · · · a

n
kn

∑
σ∈Sn

sgn (σ) bk1σ(1) · · · b
kn
σ(n).

Now just consider the inner sum on the last line. If any two of the k’s are equal, then
the sum must vanish. Here’s the reasoning: suppose for example that k1 = k2. Then
for every permutation σ1, we will have a permutation σ2 such that σ2(1) = σ1(2),
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σ2(2) = σ1(1), and σ2(m) = σ1(m) for 3 ≤ m ≤ n. Then sgn (σ2) = − sgn (σ1),
and

sgn (σ1) bk1σ1(1)b
k2
σ1(2) · · · b

kn
σ1(n) + sgn (σ2) bk1σ2(1)b

k2
σ2(2) · · · b

kn
σ2(n)

= sgn (σ1) bk1σ1(1)b
k1
σ1(2) · · · b

kn
σ1(n) − sgn (σ1) bk1σ1(2)b

k1
σ1(1) · · · b

kn
σ1(n) = 0.

In this way, half the permutations in Sn cancel out the other half, so we get zero
for the inner sum in (3.3.4) when k1 = k2. Similarly we get zero whenever any two
ki’s are equal, and the only time we can get something nonzero is when all ki are
distinct.

Now when all k’s are distinct, then (k1, · · · , kn) must be a permutation of
(1, · · · , n), so that k1 = κ(1), · · · , kn = κ(n) for some permutation κ. As a re-
sult, we can write

(3.3.5) det (AB) =
∑
κ∈Sn

∑
σ∈Sn

sgn (σ) a1
κ(1) · · · a

n
κ(n)b

κ(1)
σ(1) · · · b

κ(n)
σ(n).

We’re getting closer. The next step is to notice that for each fixed κ ∈ Sn, we can
write any σ ∈ Sn as σ = τ ◦ κ for some τ (since Sn is a group). Then we obtain

det (AB) =
∑
κ∈Sn

∑
τ∈Sn

(
sgn (τ ◦ κ)

)
a1
κ(1) · · · a

n
κ(n)b

κ(1)
τ(κ(1)) · · · b

κ(n)
τ(κ(n))

=
∑
κ∈Sn

sgn (κ) a1
κ(1) · · · a

n
κ(n)

∑
τ∈Sn

sgn (τ) b
κ(1)
τ(κ(1)) · · · b

κ(n)
τ(κ(n)).

This now looks very close to (3.3.3). In order to see that it’s exactly the same, just
notice that for any particular permutation κ, we have

b
κ(1)
τ(κ(1)) · · · b

κ(n)
τ(κ(n)) = b1τ(1) · · · b

n
τ(n),

since each term shows up exactly once, and we’re just multiplying them all together.
So we have derived (3.3.3) from (3.3.2), and thus we know det (AB) = detAdetB.

As a consequence, the determinant of the identity matrix is det In = 1. From
there, since PQ = In, we have detP detQ = 1. And finally, under a change of basis
with Tf = PTeQ, we have

detTf = detP detTe detQ = detTe,

which establishes that the determinant is indeed independent of basis. �

Again, it needs to be emphasized that these quantities are only invariants when
T operates as a linear map from a space to itself. If T is a linear nonsingular
map from V to W , then we can always find a basis {e1, · · · , en} of V and a basis
{f1 = T (e1), · · · , fn = T (en)} of W so that T ij = δij , which makes detT = 1.
Thus, if we’re allowed to change basis of both domain and range separately, then
the determinant can be anything; if the domain and range are the same space, and
all changes of basis have to be done simultaneously to both, then the determinant
is a genuine invariant.

The most important invariant is the characteristic polynomial, given by p(λ) =
det (λI − T ). If V is n-dimensional, this takes the form

p(λ) = λn − (TrT )λn−1 + · · ·+ (−1)n(detT ).

Its roots are the eigenvalues of T , so those are also invariant. The other coefficients
are also invariants, but they are used less frequently than the trace or determinant.
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Finally we discuss the determinant for more general transformations T : V →W .
Obviously the determinant only makes sense if the matrix is square (i.e., if V and
W have the same dimension). The numerical value certainly is not invariant, but
whether it’s zero or not is invariant.

Proposition 3.3.5. Suppose V and W have the same dimension, and that T : V →
W is a linear operator. Compute the determinant of T as a matrix from some basis
of V to some basis of W . Then either the determinant is zero for every choice of
basis, or the determinant is nonzero for every choice of basis.

Proof. Suppose T is invertible. Then it has maximal rank, so there is a choice of
basis {e1, . . . , en} of V and basis {h1, . . . , hn} of W such that T (ei) = hi for every
1 ≤ i ≤ n. We now pretend that hi = ei so that the matrix of T is the identity
and the determinant of T is one. (More precisely, we are defining an isomorphism
π : W → V by the formula π(hi) = ei and computing the determinant of π ◦ T . Of
course the isomorphism π depends on our choice of bases.)

Now suppose we have a new basis {f1, . . . , fn} of the domain V . Then we can

write fi =
∑n
j=1 p

j
iej for some coefficients pji , where the (pji ) form an invertible

matrix. And we then have

T (fi) =

n∑
j=1

pjihj ,

so that pretending again that hi = fi, the matrix of T is the matrix of P = (pji ).

Since there is a matrix Q = (qji ) such that PQ is the identity, we know detP 6= 0.
So the determinant of T (computed in this basis) is still nonzero. The same thing
works if we change the basis of the range.

If T is not invertible, then its rank is less than n, and its reduced echelon form
has zeros on the diagonal, which means that its determinant will be zero. Changing
the basis of the domain or range again corresponds to multiplying by nonsingular
matrices, and so the determinant of the new matrix will still be zero. �

In this course, the previous proposition is often applied practically to determine
whether we can use the Inverse Function Theorem 5.2.4. The next proposition is
often applied practically to determine whether we can use the Implicit Function
Theorem 5.2.2. For small matrices, it is often easier to compute determinants than
to compute a full row reduction in order to compute a rank.

Proposition 3.3.6. Let T : V → W be a linear transformation with m = dimV
and n = dimW , and suppose m < n. Define a “subdeterminant” to be the de-
terminant of an m × m submatrix formed by deleting n − m columns from the
matrix. Then T has maximal rank m if and only if there is at least one nonzero
subdeterminant.

The same result works if m > n and we delete m−n rows to get subdeterminants.

Proof. As in Section 3.1, the rank r is determined independently of a basis by per-
forming row and column operations. Now suppose we can perform all the standard
row operations without ever switching columns and obtain a reduced row echelon
matrix that looks like the identity in its first m columns. In this case the determi-
nant of the matrix formed by the first m columns must have always had nonzero
determinant, since no terms from the later columns were ever used to determine
how to perform the reduction.
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More generally, if we have an m×n matrix, row reduction may lead to a column
full of zeros even if the linear transformation has full rank. In this case switching
columns will give a nonsingular matrix in the first m columns. The determinant of
the corresponding submatrix in the original matrix is the same as the determinant
of the first block of the column-switched matrix, and hence it’s nonzero if the matrix
has full rank.

On the other hand, if the rank is less than m, then no amount of column switch-
ing will ever lead to an m ×m identity matrix after row reduction, and so every
submatrix must also be degenerate, so all of their determinants are zero. �

One very important theme that has already come up is the connection between a
change of basis on a single vector space and a linear transformation from one vector
space to another. The basic idea, which will appear again in Chapter 15, is that
anything we can do on a vector space that does not depend on the basis will also be
invariant under linear transformations from one vector space to another, if we can
make sense of it. This has appeared in the way we were able to treat basis changes as
matrices in the proof of Proposition 3.3.4 (which means we were essentially treating
a change of basis as a linear transformation by pretending our two different bases
were actually elements of two different vector spaces, or conversely in Proposition
3.3.5 pretending that two different bases of different vector spaces were actually
the same). Strictly speaking this confusion is incorrect, but it’s very common, and
it helps form an intuition for why results like Propositions 3.3.1 and 3.3.4 are so
important. This will become clearer when you work with coordinate charts and
objects defined in them.
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4. Multilinear algebra: Duals, tensors, and forms

“An elegant weapon for a more civilized age.”

Everything in Chapter 3 is standard in an undergraduate linear algebra course.
We now study some aspects of linear algebra that are a little more obscure, but
very useful for differential geometry.

4.1. The dual space.

Definition 4.1.1. If V is a vector space, then the dual V ∗ is defined as the set of
linear functions on V . Explicitly,

V ∗ = {ω : V → R |ω(av + bw) = aω(v) + bω(w) for all v, w ∈ V }.
Elements of V ∗ are called covectors or, in certain contexts, 1-forms.
V ∗ has its own vector space structure defined by

(cω)(v) = cω(v), (ω + β)(v) = ω(v) + β(v), for all v ∈ V .

Let’s work out an example in two dimensions.

Example 4.1.2. Suppose V is a 2-dimensional vector space with a basis given by
e1 =

(
1
1

)
and e2 =

(
1
2

)
. Any element α of V ∗ is completely determined by what it

does to e1 and e2, since a general vector v can be written as v = c1e1 + c2e2 and
linearity of α implies that

α(c1e1 + c2e2) = c1α(e1) + c2α(e2).

Suppose α(e1) = 1 and α(e2) = 0. Let’s find a concrete way to represent α.
Recall that you can multiply a row vector by a column vector to get a number: in
matrix algebra you’d say that a 1 × n matrix multiplied by an n × 1 matrix gives
a 1× 1 matrix, or in other words a number. So let’s suppose α = (a b) for some
numbers c and d. Then

α(e1) =
(
a b

)(1
1

)
= a+ b = 1,

α(e2) =
(
a b

)(1
2

)
= a+ 2b = 0.

Solving these two equations gives α = (2 −1).
Similarly if β ∈ V ∗ is the covector defined by β(e1) = 0 and β(e2) = 1, then we

can check that β must be β = (−1 1).
Finally, suppose ω is any other covector in V ∗, and let’s show that you can

express ω in terms of α and β. Let p = ω(e1) and q = ω(e2), and let φ = pα+ qβ.
Then φ is also an element of V ∗, and

φ(e1) = pα(e1) + qβ(e1) = p · 1 + q · 0 = p

φ(e2) = pα(e2) + qβ(e2) = p · 0 + q · 1 = q.

Since ω and φ agree on the basis vectors e1 and e2, they must agree on any vector,
and hence they must be the same covector. We have thus shown that α and β span
the covector space V ∗, and it is easy to see that they form a basis as well. ,

Now let’s generalize this to an n-dimensional vector space.
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Proposition 4.1.3. If V is finite-dimensional, then so is V ∗, and the dimensions
are the same.

Proof. To prove this, we construct an explicit basis for V ∗. So start with a ba-
sis {e1, e2, . . . , en} of V . Define linear functions α1, α2, . . . , αn by the formulas

αj(ek) = δjk for all j and k. This is equivalent to

(4.1.1) αj(v) = αj

(
n∑
k=1

akek

)
= aj

for each j, on any vector v =
∑n
k=1 a

kek.
To prove these n functions on V actually are a basis, we just have to express

every other linear function in terms of them. So let ω be any linear function on V .
Then for any vector v =

∑n
k=1 a

kek, we have

ω(v) = ω

(
n∑
k=1

akek

)
=

n∑
k=1

akω(ek) =

n∑
k=1

αk(v)ω(ek),

where ω(ek) is just some real number for each k. Since this is true for every v ∈ V ,
we have

ω =

n∑
k=1

ω(ek)αk.

This shows that the functions {α1, . . . , αn} span V ∗.
Now we just need to show that they are linearly independent. So suppose we

have some numbers c1, . . . , cn for which c1α
1 + · · · + cnα

n = 0. We want to show
that all c’s are zero. Since the function c1α

1 + · · · + cnα
n is the zero function, its

value on any vector is the number zero. Thus we have for any i that

0 =

n∑
j=1

cjα
j(ei) =

n∑
j=1

cjδ
j
i = ci.

Thus ci = 0 for every i, and so the α’s are a basis. Hence V ∗ is an n-dimensional
vector space. �

The first thing that dual spaces can be used for is to properly generalize the
transpose of a matrix.

Definition 4.1.4. Every linear transformation T : V → W has a corresponding
dual transformation T ∗ : W ∗ → V ∗, defined by(

T ∗(β)
)
(v) = β

(
T (v)

)
for every β ∈W ∗.

This is a natural definition; if we want to get a linear function from V to R from
one on W , we first go from V to W linearly by T , then go from W to R by the
linear function on W . See Figure 4.1.

Suppose V has a basis {ei} with dual basis {αi} of V ∗, and W has a basis {fj}
with dual basis {βj} of W ∗. If T is given by T (ei) =

∑n
j=1 T

j
i fj , then we can

compute the coefficients of T ∗ in the dual basis:(
T ∗(βi)

)
(ej) = βi

(
T (ej)

)
= βi

(
n∑
k=1

T kj fk

)
=

n∑
k=1

T kj β
i(fk) =

n∑
k=1

T kj δ
i
k = T ij .
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Figure 4.1. The pull-back T ∗β ∈ V ∗ of a β ∈W ∗, as a commut-
ing diagram.

As a result we must have

(4.1.2) T ∗(βi) =

n∑
j=1

T ijα
j .

Notice how the components of T ∗ form a matrix which is the transpose of the
matrix of T . The transpose of a matrix is not a basis-independent object, because
(PTP−1)† = (P−1)†T †P † 6= T †; but the dual transformation is a basis-independent
object, because we defined it without reference to any basis.

Remark 4.1.5. You have probably noticed that we have been consistently avoiding
matrix notation, and you may feel like this is essentially “Linear Algebra Made
Difficult.” The reason for our use of index notation is that it becomes awkward to
put linear operators into matrix form consistently, since for example we may want
to apply a matrix of coefficients (pji ) either to vectors or covectors or coefficients
(which would involve summing over either i or j). Personally I always find trying to
do this very confusing. There are certainly ways to deal with most things without
using indices each time, which we will aim for eventually, but one should be very
careful not to forget that the index computations really are fundamental.

Example 4.1.6. Let us continue working in the situation from Example 4.1.2,
where V is a two-dimensional vector space. Let W = R3 with the standard basis

f1 =

1
0
0

 , f2 =

0
1
0

 , f3 =

0
0
1

 ,

so that of course W ∗ has the standard dual basis

β1 =
(
1 0 0

)
, β2 =

(
0 1 0

)
, β3 =

(
0 0 1

)
.

Consider a linear operator T : V → W defined by the vector equations T (e1) =
f1 − f2 + 2f3 and T (e2) = −f1 + 3f2. By Definition 4.1.4, the dual transformation
T ∗ maps W ∗ to V ∗, and since it is linear, we will know what it is as soon as we
know what it does to the basis {β1, β2, β3} of W ∗. Now T ∗(β1) is an element of
V ∗, and we will know which one it is if we know what it does to e1 and e2. So we
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compute:

T ∗(β1)(e1) = β1
(
T (e1)

)
= β1(f1 − f2 + 2f3) = 1,

T ∗(β1)(e2) = β1
(
T (e2)

)
= β1(−f1 + 3f2) = −1,

and we conclude that

T ∗(β1) = T ∗(β1)(e1)α1 + T ∗(β1)(e2)α2 = α1 − α2.

Similarly we conclude that T ∗(β2) = −α1 + 3α2 and T ∗(β3) = 2α1.
Thus the matrix of T in basis {e1, e2} → {f1, f2, f3} is

T ∼

 1 −1
−1 3
2 0

 ,

while the matrix of T ∗ in basis {β1, β2, β3} → {α1, α2} is

T ∗ ∼
(

1 −1 2
−1 3 0

)
.

As a result, any reference to the transpose of a matrix really means the correspond-
ing dual transformation. ,

The formula (4.1.2) has an important and frequently useful consequence. In ma-
trix algebra, the following statement would be detT † = detT , or the determinant
of the transpose is the determinant of the original matrix.

Corollary 4.1.7. If T : V → V is a linear transformation, then the dual linear
transformation T ∗ : V ∗ → V ∗ (defined by Definition 4.1.4) has the same determi-
nant.

Proof. Recall the formula (3.3.1) for detT is

detT =
∑
σ∈Sn

sgn (σ) T 1
σ(1)T

2
σ(2) · · ·T

n
σ(n).

Since the coefficients of T ∗ are the reverse of those of T by (4.1.2), we have

detT ∗ =
∑
σ∈Sn

sgn (σ) T
σ(1)
1 · · ·Tσ(n)

n .

But recalling that sgn (σ) = sgn (σ−1), we see that

detT ∗ =
∑
σ∈Sn

sgn (σ) T
σ(1)
σ(σ−1(1)) · · ·T

σ(n)
σ(σ−1(n))

=
∑
σ∈Sn

sgn (σ−1) T 1
σ−1(1) · · ·T

n
σ−1(n)

=
∑
ρ∈Sn

sgn (ρ) T 1
ρ(1) · · ·T

n
ρ(n)

= detT.

The equality on the second line follows as in Proposition 3.3.4: the product of all
n terms is the same regardless of which permutation we take, since every term
appears once. In the third line we renamed ρ = σ−1 to match the definition of the
determinant. �
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Remark 4.1.8. A vector space is not naturally isomorphic to its dual
space. One difficulty with the usual notation is that if one happens to have
a transformation T : Rn → Rn, then the transpose represents a transformation
T ∗ : (Rn)∗ → (Rn)∗, and it is easy to forget (if we only write the matrix) that T is
supposed to be operating on column vectors while T ∗ is supposed to be operating
on row vectors. One gets away with this by implicitly treating Rn and (Rn)∗ as
“the same,” since they have the same dimension. This is wrong, and it will be
important in this field to avoid it.

Once we get used to taking the transpose of a matrix, it becomes tempting to
just take the transpose of a column vector to get a row vector. What does such
a thing mean? Well, we can think of any vector in V = R2 for example as being
v = v1e1 + v2e2, and if we wanted to we could just define an isomorphism from
ξ : V → V ∗ by

(v1e1 + v2e2) 7→ (v1α1 + v2α2).

Here {e1, e2} and {α1, α2} are the bases from Example 4.1.2. This certainly is an
isomorphism from V to V ∗, but it depends on the basis we chose. Explicitly the

vector v =

(
2
4

)
has coefficients 2 and 4 in the standard basis but −1 and 3 in the

basis {e1, e2}. Thus the transpose of it is v∗ =
(
2 4

)
using the standard basis but

v∗ = −1α1 + 3α2 =
(
−5 4

)
using the basis {e1, e2}. It would be something else

entirely using another basis.
So there is no basis-independent notion of v∗. More generally there is no basis-

independent isomorphism from V to V ∗, although there are many possible isomor-
phisms since they have the same dimension as vector spaces. We must be careful
about which operations actually are basis-independent, and hence it is important
to distinguish a vector space from its dual.

Although we have seen that V and V ∗ are not “naturally” isomorphic, it turns
out that (V ∗)∗ and V are naturally isomorphic. That is, there is an isomorphism
that can be defined without reference to a basis. The following proposition explains
the reason for the term “dual”: if we perform it twice, we end up back where we
started.

Proposition 4.1.9. If V is any vector space, then the dual of the dual of V is
naturally isomorphic to V : that is, there is an isomorphism ι : V → (V ∗)∗ defined
independently of any basis.

In addition, for any linear transformation T : V → W , the dual of the dual
is isomorphic to T : that is, if ιV : V → (V ∗)∗ and ιW : W → (W ∗)∗ are the
isomorphisms, then (T ∗)∗ ◦ ιV = ιW ◦ T .

Proof. Every element of V ∗ is a function ω : V → R which is linear and completely
determined by its action on every element v ∈ V . Thus we are essentially consid-
ering ω fixed and v varying, and looking at the number ω(v). But we could also
consider a fixed v and let ω vary, and in this way obtain a function from V ∗ to R.
This will be an element of (V ∗)∗, since it’s obviously linear (by definition of addi-
tion and scalar multiplication in V ∗). So for every v ∈ V , we have a linear function
ṽ : V ∗ → R defined by ṽ(ω) = ω(v) for every ω ∈ V ∗. We define ι : V → (V ∗)∗ by
ι(v) = ṽ. It is clear that ι is a linear map and that ι is one-to-one, and since V and
(V ∗)∗ have the same dimension, ι must be an isomorphism by the Fundamental
Theorem of Linear Algebra, (3.2.1).
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To prove (T ∗)∗ is equivalent to T , we take any v ∈ V ; then for any ω ∈ V ∗, we
have

(T ∗)∗(ṽ)(ω) = ṽ
(
T ∗(ω)

)
= T ∗(ω)(v) = ω

(
T (v)

)
= T̃ (v)(ω).

Thus (T ∗)∗(ṽ) = T̃ (v) for every v ∈ V , which is equivalent to saying (T ∗)∗◦ιV (v) =
ιW ◦ T (v) for every v. Thus (T ∗)∗ ◦ ιV = ιW ◦ T . �

In finite dimensions, the dual space is always isomorphic to the original vector
space (since all finite-dimensional vector spaces of the same dimension are isomor-
phic). In infinite dimensions, this is no longer true: as a well-known example from a

graduate real analysis course, the dual of L1(R) =

{
f : R→ R

∣∣∣ ∫ ∞
−∞
|f(x)| dx <∞

}
is L∞(R) =

{
f : R→ R

∣∣∣∃M s.t. |f(x)| ≤M for almost every x ∈ R
}

. The fact

that V ∗ may not be equal to V in infinite dimensions is what leads to the impor-
tance of distinguishing a vector space from its dual, even in finite-dimensions.

To get an intuition for this, notice that we do have an isomorphism from V to
V ∗: just take any basis {e1, . . . , em} of V and the dual basis {α1, . . . , αm} of V ∗

satisfying αi(ej) = δij . An isomorphism is given by

v = a1e1 + · · ·+ amem 7→ a1α1 + · · ·+ amαm.

However if we chose a different basis of V , we would get a different dual basis of V ∗,
and a different isomorphism from this procedure. We saw this already in Remark
4.1.8 in two dimensions. (The position of the indices is a hint that the object is
not basis-invariant, which I remind you is why we use subscripts and superscripts
separately.)

On the other hand, the isomorphism between V and (V ∗)∗ does not depend on
any particular choice of basis, and is therefore more natural. However, the fact that
ι is an isomorphism depends on finite-dimensionality: we used the fact that both
V and (V ∗)∗ have the same finite dimension. In infinite dimensions this too can
break down; for example L1 is not isomorphic to (L1)∗∗, because although the map
ι is one-to-one, there’s nothing to force it to be onto.

4.2. Tensors on vector spaces. Once we have both vectors in V and covectors
in V ∗, we can talk about tensors in general.

Definition 4.2.1. If V is a finite-dimensional vector space, a tensor of order (p, q)
on V is a multilinear map T : V p × (V ∗)q → R; in other words, T takes p vectors
and q covectors and gives a real number. Multilinearity means that if all but one
slots in T are held fixed, then T is a linear operator on the remaining slot.

The most important example is a bilinear form g : V ×V → R, which is a tensor of
order (2, 0). Such a form is determined by its coefficients in any basis; for example,
if the basis of V is {e1, . . . , en}, then for any vectors u and v in V , we have

(4.2.1) u =

n∑
j=1

ajej and v =

n∑
k=1

bkek for some numbers aj , bk,

so that

g(u, v) = g

 n∑
j=1

ajej ,

n∑
k=1

bkek

 =

n∑
j=1

ajg

(
ej ,

n∑
k=1

bkek

)
=

n∑
j=1

n∑
k=1

ajbkg(ej , ek),
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so that g is completely determined by the n2 numbers gjk ≡ g(ej , ek). If we define
the tensor product ⊗ on two covectors ω and ξ in V ∗ as a tensor ω⊗ ξ : V ×V → R
by

(ω ⊗ ξ)(u, v) = ω(u) · ξ(v),

then we can express g as

g =

n∑
j=1

n∑
k=1

gjkα
j ⊗ αk,

since both sides have the same operations on any pair of vectors. For example, on
basis vectors e` and em the left side is g`m by definition while the right side is

n∑
j=1

n∑
k=1

gjkα
j(e`) · αk(em) =

n∑
j=1

n∑
k=1

gjkδ
j
`δ
k
m = g`m

using the Kronecker delta identities in Proposition 3.1.3.
More generally, any tensor B of order (p, q) can be expressed in terms of a basis

{ei} of V and dual basis {αi} of V ∗ using

B =

n∑
i1=1

· · ·
n∑

ip=1

n∑
j1=1

· · ·
n∑

jq=1

B
j1···jq
i1···ip α

ii ⊗ · · · ⊗ αip ⊗ ej1 ⊗ · · · ⊗ ejq .

Here we are using the identification of V with (V ∗)∗ to view each ek as a function

on V ∗. The coefficients B
j1···jq
i1···ip clearly depend on the basis; changing the basis will

require us to multiply these coefficients by (p+q) transformation matrices involving
the matrices P and Q. As a result, general tensor algebra can be an awful ugly
mess. The main thing to remember is that since vectors are defined abstractly,
so are all tensors; the components are just a convenient way to calculate specific
numbers.

Another example of a tensor is the evaluation tensor, E : V × V ∗ → R, defined
by the easy formula E(v, ω) = ω(v). Of course this is actually a tensor, since it’s
linear in both v and ω separately. Its components in a basis {ei} and {αi} are
found from

n∑
i=1

n∑
j=1

aiqjE
j
i = E

 n∑
i=1

aiei,

n∑
j=1

qjα
j

 =

n∑
i=1

n∑
j=1

aiqjα
j(ei) =

n∑
i=1

n∑
j=1

aiqjδ
j
i .

Thus Eji = δji , and we can write

E =

n∑
i=1

n∑
j=1

δjiα
i ⊗ ej ,

since both sides give the same answer when applied to any pair (v, ω).
If you understand how both bilinear forms and the evaluation tensor work, you’ve

pretty much got most of tensor analysis.

4.3. k-forms on vector spaces. A very important special case of tensors is k-
forms, which are tensors of type (k, 0) which are totally antisymmetric.

Definition 4.3.1. Let k ∈ N. A tensor ω of type (k, 0) on V is called a k-form if
it is totally antisymmetric, i.e., if

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk)
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for every two indices i and j, and for any k vectors v1, · · · , vk ∈ V . The vector
space of all k-forms on V is denoted by Ωk(V ).

We define a 0-form to be a real number, so that Ω0(V ) = R.

Observe that any tensor of type (1, 0) is a 1-form under this definition, since the
antisymmetry imposes no restriction. A 2-form ω will satisfy the single equation
ω(v, w) = −ω(w, v) for all v, w ∈ V . A 3-form ω will satisfy the three equations
ω(u, v, w) = −ω(v, u, w), ω(u, v, w) = −ω(w, v, u), and ω(u, v, w) = −ω(u,w, v) for
all u, v, w ∈ V .

Example 4.3.2. Let’s see what Ωk(V ) looks like on an n-dimensional vector space
V for small values of k and n. Of course for k = 1 we always have Ω1(V ) = V ∗, so
we will only worry about k ≥ 2.

• k = 2 and n = 1. There is only one basis vector e1, and the condition
ω(e1, e1) = −ω(e1, e1) requires that ω(e1, e1) = 0. Hence by linearity,
ω(u, v) = 0 for every pair of vectors, and thus Ω2(V ) = 0.

• k = 2 and n = 2. We have four possible choices of ωij = ω(ei, ej). As
above we must have ω(e1, e1) = 0 and ω(e2, e2) = 0, and we also have
ω(e1, e2) = −ω(e2, e1). So ω11 = ω22 = 0 and ω21 = −ω12. Thus Ω2(V ) is
one-dimensional, and every 2-form on a two-dimensional vector space can
be written

ω = ω12α
1 ⊗ α2 + ω21α

2 ⊗ α1 = ω12(α1 ⊗ α2 − α2 ⊗ α1).

• k = 3 and n = 2. We can check in the same way that the independent
components are ω12, ω23, and ω31, so that Ω2(V ) is three-dimensional. The
most general 2-form can be written as

ω = ω12(α1 ⊗ α2 − α2 ⊗ α1) + ω23(α2 ⊗ α3 − α3 ⊗ α2)

+ ω31(α3 ⊗ α1 − α1 ⊗ α3).

• k = 3 and n = 2. We need to determine ωijk = ω(ei, ej , ek) to get the basis
components, and since there are only two basis vectors, some pair of the
indices {i, j, k} must be equal. By antisymmetry in each pair, this forces
ωijk to always be zero. So Ω3(V ) = 0.

• k = 3 and n = 3. We need to determine all possible values of ωijk =
ω(ei, ej , ek). The only way we get anything nonzero is if the three indices
are distinct, which means they must be a permutation of {1, 2, 3}. So
everything is determined by ω123, and Ω3(V ) is one-dimensional. Antisym-
metry in each pair then implies all the other components are ω132 = −ω123,
ω213 = −ω123, ω231 = ω123, ω312 = ω123, and ω321 = −ω123. So we can
write the most general 3-form on a three-dimensional space as

ω = ω123

(
α1 ⊗ α2 ⊗ α3 + α2 ⊗ α3 ⊗ α1 + α3 ⊗ α1 ⊗ α2

− α1 ⊗ α3 ⊗ α2 − α2 ⊗ α1 ⊗ α3 − α3 ⊗ α2 ⊗ α1
)
.

For obvious reasons, we will want a more concise notation to express a k-form in a
basis of covectors. This is what the wedge product is for. ,

To understand what Ωk(V ) looks like in general, we first need to define the wedge
product of forms. Our goal is to get k-forms in terms of 1-forms, which are just
elements of V ∗.
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Definition 4.3.3. Suppose β is a j-form and γ is a k-form. Then we define
the wedge product of β and γ to be a (j + k)-form satisfying, for all vectors
v1, v2, . . . , vj+k ∈ V , the formula

(4.3.1) β ∧ γ(v1, . . . , vj+k)

=
1

j!k!

∑
σ∈Sj+k

sgn(σ)β
(
vσ(1), · · · , vσ(j)

)
γ
(
vσ(j+1), · · · , vσ(j+k)

)
,

where, as before, Sm denotes the set of m! permutations of the numbers {1, · · · ,m},
while sgn denotes the sign of each permutation.

The term 1
j!k! is to compensate for the fact that all the terms will appear more

than once in the sum. For example, suppose β is a 2-form and γ is a 1-form. Then
the 3-form β ∧ γ will satisfy, for any three vectors u, v, w ∈ V ,

β ∧ γ(u, v, w) =
1

2

(
1 · β(u, v)γ(w) + 1 · β(v, w)γ(u) + 1 · β(w, u)γ(v)

+ (−1) · β(v, u)γ(w) + (−1) · β(w, v)γ(u) + (−1) · β(u,w)γ(v)
)

= β(u, v)γ(w) + β(v, w)γ(u) + β(w, u)γ(v).

Without the factor of 1
2 , we would have a redundancy, since for example we know

β(u, v)γ(w) = −β(v, u)γ(w) by the antisymmetry of the 2-form. The factorials also
ensure that the wedge product is associative, as in the next proposition.

Since the proof is rather involved, let’s do an example first to see how it works. If
you’re better at combinatorics and finite group theory than I am, you can probably
skip this example entirely.

Example 4.3.4. Suppose α is a 1-form, β is a 2-form, and γ is a 1-form on some
vector space. Let’s prove that (α∧ β)∧ γ = α∧ (β ∧ γ). First we take four vectors
v1, . . . , v4 and plug them into both sides.

For the left side, we have(
(α ∧ β) ∧ γ

)
(v1, v2, v3, v4) =

1

3! · 1!

∑
σ∈S4

sgn(σ)(α ∧ β)(vσ(1), vσ(2), vσ(3))γ(vσ(4)).

To compute (α∧β)
(
vσ(1), vσ(2), vσ(3)

)
, write w1 = vσ(1), w2 = vσ(2), and w3 = vσ(3).

Then

(α ∧ β)(w1, w2, w3) =
1

1! · 2!

∑
τ∈S3

α(wτ(1)) · β(wτ(2), wτ(3)).

To write wτ(1) in terms of v, notice that if for example τ(1) = 3 then wτ(1) = w3 =
vσ(3), and so wτ(1) = vσ(τ(1)). The same reasoning shows that wτ(i) = vσ(τ(i)) in
general. Putting the left side all together, we get

(4.3.2)
(
(α ∧ β) ∧ γ

)
(v1, v2, v3, v4)

=
1

12

∑
σ∈S4

sgn(σ)
∑
τ∈S3

sgn(τ) · α(vσ(τ(1))) · β(vσ(τ(2)), vσ(τ(3))) · γ(vσ(4)).

Now each τ ∈ S3 can actually be thought of as a permutation τ ′ ∈ S4 for which
τ ′(4) = 4; let’s refer to this subgroup of S4 as S3,0. It’s easy to see that sgn(τ ′) =
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sgn(τ), and the formula (4.3.2) rearranges, using sgn(σ) · sgn(τ ′) = sgn(σ ◦ τ ′) to(
(α ∧ β) ∧ γ

)
(v1, v2, v3, v4)

=
1

12

∑
τ ′∈S3,0

∑
σ∈S4

sgn(σ ◦ τ ′) · α(vσ◦τ ′(1))) · β(vσ◦τ ′(2)), vσ◦τ ′(3))) · γ(vσ◦τ ′(4)).

Fix a τ ′ ∈ S3,0 and consider the inside sum. Everything is in terms of σ ◦ τ ′, so let
ρ = σ ◦ τ ′; the map σ 7→ ρ is a bijection from S4 to itself and we obtain

(
(α ∧ β) ∧ γ

)
(v1, v2, v3, v4) =

1

12

∑
τ ′∈S3,0

∑
ρ∈S4

sgn(ρ) · α(vρ(1))) · β(vρ(2)), vρ(3))) · γ(vρ(4))

=
1

2

∑
ρ∈S4

sgn(ρ) · α(vρ(1))) · β(vρ(2)), vρ(3))) · γ(vρ(4)),

(4.3.3)

where we notice in the last line that nothing depends on τ ′ anymore, and thus the
sum over S3,0 involves six identical terms.

The fact that the right side of (4.3.3) treats α and γ symmetrically means that
the right side

(
α ∧ (β ∧ γ)

)
(v1, v2, v3, v4) must simplify to the same thing, and this

gives associativity in this special case. ,

The general case is more involved but uses the same basic concept of considering
subgroups of the full permutation group that fix the first few or last few elements.

Proposition 4.3.5. The wedge product is associative: if α is a j-form, β is a
k-form, and γ is an l-form, then we have

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

In addition, the wedge product is either commutative or anticommutative, de-
pending on the size of the forms. If α is a j-form and β is a k-form, then

(4.3.4) α ∧ β = (−1)jkβ ∧ α.

Proof. Associativity is important, but it’s a bit tricky to prove. We expect it should
somehow follow from the fact that the tensor product ⊗ is associative, so the first
thing is to get the wedge product in terms of the tensor product.

The tool for doing this is the “alternation” operator A, which takes an ordinary
tensor B of type (k, 0) and gives a k-form A(B) by antisymmetrizing. We define
its operation on k vectors v1, · · · , vk by

(4.3.5) A(B)(v1, · · · , vk) =
∑
σ∈Sk

sgn(σ)B(vσ(1), · · · , vσ(k)).

It is easy to see that if B is already antisymmetric, then all terms in (4.3.5) are the
same, up to sign, so that A(B) = k!B. It is also easy to see that the wedge product
of a j-form α and a k-form β is

(4.3.6) α ∧ β =
1

j!k!
A(α⊗ β)

by formula (4.3.1).
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So now to prove associativity, we want to show

(α ∧ β) ∧ γ =
1

j!k!(j + k)!l!
A
(
A(α⊗ β)⊗ γ

)
=

1

j!k!(k + l)!l!
A
(
α⊗A(β ⊗ γ)

)
= α ∧ (β ∧ γ),

or essentially that

(4.3.7)
1

(j + k)!
A
(
A(α⊗ β)⊗ γ

)
=

1

(k + l)!
A
(
α⊗A(β ⊗ γ)

)
.

The basic idea is that we want to get rid of the A operators on the inside, then
use associativity of ⊗ to finish it off. What allows us to do this is the fact that the
outer antisymmetrization essentially takes care of antisymmetrizing the inner parts
as well. The formal statement of this is the following lemma.

Lemma 4.3.6. If B and C are tensors of type (j, 0) and (k, 0) respectively, and if
A(C) = 0, then A(B ⊗ C) = 0. Similarly if A(B) = 0, then A(B ⊗ C) = 0.

Proof. Knowing some finite group theory will help a lot in this proof. From the
formula, we have

A(B ⊗ C)(v1, · · · , vj , vj+1, · · · , vk+1)

=
∑

σ∈Sj+k

sgn(σ)B(vσ(1), · · · , vσ(j))C(vσ(j+1), · · · , vσ(j+k)).

The trick here is to consider the subgroup S0,k of Sj+k consisting of the permuta-
tions fixing the first j indices. It’s obviously isomorphic to Sk. Furthermore, like
any group, Sj+k can be partitioned into cosets of any subgroup like S0,k. Each such
coset is of the form [τ ] = τS0,k ≡ {τ ◦ χ |χ ∈ S0,k}, for some element τ /∈ S0,k, and
there must obviously be |Sj+k|/|Sk| = (j+ k)!/k! of these cosets. Let Q denote the
set of cosets, and pick one representative τq ∈ Sj+k from each q ∈ Q.

We can now break up the sum over Sj+k into sums over the cosets, since every
σ ∈ Sj+k is σ = τq ◦ χ for some q ∈ Q and χ ∈ S0,k. We use the fact that sgn is a
homomorphism, sgn(τ ◦ χ) = sgn(τ) sgn(χ):

A(B ⊗ C)(v1, · · · , vj , vj+1, · · · , vk+1)

=
∑

σ∈Sj+k

sgn(σ)B(vσ(1), · · · , vσ(j))C(vσ(j+1), · · · , vσ(j+k))

=
∑
q∈Q

∑
χ∈S0,k

sgn(τq) sgn(χ)B(vτq(χ(1)), · · · , vτq(χ(j)))C(vτq(χ(j+1)), · · · , vτq(χ(j+k)))

=
∑
q∈Q

sgn(τq)
∑

χ∈S0,k

sgn(χ)B(vτq(1), · · · , vτq(j))C(vτq(χ(j+1)), · · · , vτq(χ(j+k)))

where we used the fact that χ(1) = 1, . . . , χ(j) = j because by construction every χ
fixes the first j elements. We can then pull the B term out of the χ sum to obtain

A(B ⊗ C)(v1, · · · , vj , vj+1, · · · , vk+1) =
∑
q∈Q

sgn(τq)B(vτq(1), · · · , vτq(j))

·

 ∑
χ∈S0,k

sgn(χ)C(vτq(χ(j+1)), · · · , vτq(χ(j+k)))

 .

(4.3.8)
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We want to show that the term inside parentheses here is zero for any q in
the coset quotient Q. Now suppose we go in the other direction and compute
A(C)(vτq(j+1), · · · , vτq(j+k)), which we know to be zero since A(C) = 0. Rename
wj+1 = vτq(j+1), . . . , wj+k = vτq(j+k). (Recall we are holding all the indices from 1
to j fixed and only permuting the indices j + 1 through j + k.) Then

A(C)(wj+1, · · · , wj+k) =
∑

χ∈S0,k

sgn(χ)C(wχ(j+1), · · · , wχ(j+k)).

Now wχ(j+i) = vτq(χ(j+i)) for any 1 ≤ i ≤ k, exactly as we worked out in Example
4.3.2. Thus we have

0 = A(C)(vτq(j+1), · · · , vτq(j+k)) =
∑

χ∈S0,k

sgn(χ)C(vτq(χ(j+1)), · · · , vτq(χ(j+k))).

So the term inside parentheses in equation (4.3.8) is actually zero, and we conclude
A(B ⊗ C) = 0.

If we suppose A(B) = 0 instead, then we would just use the subgroup Sj,0
instead and get the same result. �

Now let’s go back to the proof of Proposition 4.3.5. We saw before that if a tensor
B of type (j + k, 0) is already antisymmetric, then A(B) = (j + k)!B. Therefore
A(A(α⊗ β)) = (j + k)!A(α⊗ β), so that (combining)

A
(
A(α⊗ β)− (j + k)!(α⊗ β)

)
= 0.

Now that means we can apply Lemma 4.3.6 to get, for any γ, that

A
([
A(α⊗ β)− (j + k)!(α⊗ β)

]
⊗ γ
)

= 0,

which (separating again) means

A
([
A(α⊗ β)

]
⊗ γ
)

= (j + k)!A
(
(α⊗ β)⊗ γ

)
.

Doing the same thing on the other side gives us

A
(
α⊗

[
A(β ⊗ γ)

])
= (k + l)!A

(
α⊗ (β ⊗ γ)

)
.

So plugging both of these formulas into (4.3.7) means we just have to check that

A
(
(α⊗ β)⊗ γ

)
= A

(
α⊗ (β ⊗ γ)

)
,

and this is true since ⊗ is obviously associative. So after all that, we’ve finally
proved that the wedge product is associative.

As a nice little cool-down, let’s prove the graded anticommutativity formula
(4.3.4). Recall from the definition that

(α ∧ β)(v1, · · · , vj+k) =
∑

σ∈Sj+k

sgn(σ)α(vσ(1), · · · , vσ(j))β(vσ(j+1), · · · , vσ(j+k))

while

(β ∧ α)(v1, · · · , vj+k) =
∑

τ∈Sj+k

sgn(τ)α(vτ(k+1), · · · , vτ(k+j))β(vτ(1), · · · , vτ(j)).

So to compare these, we want some correspondence between permutations σ and τ
in Sj+k so that σ(i) = τ(k + i) for 1 ≤ i ≤ j and σ(j + i) = τ(i) for 1 ≤ i ≤ k. If
this is the case, then how are sgn(σ) and sgn(τ) related?
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Well, clearly the permutation κ = τ−1 ◦ σ in Sj+k is κ(i) = k + i for 1 ≤ i ≤ j
and κ(j + i) = i for 1 ≤ i ≤ k, or(

1 · · · j j + 1 · · · j + k
k + 1 · · · k + j 1 · · · k

)
.

How many transpositions does this involve? Think of it this way: starting from
the identity, we would need to slide the term k + 1 from the k + 1 place to the
1st place, which requires k adjacent-entry transpositions. We then have to do the
same thing for k + 2, to move it into the 2nd place, which requires another k
transpositions. There are j such terms we have to move, and each one requires k
transpositions, so there are jk in total. Hence sgn(κ) = (−1)jk, and thus since sgn
is a homomorphism, we have

sgn(σ) = sgn(τ) sgn(κ) = (−1)jk sgn(τ).

The result α ∧ β = (−1)jkβ ∧ α follows immediately. �

Despite all the work we’ve done above, we will only use associativity to write a
basis for k-forms as αi1∧· · ·∧αik in terms of the basic 1-forms αi. And since k-forms
can always be written in terms of a wedge product basis of 1-forms (as we will see
in a moment), virtually the only time we will need the graded anticommutativity
(4.3.4) is for two 1-forms. Here’s how this sort of thing generally works.

Example 4.3.7 (Wedge products in R4). Consider V = R4 with standard basis
{e1, e2, e3, e4} and dual basis {α1, α2, α3, α4}. Let β be the 1-form β = α1 + 2α3

and let γ be the 2-form γ = α1 ∧ α4 + 3α3 ∧ α4 − 2α1 ∧ α2. Let’s compute the
3-form β ∧ γ, using bilinearity, associativity, and anticommutativity.

β ∧ γ = (α1 + 2α3) ∧ (α1 ∧ α4 + 3α3 ∧ α4 − 2α1 ∧ α2)

= α1 ∧ (α1 ∧ α4) + 2α3 ∧ (α1 ∧ α4) + 3α1 ∧ (α3 ∧ α4)

+ 6α3 ∧ (α3 ∧ α4)− 2α1 ∧ (α1 ∧ α2)− 4α3 ∧ (α1 ∧ α2)

= (α1 ∧ α1) ∧ α4 + 2(α3 ∧ α1) ∧ α4 + 3α1 ∧ α3 ∧ α4

6(α3 ∧ α3) ∧ α4 − 2(α1 ∧ α1) ∧ α2 − 4(α1 ∧ α2) ∧ α3

= (−2 + 3)α1 ∧ α3 ∧ α4 − 4α1 ∧ α2 ∧ α3.

Observe that if β is any 1-form, then β ∧ β = 0 by the anticommutativity, while
if β is a 2-form, we can easily have β ∧ β 6= 0. For example, on R4 with the 2-form
β = α1 ∧ α2 + α3 ∧ α4, we have

β ∧ β = (α1 ∧ α2 + α3 ∧ α4) ∧ (α1 ∧ α2 + α3 ∧ α4) = 2α1 ∧ α2 ∧ α3 ∧ α4.

,

Now once we have a well-defined wedge product, we can express every k-form
in terms of the wedge products of basic 1-forms, as we did in Examples 4.3.2 and
4.3.7 . This enables us to count the dimension of the space of k-forms. To get an
idea for how this works, let’s see how it works for 2-forms ω ∈ Ω2(V ).

Take any basis {e1, · · · , en} of V . Then we can write any u and v in V as
u =

∑n
i=1 u

iei and v =
∑n
j=1 v

jej . As a result, we have from bilinearity that

ω(u, v) =

n∑
i=1

n∑
j=1

uivjω(ei, ej).
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Thus the action of ω is determined by the numbers ω(ei, ej). Now observe that if
i = j, then ω(ei, ej) = 0 by antisymmetry; furthermore, if j < i, then ω(ei, ej) =
−ω(ej , ei). As a result, ω is completely determined by the numbers ωij ≡ ω(ei, ej)
where i < j. How many such terms are there? There are as many as pairs (i, j)
with 1 ≤ i < j ≤ n, and clearly there are

(
n
2

)
of these. (Pick any two distinct

numbers from {1, · · · , n} and disregard the order.)
Once you understand how it works on 2-forms, it’s pretty easy to see how it

must work for general k-forms. The notation is just a bit messier, but the idea is
the same.

Proposition 4.3.8. Suppose V is an n-dimensional vector space. The vector space
Ωk(V ) of k-forms on V has dimension

(
n
k

)
. If k = 0, then the space of 0-forms has

dimension 1, and if k > n, then there are no nontrivial k-forms.

Proof. We will prove this by constructing an explicit basis for the k-forms. Take
any basis {e1, . . . , en} of V , and let {α1, . . . , αn} be the dual basis of V ∗. Then
we claim that the k-forms αi1 ∧ αi2 ∧ · · · ∧ αik , where the indices i1 range from 1
to n and satisfy i1 < i2 < · · · < ik, form a basis of the k-forms. Once we prove
this, we just have to count how many such k-forms there are. It is easy to see that
there must be

(
n
k

)
of them: we merely need to choose k distinct elements of the set

{1, · · · , n} to get the numbers i1 through ik, then order them; there are
(
n
k

)
ways

to do this. Since a k-form is a multilinear operator, we can compute the operation
of any k-form ω on k vectors v1 through vk in V in terms of their coefficients in the
basis {e1, . . . , en}.

So we just need to know, for any vectors v1, · · · , vk,

ω(v1, v2, . . . , vk) =

n∑
i1,i2,··· ,ik=1

vi11 v
i2
2 · · · v

ik
k ω(ei1 , ei2 , · · · , eik)

=

n∑
i1,i2,··· ,ik=1

ω(ei1 , ei2 , · · · , eik)αi1 ∧ αi2 ∧ · · · ∧ αik(v1, v2, · · · , vk).

Thus we must have

ω =

n∑
i1,i2,··· ,ik=1

ω(ei1 , ei2 , · · · , eik)αi1 ∧ αi2 ∧ · · · ∧ αik .

Now not all basic k-forms αi1 ∧ · · ·αik are distinct. First of all, this basic k-form is
nonzero if and only if the numbers {i1, . . . , ik} are all distinct. Furthermore, if the
sets {i1, · · · , ik} and {j1, · · · , jk} contain the same k elements, then the j’s must
be a permutation of the i’s, and thus

αi1 ∧ · · · ∧ αik = ±αj1 ∧ · · · ∧ αjk ,
depending on the sign of that permutation.

As a result, the number of distinct basic k-forms αi1 ∧ · · · ∧ αik is the same as
the number of ways to choose k numbers out of {1, · · · , n}, up to reorderings. This
is precisely

(
n
k

)
.

The only other thing to prove is that if k > n, then there are no nontrivial k-
forms, and this follows from the fact that any k-form is determined by its action on
k different vectors. Now if k > n, then any k vectors must be linearly dependent,
and thus the action of a k-form must be zero on them. (If any argument appears
twice in a k-form, we must get zero by antisymmetry). �
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As mentioned, if you understand how it works for 2-forms, then it’s not at
all surprising how it works for higher forms. But what’s interesting is that since(
n
n

)
= 1, there is only one nontrivial n-form on an n-dimensional vector space, in

the sense that any n-form must be a multiple of any other one.
Now in general, if T : V → W , then there is an induced transformation (the

pull-back) defined as a map from Ωk(W ) to Ωk(V ), in much the same way that
T ∗ : W ∗ → V ∗ is defined by Definition 4.1.4.

Definition 4.3.9. If T : V →W is a linear transformation, we define the pull-back
T ∗ : Ωk(W )→ Ωk(V ) by the following operation: for any k-form ω on W , we define
T ∗ω ∈ Ωk(V ) by

(4.3.9) T ∗ω(v1, · · · , vk) = ω
(
T (v1), · · · , T (vk)

)
.

Observe how natural this definition is; it’s the only way we could relate forms
on one space to forms on another space. The operator T ∗ has to go backwards.

Now here’s something that will be very useful much later. Suppose V is an n-
dimensional vector space, and that T : V → V is a linear transformation. There is
only one n-form on V (up to multiplication by scalars), so that if µ is an n-form
on V , then T ∗µ must be cµ for some constant c. Once you understand the effect
of antisymmetry, the following proposition shouldn’t be too surprising.

Proposition 4.3.10. If T : V → V is a linear transformation and µ is an n-form
on V , then T ∗µ = (detT )µ.

Proof. Take any basis {e1, · · · , en} of V and let {α1, · · · , αn} be the dual basis of

V ∗. Write T (ei) =
∑n
j=1 T

j
i ej . Then T ∗µ, as an n-form, is completely determined

by its operation on the vectors e1 through en in order. We have

T ∗µ(e1, · · · , en) = µ
(
T (e1), · · · , T (en)

)
=

n∑
j1=1

· · ·
n∑

jn=1

µ
(
T j11 ej1 , · · · , T jnn ejn

)
=

n∑
j1=1

· · ·
n∑

jn=1

T j11 · · ·T jnn µ
(
ej1 , · · · , ejn

)
.

Now by antisymmetry, the term µ(ej1 , · · · , ejn) is zero if any two of the jk’s are
the same. Hence we only get a nonzero term if (j1, · · · , jn) is a permutation of
(1, · · · , n). Furthermore, if it is a permutation jk = σ(k), then we must have

µ(ej1 , · · · , ejn) = µ(eσ(1), · · · , eσ(n)) = sgn (σ)µ(e1, · · · , en).

As a result, the formula becomes

T ∗µ(e1, · · · , en) =
∑
σ∈Sn

sgn(σ) T
σ(1)
1 · · ·Tσ(n)

n µ(e1, · · · , en) = µ(e1, · · · , en)(detT ),

by the definition (3.3.1). As a result, we must have T ∗µ = (detT ) µ. �
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5. Multivariable calculus

“The dark side of the Force is a pathway to many abilities some consider to be
unnatural.”

Everything we will mention in this Chapter is proved in undergraduate multivari-
able real analysis, so we will give only the ideas of proofs, freely specializing to the
2-dimensional case whenever it’s at all convenient. We will also never care about
the sharpest or strongest possible results: many theorems are true if the function
is only assumed continuous or once-differentiable, but in differential geometry all
functions are C∞. Whenever this simplifies the statement of the theorem or the
proof, I will assume it. If anything looks unfamiliar to you, make sure you review it
from another textbook. (Munkres’ “Analysis on Manifolds” and Spivak’s “Calculus
on Manifolds” both cover these theorems and proofs in detail.) This material is
what ends up being most important for differential geometry.

The subject of interest is functions F : Rn → Rk, as given explicitly by some
formulas

F (x1, · · · , xn) =
(
f1(x1, · · · , xn), · · · , fk(x1, · · · , xn)

)
.

This will be our interest as well, although we will have a very different perspective
on it. (For this Chapter, we will index every object by subscripts. Later on, we will
start using both subscripts and superscripts for different purposes, as is common
in differential geometry.)

5.1. Derivatives.

Definition 5.1.1. A function F : Rn → Rk is called continuous everywhere if, for
every a ∈ Rn, we have limh→0 F (a+ h) = F (a).

Definition 5.1.2. A function F : Rn → Rk is called differentiable everywhere if,
for every a ∈ Rn, there is a linear map DF (a) : Rn → Rk such that

lim
h→0

|F (a+ h)− F (a)−DF (a)h|
|h|

= 0.

This linear map DF (a) is unique and is called the derivative of F at a.

Theorem 5.1.3. If F = (f1, · · · , fk) : Rn → Rk and DF (a) exists at a = (a1, · · · , an)
in the sense of Definition 5.1.2, then the partial derivatives

∂fj
∂xi

∣∣∣
x=a
≡ lim
h→0

fj(a1, · · · , ai + h, · · · , an)− fj(a1, · · · , ai, · · · , an)

h

exist for every i ∈ {1, · · · , n} and every j ∈ {1, · · · , k}. Furthermore, we can write
the linear operator DF (a) as the k × n matrix

(5.1.1) DF (a) =


∂f1
∂x1

∣∣∣
x=a

· · · ∂f1
∂xn

∣∣∣
x=a

...
. . .

...
∂fk
∂x1

∣∣∣
x=a

· · · ∂fk
∂xn

∣∣∣
x=a

 .

I will skip the proof.
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Example 5.1.4. Let F : R3 → R2 be defined by the formula

F (x, y, z) = (x3 − 3zy2, 4x2 + y2)

and let a = (0, 1, 0). Then

DF (a) =

(
3x2 6yz −3y2

8x 2y 0

) ∣∣∣
(x,y,z)=(0,1,0)

=

(
0 0 0
0 2 0

)
.

This matrix has rank one by Proposition 3.3.6: every 2× 2 submatrix has determi-
nant zero, while there is a 1× 1 submatrix that has nonzero determinant. ,

Theorem 5.1.5. Suppose F : Rn → Rk. If for every i ∈ {1, · · · , n}, the ith partial
derivative function

∂F

∂xi
(x1, · · · , xn) ≡ DiF (x1, · · · , xn)

≡ lim
h→0

F (x1, · · · , xi + h, · · · , xn)− F (x1, · · · , xi, · · · , xn)

h

exists and is a continuous function (in the sense of Definition 5.1.1), then F is
differentiable everywhere in the sense of Definition 5.1.2.

I’ll skip this proof as well.

Definition 5.1.6. A function F : Rn → Rk is called C∞ or smooth if all iter-
ated partial derivatives ∂mF

∂xi1∂xi2 ···∂xim
≡ Di1Di2 · · ·DimF exist and are continuous

functions from Rn to Rk.

Remark 5.1.7. The partial derivative is often written as

∂f

∂x
(x, y) = fx(x, y),

or simply as fx if it’s clear where we are evaluating. Similarly in higher dimensions
we often write

∂F

∂xi
(x1, · · · , xn) = Fxi(x1, · · · , xn).

We also occasionally write formulas such as

∂xiF =
∂F

∂xi
if the subscript notation could cause confusion. If we have more than one partial
derivative, we write

∂2f

∂x∂y
=

∂

∂x

∂f

∂y
= ∂x(fy) = fyx.

Note that the order change looks like a cheat, but what’s happening is that f is
getting differentiated first with respect to y, then with respect to x, so the operator
that differentiates f with respect to y should appear closer to f .

Many of the theorems of multivariable calculus depend on having a certain num-
ber of derivatives being continuous, and become false if not enough derivatives are
continuous. Furthermore, there are functions which have partial derivatives exist-
ing but not continuous. There are also functions which have partial derivatives at
a point but are not differentiable at that point. These pathological features are
interesting in analysis, where one likes to do as many things as possible without
assuming much smoothness. However in differential geometry, there is almost never



38 STEPHEN C. PRESTON

any reason to deal with any functions that are not C∞. As such we will immediately
specialize to assuming this.

In one-variable real analysis, there is essentially only one serious theorem that
gives results about derivatives: the Mean Value Theorem. There is no analogous
result in higher dimensions. Hence for many purposes it is both convenient and nec-
essary to reduce questions about higher-dimensional situations to one-dimensional
calculus, where everything is very well understood. This continues to be true in
differential geometry: we will find that often the best way to understand a high-
dimensional manifold M is to understand the functions from reals to M or functions
from M to reals, and this philosophy allows us to reduce many difficult things to
simple one-dimensional calculus.

Theorem 5.1.8 (Mean Value Theorem). If f : [a, b] → R is continuous on [a, b]
and differentiable on (a, b), then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The idea is to subtract a linear function L from f so that g = f −L satisfies
g(a) = g(b) = 0, then check that it’s sufficient to prove there is a c with g′(c) = 0.
Either g has an interior extreme value where its derivative is zero, or must be
identically zero. �

The following theorem on equality of mixed partials ends up being extremely
important, and we will refer to it often.

Theorem 5.1.9 (Commuting mixed partials). If F is C∞, then for any indices i
and j, the mixed partials are equal:

∂2F

∂xj∂xi
=

∂2F

∂xi∂xj
.

Proof. For simplicity assume there are only two variables, x and y; then by defini-
tion of the partials we have

Fyx(a, b) = lim
h→0

Fy(a+ h, b)− Fy(a, b)

h

= lim
h→0

lim
k→0

F (a+ h, b+ k)− F (a+ h, b)− F (a, b+ k) + F (a, b)

hk
,

Fxy(a, b) = lim
k→0

Fx(a, b+ k)− Fx(a, b)

k

= lim
k→0

lim
h→0

F (a+ h, b+ k)− F (a, b+ k)− F (a+ h, b) + F (a, b)

hk
.

(5.1.2)

So we are trying to prove that

lim
h→0

lim
k→0

G(h, k)

hk
= lim
k→0

lim
h→0

G(h, k)

hk
,

where

G(h, k) = F (a+ h, b+ k)− F (a, b+ k)− F (a+ h, b) + F (a, b)



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 39

and a and b are held constant. Notice we’re just taking the limit of the same
quantity in two different ways.1 To make this easier, we’re going to use the Mean
Value Theorem (in one variable) to reduce a difference to a derivative.

For a fixed value of k, define a new one-variable function by f(x) = F (x, b +
k) − F (x, b); then it’s easy to see that f(a + h) − f(a) = G(h, k). By the Mean
Value Theorem 5.1.8, we know that f(a + h) − f(a) = hf ′(α) for some α with
a < α < a+h. Since f ′(α) = Fx(α, b+k)−Fx(α, b) and G(h, k) = f(a+h)− f(a),
we conclude

G(h, k) = hFx(α, b+ k)− hFx(α, b),

for some α (which depends on both h and k and is between a and a+ h).
Now for fixed α, consider the function g(y) = hFx(α, y). Then G(h, k) = g(b +

k) − g(b). Again using the Mean Value Theorem, we know there is a β with
b < β < b + k and g(b + k) − g(b) = kg′(β). Since g′(β) = hFxy(α, β), we finally
obtain

(5.1.3) G(h, k) = g(b+ k)− g(b) = kg′(β) = hkFxy(α, β),

where a < α < a+ h and b < β < b+ k.
If we do the exact same procedure but in the other order2, we would get G(h, k) =

khFyx(γ, δ) where a < γ < a+h and b < δ < b+k. But we don’t need this, because
we have a shortcut: we use (5.1.3) in the second line of (5.1.2) to relate Fyx directly
to Fxy:

(5.1.4) Fyx(a, b) = lim
h→0

lim
k→0

G(h, k)

hk
= lim
h→0

lim
k→0

Fxy(α, β).

Notice that we don’t know anything about the dependence of α or β on h or k (they
might not be continuous, for example), but it doesn’t matter: since b < β < b+ h
always, we have limk→0 Fxy(α, β) = Fxy(α, b) by the squeeze theorem, since Fxy is
continuous in each variable. Similarly we have limh→0 Fxy(α, b) = Fxy(a, b), and
using this in (5.1.4) we get what we were looking for. �

The Chain Rule 5.1.10 is also extremely useful, especially its Corollary 5.1.12. We
will use it again and again when proving that a particular expression is independent
of coordinates or in changing expressions from one coordinate system to another.
Get very, very familiar with it: the first step to getting good at differential geometry
is knowing the Chain Rule by heart.3

Theorem 5.1.10 (The Chain Rule). Suppose F = (f1, · · · , fm) : Rn → Rm and
G = (g1, · · · , gk) : Rm → Rk are both smooth. Then G ◦ F : Rn → Rk is also
smooth, and its derivative at any point a ∈ Rn can be computed by D(G ◦ F )(a) =
DG

(
F (a)

)
·DF (a). Thus its partial derivatives can be computed by

(5.1.5)
∂(G ◦ F )j

∂xi
=

m∑
`=1

∂gj
∂y`

∣∣∣
y=F (x)

∂f`
∂xi

.

Example 5.1.11. Let γ : R → R2 be the curve γ(t) = (2 cos t, sin t), and let
F : R2 → R be F (x, y) = 3xy2 − 2x3. Then F ◦ γ : R→ R is

F ◦ γ(t) = 6 cos t sin2 t− 16 cos3 t,

1It shouldn’t seem too obvious that this works: for example lim
h→0+

lim
k→0+

hk 6= lim
k→0+

lim
h→0+

hk.

2Do it yourself; you won’t really understand this proof unless you do.
3No joke.
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so
(F ◦ γ)′(t) = 60 sin t cos2 t− 6 sin3 t.

On the other hand, we have

DF
(
γ(t)

)
=
(
3y2 − 6x2 6xy

) ∣∣
(x,y)=(2 cos t,sin t)

=
(
3 sin2 t− 24 cos2 t 12 cos t sin t

)
along with

γ′(t) =

(
−2 sin t

cos t

)
,

so it is easy to check here that

(F ◦ γ)′(t) = DF
(
γ(t)

)
· γ′(t).

,

Corollary 5.1.12. If x = (x1, · · · , xn) : R→ Rn and f : Rn → R are both smooth,
then so is f ◦ x : R→ R, and we have

(f ◦ x)′(t) =

n∑
j=1

∂f

∂xj

(
x1(t), · · · , xn(t)

) dxj
dt

.

Proof. Theorem 5.1.10 is proved in more or less the same way as the Chain Rule for
functions of a single variable: we simply end up multiplying the derivative matrices
(5.1.1) together rather than multiplying the derivatives together. The proof of the
Corollary is essentially the same (since we are only differentiating with respect to
one variable at a time, we might as well consider functions of only one variable),
and it makes the notation simpler. We will also assume n = 2 to simplify the
notation.

So assume F : R2 → R and we have a curve given by x = η(t) and y = ξ(t). We
want to prove that the function f(t) = F

(
η(t), ξ(t)

)
has

f ′(t) =
∂F

∂x

(
η(t), ξ(t)

)dη
dt

+
∂F

∂y

(
η(t), ξ(t)

)dξ
dt
.

Like so many proofs in analysis, it’s basically just the old add-and-subtract trick.

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
= lim
h→0

F
(
η(t+ h), ξ(t+ h)

)
− F

(
η(t), ξ(t)

)
h

= lim
h→0

F
(
η(t+ h), ξ(t+ h)

)
− F

(
η(t), ξ(t+ h)

)
h

+ lim
h→0

F
(
η(t), ξ(t+ h)

)
− F

(
η(t), ξ(t)

)
h

.

The term on the last line is obviously Fy(η(t), ξ(t))ξ′(t) by the one-dimensional
chain rule. To prove the term on the middle line is Fx(η(t), ξ(t))η′(t), it’s sufficient
to prove
(5.1.6)

lim
h→0

F (η(t+ h), ξ(t+ h))− F (η(t), ξ(t+ h))− F (η(t+ h), ξ(t)) + F (η(t), ξ(t))

h
= 0.

(Think about why.)
The technique to prove (5.1.6) is almost exactly the same as the technique in the

proof of Theorem 5.1.9—just use the Mean Value Theorem once in each variable to
reduce it to limh→0 hFxy(α, β), which is zero since F has continuous second partial
derivatives. We’ll skip the details. �
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The Product Rule (or Leibniz Rule) will be somewhat less useful to us than the
Chain Rule, since it only works on real-valued functions. However in some sense it
characterizes first-order differential operators, and we will need this.

Theorem 5.1.13 (The Product Rule). If f : Rn → R and g : Rn → R are both
smooth, then so is fg : Rn → R, and furthermore the partial derivatives satisfy

∂(fg)

∂xi

∣∣∣
x=a

= f(a)
∂g

∂xi

∣∣∣
x=a

+ g(a)
∂f

∂xi

∣∣∣
x=a

.

Proof. The proof is exactly the same as in the single-variable case, involving adding
and subtracting a term in the definition of the derivative. �

5.2. The Contraction Lemma and consequences. The Contraction Mapping
Lemma will not be directly important to us, although it is used to prove both
Theorems 5.2.4 and 5.2.6, which will be.

Lemma 5.2.1 (Contraction Mapping Lemma). Suppose M is a complete metric
space and f : M → M is a contraction mapping, i.e., for some positive number
r < 1, we have

(5.2.1) d
(
f(x), f(y)

)
≤ rd(x, y) for all x, y ∈M.

Then there is a unique point z ∈M for which f(z) = z. (Such a z is called a fixed
point of f .

Proof. The basic idea of the proof is to start with an arbitrary point zo ∈ M
and keep applying f to get a recursive sequence zn+1 = f(zn). The contraction
property (5.2.1) implies that (zn) will be a Cauchy sequence (by comparison with
the geometric series in r), and thus it must converge since M is complete. Then if
z = limn→∞ zn, the equation zn+1 = f(zn) for all n and the continuity of f imply
z = f(z).

The only tricky bit is to prove that zn is a Cauchy sequence. The trick is to
relate not zn+1 to zn, but rather relate the distance d(zn+2, zn+1) to the distance
d(zn+1, zn). We have

d(zn+2, zn+1) = d
(
f(zn+1), f(zn)

)
≤ rd(zn+1, zn).

Inductively this implies d(zn+1, zn) ≤ Arn where A = d(z0, z1).
Hence by the triangle inequaity, for any integer k and any m > k we have

d(zm, zk) ≤
m−1∑
n=k

d(zn, zn+1) ≤
m−1∑
n=k

Arn =
A(rk − rm)

1− r
.

If both m and k are sufficiently large, this can be made as small as we want, so
(zn) is a Cauchy sequence.

�

The Contraction Mapping Lemma is useful mainly because we don’t have to
assume anything about M except that it’s complete. It gets used most often in
infinite-dimensional spaces, like spaces of functions, where compactness usually
fails but completeness still works.

Now we come to two theorems which are generally proved in multivariable cal-
culus, but which don’t really get used until differential geometry: the Inverse and
Implicit Function Theorems. Either one is a consequence of the other.
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• The Inverse Function Theorem is used mainly to relate coordinate changes,
to put them all on an equal footing. (For example, in Chapter 6, we will
use it to go back and forth between rectangular coordinates and polar
coordinates.)
• The Implicit Function Theorem is basically used to solve equations like
F (x, y) = 0 for y in terms of x, and most importantly, to establish that
the solution y(x) depends smoothly on x. Although the statement of it
is rather involved, it will later make it very easy to prove certain sets are
smooth manifolds.

We will prove the Implicit Function Theorem first. The condition is stated in a
more cumbersome way so that we can get a more explicit result; the point is that
the rank of DF (a, b), as a linear operator from Rn+k to Rk, is maximal (i.e., equal
to k). If it is, then by Proposition 3.3.6, there is some k × k submatrix which is
nonsingular, and we can reorder the variables without loss of generality so that the
leftmost k × k submatrix is nonsingular.

Theorem 5.2.2 (Implicit Function Theorem). Suppose F = (f1, · · · , fk) : Rn ×
Rk → Rk is smooth, and that F (a, b) = 0 for some a ∈ Rn and b ∈ Rk. Further-
more suppose that the function f : Rk → Rk defined by f(y) = F (a, y) has Df(b)
invertible.

Then there is an open set V ⊂ Rn with a ∈ V and a smooth function G : V → Rk
such that G(a) = b and F

(
x,G(x)

)
= 0 for every x ∈ V .

Proof. We are trying to solve F (x, y) = 0 for y in terms of x, and then we’ll call it
y = G(x). The idea is basically to set up the solution y of F (x, y) = 0 via Newton’s
method. Write the Taylor polynomial of F as F (x, y) = C(x−a)+D(y−b)+R(x, y),
where C is the n×k matrix of partials in the x direction, and D is the k×k matrix of
partials in the y direction (assumed to be invertible), and the remainder R satisfies

lim
(x,y)→(a,b)

R(x, y)√
(x− a)2 + (y − b)2

= 0.

Then the solution y satisfies y = K(x, y) where

K(x, y) = b−D−1
(
C(x− a) +R(x, y)

)
,

and this is a fixed-point problem for y. When x and y are close to a and b, we
expect R(x, y) to be small, so that for x fixed, the function y 7→ K(x, y) should be
a contraction in the y-variables. Then we can use the Contraction Mapping Lemma
5.2.1 to get a unique solution y, and we worry about how exactly y depends on x
later. So for the time being we will hold x fixed and make sure we can solve for y.

First we show y 7→ K(x, y) is a contraction. Let y1 and y2 be in Rk, and define
h(t) = K(x, ty1 +(1−t)y2), the values of K along the straight-line segment between
y1 and y2. Then by the one-variable Mean Value Theorem 5.1.8, we know

K(x, y1)−K(x, y2) = h(1)− h(0) = h′(τ) = D−1Ry(x, ξ)(y1 − y2),

where 0 < τ < 1 and ξ = τy1 + (1− τ)y2.
Now since Fy(x, y) = D +Ry(x, y) and D = Fy(a, b), we know Ry(a, b) = 0. So

by continuity we can make Ry(x, y) as small as we want if x and y are sufficiently
close to a and b. Let’s choose δ > 0 and ε > 0 such that we have

(5.2.2) |K(x, y1)−K(x, y2)| ≤ 1

2
|y1 − y2| whenever |x− a| < δ and |y − b| ≤ ε.
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This comes from making |Ry(x, y)| ≤ 1/(2|D−1|). Notice that the condition on x
is an open set while the condition on y is a closed set: I need this because I want
to work in a complete space and the open ball is not complete.

Then for any fixed x within δ of a, the map y 7→ K(x, y) is a contraction when
restricted to the closed ball y ∈ Bε(b). Hence since the closed ball is complete, we
can use the Contraction Mapping Lemma 5.2.1 to get a unique fixed point y ∈ Bε(b)
satisfying y = K(x, y) (and hence F (x, y) = 0). Let’s call this fixed point G(x).
So we’ve proved there is a unique solution G(x) of F (x,G(x)) = 0 for all x with
|x− a| < δ.

The only thing left to prove is that G is smooth. At the moment we don’t even
know G is continuous, but since G(x) = K(x,G(x)), we see that (using the old
add-and-subtract trick)

|G(x1)−G(x2)| = |K(x1, G(x1))−K(x2, G(x2))|
≤ |K(x1, G(x1))−K(x2, G(x1))|+ |K(x2, G(x1))−K(x2, G(x2))|
≤M |x1 − x2|+ 1

2 |G(x1)−G(x2)|,

where we use equation (5.2.2), and the Mean Value Theorem for x 7→ K(x,G(x1)),
setting M to be the supremum of Kx

(
x,G(y)

)
over the set x ∈ Bδ(a)×Bε(b). At

first this doesn’t seem to help since it looks like circular reasoning, but solving the
inequality for |G(x1)−G(x2)| we get

|G(x1)−G(x2)| ≤ 2M |x1 − x2|.

Hence G is Lipschitz, so it’s continuous.
Since F (x,G(x)) = 0 for all x ∈ Bδ(a), we can compute the derivative of G using

the Chain Rule (Theorem 5.1.10). We get

(5.2.3) Fx(x,G(x)) + Fy(x,G(x))DG(x) = 0,

and we know Fy(x,G(x)) is nonsingular if x is sufficiently close to a. Thus we can
solve to figure out what DG(x) has to be, and once we have the candidate for the
derivative, we can prove this must actually be the derivative using the definition.
We can iterate the Chain Rule and keep computing higher derivatives of G in order
to prove that it is C∞ as long as F is; if you work out a couple for yourself, you’ll
see the only thing you ever have to worry about to solve for the higher derivatives
is that Fy is invertible. �

Example 5.2.3. The simplest situation is the circle: suppose F : R2 → R with
F (x, y) = x2 + y2 − 1. Then DF (a, b) = (2a 2b). The hypotheses in Theorem

5.2.2 are that F (a, b) = 0 and Fy(a, b) 6= 0, which means that a2 +b2 = 1 and b 6= 0.
Hence in a neighborhood of any a other than a = ±1, there is an open interval V
containing a and a smooth function G : V → R such that F (x,G(x)) = 0. In
this case, of course, we know exactly what it is: the largest set V is (−1, 1) and

G(x) =
√

1− x2 or G(x) = −
√

1− x2, depending on whether b > 0 or b < 0.
Of course, when a = 1 or a = −1, there is no function G(x) defined on an open
interval containing a such that F (x,G(x)) = 0. So the nondegeneracy assumption
DFy(a, b) 6= 0 really is essential.

Now let’s imagine we didn’t know what G(x) was. How would we compute G′(x),
G′′(x), etc.? First of all, F (x,G(x)) = 0 implies x2 +G(x)2 − 1 = 0 for all x in the
open set V . Differentiating this as in equation (5.2.3), we get 2x+2G(x)G′(x) = 0,
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which gives G′(x) = −x/G(x). Since G(x) 6= 0 by assumption (that’s exactly what
the nondegeneracy condition translates into here), we know what G′(x) must be.

How about higher derivatives? Differentiating the equation x + G(x)G′(x) = 0
again gives 1 +G′(x)2 +G(x)G′′(x) = 0, which we could obviously solve for G′′(x)
since we know G′(x). Another differentiation yields 3G′(x)G′′(x)+G(x)G′′′(x) = 0,
and what you should notice is that no matter how many times we differentiate, the
coefficient of the highest derivative is G(x). So as long as G(x) 6= 0, we can solve
for G′′(x), G′′′(x), etc. This happens in general: the nondegeneracy condition
that DFy(x, y) is necessary for DG(x) to exist, but once we have that, the same
condition will ensure that all higher derivatives of G exist for free. ,

The Inverse Function Theorem is a really easy consequence of the Implicit Func-
tion Theorem.

Theorem 5.2.4 (Inverse Function Theorem). If F : U ⊂ Rn → Rn is a smooth
function in an open set U , and if for some a ∈ U the derivative DF (a) is an
invertible matrix, then there is an open set V ⊂ Rn containing F (a) and a function
G : V ⊂ Rn → Rn which is smooth and has F

(
G(y)

)
= y and G

(
F (x)

)
= x for all

y ∈ V and all x ∈ G[V ].

Proof. Define F : Rn × Rn → Rn by F (x, y) = f(y)− x. Then you can check (and
you really should!) that all the hypotheses of the Implicit Function Theorem 5.2.2
are satisfied, and that the theorem gives you what you’re looking for. �

Example 5.2.5. I mentioned above that one important way we use the Inverse
Function Theorem is to get smoothness of inverses. Here is an example where even
though we have an explicit formula for an inverse function, it’s still hard to prove
directly that it’s differentiable or even continuous, but very easy to prove from the
Inverse Function Theorem. We will return to this situation in Example 6.2.3.

Consider polar coordinates given by (x, y) = F (r, θ) = (r cos θ, r sin θ). Of course
this is not invertible everywhere in the plane: for example when r = 0 we get
(x, y) = (0, 0) no matter what θ is. Furthermore F is periodic in θ which means
for example that F (r,−π) = F (r, π). So let’s consider F as defined on the open
rectangle (r, θ) ∈ (0,∞)× (−π, π). Then we certainly expect there to be an inverse
function G(x, y) =

(
h(x, y), j(x, y)

)
which gives (r, θ) = G(x, y) except on the

negative x-axis.

Clearly we have r = h(x, y) =
√
x2 + y2, and this is a C∞ function except at

the origin. But θ is more complicated: we have tan θ = y/x, which is singular
when x = 0 and does not uniquely determine θ even when x 6= 0. The only way to
proceed is to consider the four quadrants separately: we get the formula

(5.2.4) θ = j(x, y) = atan2(y, x) ≡



arctan ( yx ) x > 0

π + arctan ( yx ) x < 0, y > 0

−π + arctan ( yx ) x < 0, y < 0
π
2 x = 0, y > 0

−π2 x = 0, y < 0

It is far from clear from this formula that j(x, y) should be continuous or smooth.
On the other hand, if we put these together into G(x, y) =

(
h(x, y), j(x, y)

)
, then

F (G(x, y)) = (x, y) and G(F (r, θ)) = (r, θ) as long as the domains are properly
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restricted. So G is the function obtained from Theorem 5.2.4, which is continuous
and smooth because DF is nonsingular: we have

DF (r, θ) =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
,

and it’s trivial to compute that the determinant of this matrix is r, which is always
positive on the domain we care about. Thus the theorem tells us that G must be
smooth in a small open set around any point, which means it’s smooth globally. ,

You may not have seen the following theorem in a standard analysis class; it
often gets featured as the main theorem in a differential equations class. Its proof
also uses the Contraction Mapping Lemma 5.2.1, though in a totally different way
from the Inverse Function Theorem.

Theorem 5.2.6 (The Fundamental Theorem of Ordinary Differential Equations).
Suppose F = (f1, · · · , fn) : Rn → Rn is a smooth function, and we seek a solution
of the system of differential equations dx

dt = F
(
x(t)

)
:

dx1

dt
= f1

(
x1(t), · · · , xn(t)

)
...

dxn
dt

= fn
(
x1(t), · · · , xn(t)

)
,

(5.2.5)

with initial condition
(
x1(0), · · · , xn(0)

)
= (a1, · · · , an).

For any b ∈ Rn, there is a smooth function Γ = (γ1, · · · , γn) : (−δ, δ)× U → Rn
defined in some neighborhood U of b and for some small ε > 0 such that for any
a ∈ U , the curve t 7→ Γ(t, a) is the unique solution of the differential equation
(5.2.5) with initial condition Γ(0, a) = a.

In simpler language: for any initial condition, there is a unique solution of the
system (5.2.5), defined for a possibly short time, and furthermore the solution de-
pends smoothly on the initial condition.

Proof. The basic idea is Picard’s iteration procedure, which takes some initial guess
η0 : (−ε, ε)→ Rn with η0(0) = a, and defines new functions ηn(t) by the recursion
ηn+1 = T (ηn), where the map T is given explicitly by the integral formula

T (η)(t) = a+

∫ t

0

F
(
η(s)

)
ds.

Now T is a map from the complete metric space of continuous functions C
(
(−ε, ε),Rn

)
(with metric defined by the supremum norm of differences) to itself. If ε is small
enough, then one can prove that T will be a contraction mapping, and the unique
fixed point of T will be the solution γ(t) satisfying γ(0) = a and dγ

dt = F
(
γ(t)

)
.

To prove T is a contraction, just compute

|T (η)(t)− T (ξ)(t)| =
∣∣∣∣∫ t

0

F
(
η(s)

)
− F

(
ξ(s)

)
ds

∣∣∣∣ ≤ ∫ t

0

∣∣F (η(s)
)
− F

(
ξ(s)

)∣∣ ds.
Now since F is smooth, there is a closed neighborhood Bδ(0) × Bε(a) of (0, a) on
which |Fy(t, y)| ≤ L, for some number L. Then

|T (η)(t)− T (ξ)(t)| ≤ L
∫ t

0

|η(s)− ξ(s)| ds if |t| ≤ δ,
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from which we can conclude that if ‖·‖ denotes the supremum norm on [0, δ], then

‖T (η)− T (ξ)‖ ≤ Lδ‖η − ξ‖.
So possibly shrinking δ, we can ensure Lδ < 1 so that T is a contraction. The
only thing we need to check is that T actually maps some closed set of continuous
functions into itself, which is easy to check: if |η(t) − a| ≤ ε for every t ∈ [−δ, δ],
then the same is true for Tη.

So T is a contraction on the complete space of continuous functions in the supre-
mum norm, and hence there is a unique fixed point γ, which satisfies

(5.2.6) γ(t) = a+

∫ t

0

F
(
γ(s)

)
ds

for all t ∈ (−δ, δ). We know γ is continuous, and since F is also continuous, we can
take the derivative of both sides of (5.2.6) and get γ′(t) = F

(
γ(t)

)
, which shows

γ′ is also continuous. Iterating and using the Chain Rule, we conclude that all
derivatives of γ exist.

Finally the proof that γ depends smoothly on the initial conditions works as
follows. Define Γ(t, b) = γ(t), where γ(t) solves γ′(t) = F (γ(t)) with γ(0) = b.
Since the time of existence depends only on the size of L, there is an open set
of values b for which we have solutions all on the same time interval (−δ, δ). So
Γ is defined on some open neighborhood of any particular condition (0, a). We
have Γt(t, a) = F (t,Γ(t, a)), and so if it existed, the function H(t, a) = Γa(t, a)
would have to satisfy the differential equation Ht(t, a) = Fa(t,Γ(t, a))H(t, a). This
differential equation for H, with initial condition H(0, a) = 1, certainly has a unique
solution (it’s even easier than the above, since the differential equation is linear).
And now that we have a candidate for the derivative, we can prove this actually is
the derivative. �

Let’s do an example to see exactly how Picard iteration works.

Example 5.2.7. Consider the initial value problem dx
dt = 3 − x with x(0) = a.

You can check that the exact solution is x(t) = 3 + (a− 3)e−t, so the map above is
Γ(t, a) = 3 + (a− 3)e−t. We can see explicitly how the Picard iteration works: for
simplicity let’s suppose a = 5. Start with η0(t) = 5, and construct the sequence

ηn+1(t) = 5 +

∫ t

0

(
3− ηn(s)

)
ds = 5 + 3t−

∫ t

0

ηn(s) ds.

We obtain the sequence

η0(t) = 5

η1(t) = 5− 2t

η2(t) = 5− 2t+ t2

η3(t) = 5− 2t+ t2 − 1
3 t

3

η4(t) = 5− 2t+ t2 − 1
3 t

3 + 1
12 t

4

η5(t) = 5− 2t+ t2 − 1
3 t

3 + 1
12 t

4 − 1
60 t

5
...

and once we see the pattern, inductively we can show that

ηn(t) = 5 +

n∑
k=1

2(−1)k

k!
tk,
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and in the limit we get the solution

γ(t) = 5 + 2(e−t − 1) = 3 + 2e−t.

Clearly this sequence actually converges for all values of t, although the theorem
would only guarantee this for |t| < 1 since the Lipschitz constant is L = 1. ,

For our second example, let’s consider a nonlinear differential equation to see
how the dependence on parameters works.

Example 5.2.8. Consider the differential equation

dx

dt
= t2 + x2.

There is no elementary solution of this equation, although the theorem tells us there
are local solutions on a sufficiently small interval around t = 0 for any given value
of a = x(0).

Let Γ(t, a) be the solution operator. Then we have

(5.2.7)
∂Γ

∂t
(t, a) = t2 + Γ(t, a)2.

Letting H(t, a) = Γa(t, a) as in Theorem 5.2.6, differentiating (5.2.7) with respect
to a, and using the fact that mixed partials commute from Theorem 5.1.9, we obtain

∂H

∂t
(t, a) = 2Γ(t, a)H(t, a).

This is a linear differential equation, which means we can write the solution
explicitly for H(t, a) in terms of the unknown function Γ(t, a). Since Γ(0, a) = a,
we know H(0, a) = 1, and we get the formula

H(t, a) =
∂Γ

∂a
(t, a) = exp

(
2

∫ t

0

Γ(s, a) ds

)
.

Now if we know Γ(t, a) has infinitely many derivatives in the t direction, this formula
tells us that we can differentiate as many times as we like in the a direction as well.
Hence Γ has partial derivatives of all orders in both the time t and the initial
condition parameter a. ,

5.3. Integration. We can define the integral of a smooth function of several vari-
ables over a subset using essentially the same definition as Darboux: one takes a
partition of the subset, compares the supremum and the infimum over each ele-
ment of the partition, and proves that as the partition shrinks in size, the upper
sum and lower sum converge to the same thing. Practically, however, this definition
is not very useful; instead we want to get a multivariable integral in terms of sev-
eral single-variable integrals, since those are easy to compute by the Fundamental
Theorem of Calculus. Fubini’s Theorem enables us to do this. The following simple
version is all we’ll need.

Theorem 5.3.1 (Fubini’s Theorem). Suppose we have a cube [0, 1]n ⊂ Rn and a

smooth function f : Rn → R. Then the integral

∫
[0,1]n

f dV (defined in terms of

partitions of the cube) can be computed as the iterated integral∫
[0,1]n

f dV =

∫ 1

0

(∫ 1

0

· · ·
(∫ 1

0

f(x1, x2, · · · , xn) dx1

)
· · · dxn−1

)
dxn.

Furthermore it does not matter in which order we perform the iterated integrals.
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Proof. It is sufficient to prove this for two variables at a time, so we want to show

(5.3.1)

∫ 1

0

∫ 1

0

f(x, y) dx dy =

∫ 1

0

∫ 1

0

f(x, y) dy dx

if f is smooth. We will derive this from the fact that mixed partial derivatives
commute via Theorem 5.1.9. The idea comes from a paper of Aksoy and Martelli.4

Define g(x, y) =
∫ y

0
f(x, v) dv, and h(x, y) =

∫ x
0
g(u, y) du. Then h is smooth

and
∂2h

∂y∂x
=
∂g

∂y
= f . Therefore

∂2h

∂x∂y
= f as well since mixed partials commute.

Now h(1, 1) is the right side of (5.3.1) by definition. But also the left side of
(5.3.1) is (by the one-dimensional version of the Fundamental Theorem of Calculus)∫ 1

0

∫ 1

0

f(x, y) dx dy =

∫ 1

0

∫ 1

0

∂

∂x

∂h

∂y
dx dy

=

∫ 1

0

∂h

∂y
(1, y)− ∂h

∂y
(0, y) dy

= h(1, 1)− h(0, 1)− h(1, 0) + h(0, 0).

From the definition of h we can see that h(0, 1) = h(0, 0) = 0, while h(1, 0) = 0
from the definition of g, So we just have h(1, 1) remaining, as we wanted, which
shows that the left side of (5.3.1) equals the right side. �

The change of variables theorem for integrals will be very important to us, for
it will allow us to define the integral in a coordinate-invariant way at the end of
these notes. It generalizes the Substitution Rule for one-variable integrals. Again
we only need a simple case.

The change of variables theorem is usually stated in more generality than this
(in particular involving integration on more general regions than squares), but from
the perspective of differential geometry, it’s a lot easier to just have one definition
for squares and define everything else in terms of that via parametrizations. (For
example, spherical coordinates give a parametrization of the unit sphere in terms of
the rectangle [0, π]× [0, 2π], and it’s on that rectangle that everyone actually does
spherical integrations.) We just have to check consistency if we have two ways of
describing the same integral on the same square.

The technique of proof is basically to reduce each side to an integral over the
boundary, using something like Green’s Theorem. We will discuss Green’s Theorem
later (as a special case of Stokes’ Theorem), though here we just need the one-
dimensional Fundamental Theorem of Calculus.

Theorem 5.3.2 (Change of Variables for Integrals). Suppose we have a smooth
function f : Rn → R and a smooth function Ψ: Rn → Rn with smooth inverse Ψ−1

such that Ψ
(
[0, 1]n

)
= [0, 1]n.

Then

(5.3.2)

∫
[0,1]n

f
(
Ψ(u)

)
detDΨ(u)dV (u) =

∫
[0,1]n

f(x) dV (x).

4Mixed partial derivatives and Fubini’s Theorem, The College Mathematics Journal, vol. 33,
no. 2 (Mar. 2002), pp. 126–130.
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Proof. I’ll prove this in the two-dimensional case, which gives the easiest proof I’ve
seen. There is an only slightly more complicated proof of the n-dimensional result
due to Peter Lax which uses the same basic idea.5

Write x = (x, y) = Ψ(u) =
(
ϕ(u, v), ψ(u, v)

)
, and suppose that Ψ maps the

boundary segments into themselves (so that for example ψ(u, 0) = 0 for all u ∈ [0, 1],
which corresponds to mapping the bottom boundary into itself). Then

det (DΨ)(u) = ϕu(u, v)ψv(u, v)− ϕv(u, v)ψu(u, v).

We are then trying to prove that

(5.3.3)

∫ 1

0

∫ 1

0

(
f
(
ϕ,ψ

)
[ϕuψv − ϕvψu]

)
(u, v) du dv =

∫ 1

0

∫ 1

0

f(x, y) dx dy.

The trick is to define a new function

(5.3.4) g(x, y) =

∫ x

0

f(r, y) dr,

so that f(x, y) = gx(x, y) for all x and y in the square. This way we are basically
integrating a derivative and can reduce the double integral to an integral over the
boundary. It’s easier to make everything work on the boundary since it’s just the
one-dimensional substitution rule.

First note that the right side of (5.3.3) is obviously

(5.3.5)

∫ 1

0

∫ 1

0

∂g

∂x
(x, y) dx dy =

∫ 1

0

g(1, y) dy −
∫ 1

0

g(0, y) dy =

∫ 1

0

g(1, y) dy

since g(0, y) = 0.
Let us write p(u, v) for the integrand on the left side of (5.3.3): we have

(5.3.6) p(u, v) = gx

(
ϕ(u, v), ψ(u, v)

)[
ϕu(u, v)ψv(u, v)− ϕv(u, v)ψu(u, v)

]
,

and we are now trying to show that

(5.3.7)

∫ 1

0

∫ 1

0

p(u, v) du dv =

∫ 1

0

g(1, y) dy.

The trick is that p(u, v) can be written in the form

p(u, v) =
∂q

∂u
(u, v)− ∂r

∂v
(u, v)

for some functions q and r, and doing this allows us to write the left side of (5.3.3)
as a boundary integral. Indeed, if

q(u, v) = g
(
ϕ(u, v), ψ(u, v)

)
ψv(u, v),(5.3.8)

r(u, v) = g
(
ϕ(u, v), ψ(u, v)

)
ψu(u, v),(5.3.9)

5Change of variables in multiple integrals, The American Mathematical Monthly, vol. 106
(1999), pp. 497–501.
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then using the Chain Rule (5.1.5) gives

∂q

∂u
(u, v)− ∂r

∂v
(u, v) =

[
gx

(
ϕ(u, v), ψ(u, v)

)
ϕu(u, v) + gy

(
ϕ(u, v), ψ(u, v)

)
ψu(u, v)

]
ψv(u, v)

−
[
gx

(
ϕ(u, v), ψ(u, v)

)
ϕv(u, v)− gy

(
ϕ(u, v), ψ(u, v)

)
ψv(u, v)

]
ψu(u, v)

+ g
(
ϕ(u, v), ψ(u, v)

)
ψvu(u, v)− g

(
ϕ(u, v), ψ(u, v)

)
ψuv(u, v)

= gx

(
ϕ(u, v), ψ(u, v)

)[
ϕu(u, v)ψv(u, v)− ϕv(u, v)ψu(u, v)

]
= p(u, v)

by the definition (5.3.6). Here we used equality of mixed partials: ψuv = ψvu.
The consequence is that the left side of (5.3.7) can be computed using Fubini’s

Theorem 5.3.1 to get∫ 1

0

∫ 1

0

p(u, v) du dv =

∫ 1

0

∫ 1

0

∂q

∂u
(u, v) du dv −

∫ 1

0

∫ 1

0

∂r

∂v
(u, v) dv du

=

∫ 1

0

[
q(1, v)− q(0, v)

]
dv −

∫ 1

0

[
r(u, 1)− r(u, 0)

]
du.

To simplify this, recall that we assumed (ϕ,ψ) mapped the square to itself, so that
ϕ(0, v) = 0, ϕ(1, v) = 1, ψ(u, 0) = 0, and ψ(u, 1) = 1. Hence using the definitions
(5.3.8)–(5.3.9), we get

q(1, v) = g
(
ϕ(1, v), ψ(1, v)

)
ψv(1, v) = g

(
1, ψ(1, v)

)
ψv(1, v),

q(0, v) = g
(
ϕ(0, v), ψ(0, v)

)
ψv(0, v) = g

(
0, ψ(0, v)

)
ψv(0, v),

r(u, 1) = g
(
ϕ(u, 1), ψ(u, 1)

)
ψu(u, 1) = 0,

r(u, 0) = g
(
ϕ(u, 0), ψ(u, 0)

)
ψu(u, 0) = 0.

The third and fourth lines are zero since ψ(u, 0) and ψ(u, 1) are both constant in
u. The second line is also zero since g(0, y) = 0 by definition (5.3.4). So all that’s
left is ∫ 1

0

∫ 1

0

p(u, v) du dv =

∫ 1

0

g
(
1, ψ(1, v)

)
ψv(1, v) dv.

To relate this to
∫ 1

0
g(1, y) dy, just use the one-dimensional change of variables

y = ψ(1, v), so that dy = ψv(1, v) dv. We thus obtain (5.3.7), as desired. �

Example 5.3.3. The most basic example is the polar coordinate transformation
x = r cos θ, y = r sin θ. The Jacobian of this transformation is

J(r, θ) =

∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r.

Therefore the area element transforms into dA = dx dy = r dr dθ, in the sense that
the integral of a function over a region Ω can be evaluated using either of∫

Ω

f(x, y) dx dy =

∫
Ω

h(r, θ) r dr dθ,

where h(r, θ) = f(r cos θ, r sin θ). (Strictly speaking we did not actually prove this,
since the only coordinate transformations we considered were those that mapped
the unit square to itself, but the general proof works in more or less the same way.)
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In three dimensions using spherical coordinates (ρ, θ, φ) defined by x = ρ sin θ cosφ,
y = ρ sin θ sinφ, z = ρ cos θ, the Jacobian determinant is easily computed to be
J(ρ, θ, φ) = ρ2 sin θ, so that the volume element is dV = dx dy dz = ρ2 sin θ dρ dθ dφ.

,

In Chapter 15 we will give the change-of-variables formula a meaning indepen-
dently of its application in iterated integrals, by viewing it instead as a formula
involving n-forms. In fact the reason n-forms end up being so important in this
subject is because the determinant happens to show up in the change-of-variables
formula and also shows up in the change-of-basis formula for n-forms in Proposition
4.3.10.

We have one last result: differentiating under an integral. The fact that this
works is occasionally useful, but perhaps not of fundamental importance. We’ll use
it only once, to prove the Poincaré Lemma.

Theorem 5.3.4. Suppose F : R × Rn → R is smooth, and consider the function
f : R→ R given by

f(s) =

∫
[0,1]n

F (s, x) dV (x).

Then f is smooth, and

f ′(s) =

∫
[0,1]n

∂F

∂s
(s, x) dV (x).

Proof. It works the same whether n = 1 or not, so we might as well do one dimension
to simplify the proof. Fix a particular s, and let h be any fixed number. If f(s) =∫ 1

0
F (s, x) dx, then

(5.3.10)
f(s+ h)− f(s)

h
−
∫ 1

0

Fs(s, x) dx =

∫ 1

0

[
F (s+ h, x)− F (s, x)

h
− Fs(s, x)

]
dx.

By the Mean Value Theorem 5.1.8, we know for every fixed x that F (s + h, x) −
F (s, x) = hFs(ξ(h, x), x) for some ξ(h, x) between s and s + h. We don’t assume
that ξ(h, x) is continuous in either variable or anything.

Thus

F (s+ h, x)− F (s, x)

h
− Fs(s, x) = Fs(ξ(h, x), x)− Fs(s, x).

Using the Mean Value Theorem again on the right side of this, we get

Fs(ξ(h, x), x)− Fs(s, x) = (ξ(h, x)− s)Fss(ζ(h, x), x)

for some ζ(h, x) between s and s + h. Now Fss is continuous, so it’s bounded by
some constant L on [s− 1, s+ 1]× [0, 1]. Thus as long as |h| < 1 we know∣∣∣∣F (s+ h, x)− F (s, x)

h
− Fs(s, x)

∣∣∣∣ ≤ |ξ(h, x)− s||Fss(ζ(h, x), x)| ≤ Lh.

This being true for every x ∈ [0, 1], the integral on the right side of (5.3.10) is
bounded in size by Lh, and so as h goes to zero the left side converges to 0 as
well. �
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6. Coordinates

“Luminous beings are we, not this crude matter.”

6.1. Concepts of coordinates. In this Chapter I want to discuss classical notions
of coordinate charts, which predate manifolds by hundreds of years. Classically one
was primarily interested in coordinate charts as a way of solving problems in the
plane or in space; only later was it realized that all the same complications show up
in trying to set up manifolds. For now I am going to follow the historical approach,
which means I will be talking about an abstract space M , by which I usually mean
two- or three-dimensional space. It will help if you think of it as pre-Descartes.
That is, you have a plane but there’s no special horizontal or vertical line that you
call an “axis.” Imagine a plane like a Greek geometer would, and think of Descartes
spitefully, the way his old-fashioned contemporaries might have. Unlearn the idea
that the plane is R2. The plane is the plane, and R2 is a list of two numbers. Now
let’s proceed.

Much of the motivation for the tensor calculus (the main tool for computations
in differential geometry) came originally from the desire of physicists to have their
equations expressed in a coordinate-invariant way.6 To some degree, this is a philo-
sophical issue: ancient mathematicians viewed points as pre-existing objects, and
their “coordinates” as just an occasionally convenient way of specifying them. Geo-
metric constructions of points were often more important than their distances from
fixed lines. After Descartes, the algebraic idea of points as certain coordinates
gained prominence. In analysis, for example, a plane is fundamentally a set of pairs
of reals that you can occasionally draw pictures on. In differential geometry, on the
other hand, we view a coordinate system only as a convenience: the points exist
abstractly, and any set of coordinates is as good as any other in telling you where
one is in relation to another.

To give a concrete example, we might view the plane R2 as the set C of com-
plex numbers. We can specify a complex number by separating it into its real
and imaginary components, z = x + iy, or we can write it in polar coordinates as
z = reiθ. Depending on the application, one or the other might be more useful. We
can describe continuous real-valued functions on C independently of coordinates;
for example, f : C → R defined by f(z) = Re(z2) makes sense independently of
any particular coordinate system. In rectangular coordinates, the function is repre-
sented by frect(x, y) = x2− y2, and in polar coordinates the function is represented
by fpolar(r, θ) = r2 cos 2θ, but the function itself is defined without reference to
coordinates.

This is generally how we will want to think of spaces and functions on them: we
have a topological space M (which for now is homeomorphic to Rn) and we have
continuous functions f : M → R. The space M may be given in any number of ways:

6The importance of this philosophical point can’t be underestimated. In physics, the fact that
Newtonian mechanics stayed the same when one observer moved at a constant speed in some
direction was profound and fundamental. As were Maxwell’s beautiful equations of electromag-

netism. The fact that Maxwell’s equations looked hideously ugly as soon as you added a uniform
velocity to a frame was a profound disappointment in the late 1800s, and was one of the primary
motivations for special relativity.



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 53

for example the plane might be the complex numbers, or it might be the sphere with
a point removed, or it might be the set of intervals in R. Our method of representing
continuous functions on M will depend on how M is defined, but what’s essential is
that we don’t think of M as being defined by any particular coordinates. Doing this
will make generalizing everything to manifolds much easier. So we will distinguish
between M , the abstract Euclidean space where any coordinate system is as good
as any other, and Rn, the standard Euclidean space with Cartesian coordinates.
To specify when we’re thinking this way, I’ll write M ∼= Rn.

This is a big conceptual leap to make, and you should think carefully about
it. The point is that we need to do most computations in coordinates, but on the
other hand, we can’t pick any preferred coordinate system. It’s similar to how,
when working on a finite-dimensional vector space (as in Chapter 3), we need to
do most computations in a basis, although the abstract vectors we’re dealing with
have some meaning independently of any basis: as long as you and I always know
how to transform results in your basis to results in my basis and vice versa, we can
work this way. I remind you again of Plato’s suggestion in Republic that all we see
are just the shadows of reality dancing on the walls of a cave: points and such in
the abstract Euclidean space exist in some deeper sense, but we can only perceive
them by looking at their shadows (their coordinate representations). As long as
we understand this, we will know how to transform between different coordinate
representations (i.e., the shadow you see from your position vs. the shadow I see
from mine).

6.2. Examples of coordinate systems. Historically, the first coordinate system
on Rn was obviously the Cartesian system, used in some sense by ancient math-
ematicians and formalized by Descartes in the 1600s. (For historical notes, I will
generally refer to Julian Coolidge, A history of geometrical methods.)

Example 6.2.1 (Cartesian coordinates). Let us suppose M is homeomorphic in
some way to Rn; then Cartesian coordinates onM will be written as {x1, x2, · · · , xn}.
We think of x1, x2, etc., as being functions xk : M → R, and we can write
x : M → Rn for the collection of these functions. This is essentially the iden-
tity map, although philosophically we are thinking of the domain as being some
abstract space and the range as being a set of n numbers. The reason we are doing
these convoluted things will be clearer when we talk about other coordinates.

The superscript notation is used in differential geometry to make certain formulas
more convenient; it should not be confused with exponents. If the dimension of M
is two or three, we can use (x, y) or (x, y, z) instead of the superscripts. ,

Remark 6.2.2. This is as good a time as any to apologize for the notation. The
notation x will usually mean the function that takes a point in an abstract space
to its coordinates in Rn. But sometimes it will refer to a particular point in Rn,
as in vector calculus. The notation x1, · · · , xn will sometimes mean the individual
component functions of the function x, but more often it will mean a particular
point (x1, · · · , xn) ∈ Rn. This is obviously not logically consistent. Worse still,
we will often use notation such as f ◦ x−1(x1, · · · , xn), which means f(p) where
x(p) = (x1, · · · , xn). What I actually mean should be clear from the context. But
this is one of those situations where I think it’s more confusing to use good notation
than to settle for bad notation.
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Example 6.2.3 (Polar coordinates). The first alternative coordinate system con-
sisted of polar coordinates in the plane, invented by Jacob Bernoulli in the late
1600s (but like Cartesian coordinates, also used less systematically by earlier math-
ematicians). Standard polar coordinates (r, θ) are related to standard Cartesian
coordinates (x, y) by the usual formulas

(6.2.1) (x, y) = (r cos θ, r sin θ).

As discussed in Example 5.2.5, the inverse function is

(r, θ) =
(√

x2 + y2, atan2(y, x)
)
,

where atan2 has a rather complicated formula. However the Inverse Function The-
orem guarantees that these complicated formulas give C∞ functions of the coordi-
nates (x, y) on some open set.

It is important to notice that we cannot define θ(x, y) in such a way as to be
continuous on R2 or even on R2 minus the origin: we need to eliminate an entire ray
(corresponding to θ = π, although eliminating the ray θ = 2π is common as well).
Even in this simple example, we see that we cannot expect a general coordinate
system to be defined on the entire space. The map from (0,∞) × (−π, π) to the
plane is best visualized as in Figure 6.1. The fact that θ can be defined on the
plane minus a ray but not on the plane minus the origin has profound importance
later on: this situation is the most basic and fundamental example in the general
theory of de Rham cohomology, which we will discuss in Chapter 18.

Figure 6.1. Coordinate curves in the rθ-plane on the left, and
their image under (6.2.1) in the xy-plane on the right.

Now let us think of M ∼= R2 as being the abstract Euclidean space, with no
preferred system of coordinates. Let x : M → R2 be the Cartesian system with
x = (x, y), and u : U → R2 be the polar coordinate system u = (r, θ), with the
open set U defined as M minus the leftward ray corresponding to θ = π:

U = R2\{(x, 0) |x ≤ 0}.

Then the equations above say that the transition map is given by

(6.2.2) x ◦ u−1(r, θ) = (r cos θ, r sin θ)
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while its inverse is given by

(6.2.3) u ◦ x−1(x, y) =
(√

x2 + y2, atan2(y, x)
)
.

The domain of x◦u−1 is the image of u, which is (0,∞)×(−π, π), a half-strip. The
domain of u ◦x−1 is restricted by the domain of u, so it is U . Notice that by using
two coordinate systems and just worrying about their transition maps, we have
basically managed to avoid even talking about the abstract Euclidean space M . (In
other words, we’re just dealing directly with the shadows on the cave wall, regardless
of what they really represent.) In this notation, if M = C with f(z) = Re(z2), then
f ◦ x−1(x, y) = frect(x, y) = x2 − y2 and f ◦ u−1(r, θ) = fpolar(r, θ) = r2 cos 2θ. So
the notation allows us to separate the actual function from its representation in
coordinates.

Why go through all this trouble of domain-restricting? The Calculus II approach
to polar coordinates often allows θ to be any value at all, identifying those that
differ by integer multiples of 2π, and it allows r to be zero and sometimes even
negative! In so doing we cover the entire Euclidean plane with polar coordinates.
The problem is that when this approach leads to difficulties, we have to get around
them using some ad hoc technique. This might be OK if polar coordinates were
the only coordinate system we’d ever change to, but that’s not the case. We want
to treat both Cartesian and polar coordinates as equals, and doing this forces us to
work on some restricted subset of the plane, where the coordinate transformations
work equally well (and have good continuity and differentiability properties) both
ways.

To make things more explicit, suppose we have a function fpolar(r, θ) = r3. This
looks like a perfectly smooth function, and it is on the set (0,∞) × (−π, π), but
it’s not as a function on the Euclidean plane M ∼= R2. The reason is obvious if we
assume that fpolar = f ◦ u−1 for some function f : M → R2. Write it in Cartesian

coordinates, and we get frect(x, y) = f ◦ x−1(x, y) = (x2 + y2)3/2. This function
does not have a continuous third derivative and hence no fourth derivative at all:
we can compute that

∂3
xfrect(x, y) =

3x(2x2 + 3y2)

(x2 + y2)3/2
,

which has no limit as (x, y)→ (0, 0). Specifically,

lim
y→0

∂3
xfrect(0, y) = 0 while lim

x→0
∂3
xfrect(x, 0) = 6.

We don’t want to deal with functions that look smooth in one coordinate system
and not-smooth in another coordinate system. Instead we can say that since f
depends smoothly on r, the function f ◦ u−1 : U ⊂ M → R is smooth on a subset
U of M (but not on M itself). By doing this, we never have to worry about the
strange behavior of a coordinate system at a singularity. Instead we only work with
the coordinate system at the points in the open set where it is smooth; if we want
to work with other points, we do so using some other coordinate chart. Think of
a coordinate singularity as being, in Plato’s analogy, a hole or crack in the cave
wall that we have to learn to look past, knowing that the real objects have no holes
or cracks. The functions we really care about will be defined properly, somehow,
on the entire space. Thus they will automatically look smooth in any coordinate
system. ,

Make sure you understand all of this before going on.
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Example 6.2.4 (Other coordinate systems). Although they aren’t traditionally
taught in vector calculus, there are many other coordinate systems that are some-
times useful. They are generally defined by their level curves, and they are useful
when the geometry of a particular problem involves the same level curves. For ex-
ample, Cartesian coordinates are useful in a domain bounded by a rectangle, while
polar coordinates are useful in domains bounded by circles and rays. If a boundary
is more complicated, it is usually better to use a coordinate system suited to the
boundary. Here are some classical examples.

• Parabolic coordinates These planar coordinates are related to Cartesian
coordinates by the transformation

(6.2.4) (x, y) =
(
στ, 1

2 (τ2 − σ2)
)
,

which can be inverted without much difficulty to obtain

(τ, σ) =

±√y +
√
x2 + y2,

±x√
y +

√
x2 + y2

 .

From the explicit formulas, we see that this is a smooth and invertible
transformation in the region τ > 0, σ ∈ R, and furthermore all (x, y)
except for the lower ray L = {(x, y) |x = 0, y ≤ 0} can be obtained from
such τ and σ. Curves of constant σ or constant τ are parabolas, as shown
in Figure 6.2. You might notice that the parabolas all cross at right angles:
this is a useful property in Riemannian geometry, and is a typical feature
of the most popular coordinate charts.7

Figure 6.2. Coordinate curves in the στ -plane on the left, and
their image under (6.2.4) in the xy-plane on the right.

• Elliptical coordinates These coordinates are related to Cartesian coor-
dinates by the transformation

(6.2.5) (x, y) = (coshµ cos ν, sinhµ sin ν).

7One of the reasons complex analysis finds so many applications is that it gives an easy way to
construct such orthogonal coordinate charts: in this case you might notice that x+iy = − i

2
(σ+iτ)2

is a complex-analytic function.
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By demanding µ > 0 and ν ∈ (−π, π) for example, we obtain a genuine
coordinate system which is invertible. This coordinate system is convenient
because the level curves are hyperbolas (when ν is held constant) and el-
lipses (when µ is held constant), and all of these level curves have the same
foci, at (−1, 0) and (1, 0). See Figure 6.3. Observe that the coordinate
system fails to cover the left half of the x-axis (because of the angle restric-
tion) and also fails to cover the portion of the x-axis between the two foci,
so that the image of the transformation is the plane minus the portion of
the x-axis left of (1, 0). As before, one of the reasons this coordinate chart
is useful is because the level sets are orthogonal curves.8

Figure 6.3. Coordinate curves in the µν-plane on the left, and
their image under (6.2.5) in the xy-plane on the right.

,

As with many mathematical fields (such as analysis and algebra), differential ge-
ometry historically proceeded from fairly simple foundations, which were gradually
expanded using special techniques to solve interesting problems, until the theory
was rebuilt from scratch to accommodate the greater generality. With differential
geometry, the use of ever more complicated coordinate systems, which often led
to non-explicit formulas for solutions of problems, demanded the construction of a
theory which was genuinely independent of any particular coordinate system. This
is where we are going.

Based on the issues observed above with polar coordinates, and on our philosophy
that any coordinate system is as good as any other, we now define a coordinate
chart formally.

Definition 6.2.5. Consider Rn as an abstract space M . A coordinate chart on M
is a pair (φ,U), where U is an open subset of M and φ is a homeomorphism from
U to a subset of Rn (in other words, φ−1 is a continuous map from φ[U ] to M).
Two coordinate charts (φ,U) and (ψ, V ) are called C∞-compatible if the functions
φ ◦ ψ−1 : ψ[U ∩ V ] ⊂ Rn → Rn and ψ ◦ φ−1 : φ[U ∩ V ] ⊂ Rn → Rn are both C∞.

8And again, orthogonality comes from complex analysis: we have x + iy = cosh (µ+ iν). It’s
fair to say that if quaternions in three or four dimensions generated orthogonal coordinate charts

as easily as complex numbers did in two dimensions, they’d have become as famous.
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There are several things to notice about this definition.

• We assume only a topological structure on M , and we don’t differentiate
anything on M directly. The only things we’re allowed to differentiate are
the transition functions between coordinate charts, not the actual coordi-
nate charts themselves. (Again, for motivation you might imagine that M
represents the complex numbers, or just some abstract topological space
that happens to be homeomorphic to the plane.)
• We explicitly incorporate the open set U into the definition of the coordinate

chart, which avoids difficulties due to singular points. Even if φ and ψ are
the same map, if the open sets are different, then their charts are different.
(However they are compatible, since the transition function is the identity,
which is C∞.)
• If two coordinate charts do not cover the same portion of M (i.e., U∩V = ∅)

then they are trivially compatible, since there is no transition function for
which to check derivatives.
• The notion of C∞-compatible is a not quite an equivalence relation. We

would like to say that if (φ,U) and (ψ, V ) are compatible, and (ψ, V ) and
(ξ,W ) are compatible, then (φ,U) and (ξ,W ) are compatible. The problem
is that we’ll check smoothness of φ ◦ ψ−1 on ψ[U ∩ V ] and smoothness
of ψ ◦ ξ−1 on ξ[V ∩ W ], and this will prove smoothness of φ ◦ ξ−1 on
ξ[V ∩W ] ∩ ξ[U ∩ V ], but this may be a proper subset of ξ[U ∩W ], which
is what we’d really care about.
• We use C∞ as our requirement for the transition functions instead of real

analytic (i.e., having a convergent multivariable Taylor series). This is done
mostly to avoid worrying about a radius of convergence, as well as to allow
“bump functions” which are usually C∞ but never real analytic. We will
discuss this in more depth later, in Chapter 13.
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7. Manifolds

“That’s no moon. It’s a space station!”

7.1. Motivation and definition. Once you get comfortable with the idea of co-
ordinate charts on Rn (in particular, the idea that a typical coordinate system will
not cover the entire space, but just an open subset), it becomes natural to look at
manifolds more generally. To do this properly, one needs to understand a bit of
point-set topology.

The basic object in topology is the open set. If M is a set, then a topology on
M is a collection T of sets satisfying three properties:

• T contains the empty set ∅ and the entire set M
• If U and V are in T , then so is U ∩ V .
• If {Uα |α ∈ I} is any collection of sets that are in T (for an arbitrary index

set I), then so is the union ∪α∈IUα.

Every set in T is called an open subset of M . The basic example is the open sets
you are familiar with in R or Rn: sets for which every point is an interior point, or
in other words sets for which every point has a radius r such that the entire ball
of radius r is contained in the open set. Since just about all the most important
concepts of real analysis can be abstracted into a statement about open sets, al-
most all the most important results of analysis are actually results about topology.
Examples include compactness, connectedness, convergence, continuity, and even a
few that don’t start with ‘c.’ Intuitively you should think of topological spaces as
very general things, and of manifolds as the simplest possible generalization of the
Euclidean topologies Rn. Here are the basic topological definitions.

Definition 7.1.1. Suppose M is a topological space (i.e., a set with a topology T
satisfying the three basic properties). Then:

(1) M is compact if for every family of open sets {Uα |α ∈ I} for some index
set I with M = ∪α∈IUα, there is a finite subset {α1, . . . , αm} such that
M = ∪mk=1Uαk .

(2) M is connected if the only way to write M = U ∪ V with U ∩ V = ∅ is if
one set is M and the other set is ∅.

(3) A sequence (xn) converges to x if for every open U 3 x, the tail {xn |n ≥ N}
is contained in U for N large enough.

(4) If N is also a topological space, then f : M → N is continuous if f−1[V ] is
open in M whenever V is open in N .

The basic idea of a manifold is that near every point, if you zoom in closely
enough, it should look like Rn. So for example a circle in R2 would be manifold,
since on a sufficiently small segment it looks like an interval in R. On the other
hand a figure ‘8’ would not be a manifold, since no matter how close you get to
the center point, it looks like ×. See Figure 7.1. Here I’m using “looks like” in the
sense of topological equivalence, which means there is a 1-1 correspondence from
one to the other which is continuous in both directions. So in particular we don’t
care about the fact that a circle is round, just that it closes up: an oval or even
a square will be considered an equivalent topological manifold. (The fact that the
square has corners will be dealt with in a bit when we talk about smooth manifolds,
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but for right now we’re just talking about topology.) See Figure 7.2. Note also that
an open interval is a manifold while a closed interval is not; no neighborhood of
an endpoint looks like the real line. A nice exercise is to identify which capital
letters on your keyboard are one-dimensional manifolds, using a sans-serif font like
Verdana or Arial.

Figure 7.1. The oval on the left is a manifold; the small purple
segment can be identified with an interval. The figure eight on the
right is not a manifold because every neighborhood of the center
point (shown in purple) looks like an × and is topologically distinct
from an interval.

Figure 7.2. Topologically, these are all the same curve and might
as well be a circle.

Start building up an intuition for topological invariance. Much later we will start
worrying about actually measuring things, but for now any kind of stretching or
bending will be considered to have no effect whatsoever on the manifold. However
gluing things together or poking holes will change the topology. So for example
we get the famous joke, “A topologist is someone who doesn’t know the difference
between a coffee cup and a doughnut,” since she could easily deform the coffee cup
into a doughnut topologically as long as she doesn’t try to cut off the handle. (See
Figure 7.3.) More crudely, there’s the less famous joke that a topologist doesn’t
know the difference between his ass and a hole in the ground, but he knows the
difference between his ass and two holes in the ground. The topological property
that distinguishes them is that a hole is distinguished from no hole by the fact that
you can draw a loop around the hole which can’t be contracted without leaving the
space, while any loop in the plane with no hole can be contracted to a point; with
two holes, you can draw two noncontractible loops.
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Figure 7.3. A coffee mug topologically transformed into a doughnut.

Roughly speaking, there is only one “closed” manifold in one dimension, which
is the circle. In two dimensions, there is a countable family of closed manifolds: the
sphere, the (one-holed) torus, the two-holed torus, the three-holed torus, etc. These
can be parametrized by food, as shown in Figure 7.4. Remember, the manifold is the
surface of the food, not the substance of it. The actual food as a three-dimensional
object has a boundary and thus cannot be a manifold.

Figure 7.4. Mmmm, manifolds. The surfaces of these pastries
are all two-dimensional closed manifolds, arranged by number of
holes: none, one, two, three, and many. The manifold is the surface
of the pastry, not the pastry itself. (The objects are not three-
dimensional manifolds: points inside the pastry think they are the
origin of some R3, while points on the boundary know they are
not.)

As yet another intuitive way of understanding topological manifolds, pretend
you live in the manifold and are unable to get out or even imagine what’s outside.
You have no compass or ruler for measuring things geometrically; all you have is a
whole lot of breadcrumbs.9 You could tell an ‘H’ from a ‘T’ (just count the forks

9We’re assuming that nothing eats the breadcrumbs.
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in the road) but not an ‘I’ from an ‘S’ (since all you could do is start at one end
and go to the other end). Similarly you could tell apart the surface of sphere from
the surface of a torus, and both of those from the surface of a two-holed torus. See
Figure 7.4. Books like Edwin Abbott’s classic Flatland10 may help with this sort
of intuition, if you’re having trouble.

It’s almost time for a definition. What we’re trying to capture is the idea that
for every point p in a manifold M , there should be an open set U containing p and
a coordinate chart x : U → Rn such that x is a homeomorphism onto its image. (In
other words, x is continuous and invertible, and x−1 : x[U ]→M is also continuous.)
This is the same definition we gave in Definition 7.1.1, and at first seems to capture
what we want.

It’s not good enough though. In abstract topology open sets can look kind
of strange, so for example it’s quite possible that U may be homeomorphic to
something like the closed half-plane in Rn, and the above definition would claim
that the closed half-plane is a manifold. So we need to demand that the image x[U ]
in Rn is actually an open set we’re familiar with.

Definition 7.1.2. (Preliminary definition) An n-dimensional generalized topologi-
cal manifold is a topological space M such that for every point p ∈M , there is an
open set U 3 p and a homeomorphism φ : U → Rn which maps U onto an open set
in Rn.

We will use symbols like φ to denote coordinate charts when we are interested in
them abstractly; when we have concrete manifolds and coordinate charts in mind,
we will generally use symbols like x.

Now the most familiar open sets in Rn are open balls around the origin,

Br(0) = {x ∈ Rn | ‖x‖ < r},
and the entire space Rn itself. Conveniently these are homeomorphic to each other:
you just take the map ϕ : Br(x) → Rn defined by ϕ(x) = x

r−‖x‖ , the inverse of

which is ϕ−1(y) = ry
1+‖y‖ . Furthermore by definition any open set in Rn contains

an open ball and thus a set homeomorphic to Rn. So the following seemingly
more restrictive definition is actually equivalent to Preliminary Definition 7.1.2: M
is an n-dimensional manifold if for every p ∈ M there is an open U 3 p and a
homeomorphism φ : U → Rn which maps U onto all of Rn.

Unfortunately, although we have a pretty good idea of what we intuitively want
manifolds to look like, this definition allows for too much weird behavior. The next
couple of examples will only really make sense if you have had a topology course
already, so don’t worry about them if not.

Example 7.1.3. “The long line.” To understand this example, it helps to know
something about ordinals. Richard Koch at the University of Oregon has an excel-
lent and easy-to-understand writeup11 of it if you’re curious.

Roughly the idea is to take ω1× [0, 1), where ω1 is the first uncountable ordinal,
and treat it as though it’s an uncountable number of copies of [0, 1) laid end to
end. (We use ordinals because they are a well-ordered set, which implies that
every element has an immediate predecessor.) Specifically we define an ordering
by (x, α) < (y, β) if either α < β, or α = β and x < y, and then give this space

10http://www.geom.uiuc.edu/∼banchoff/Flatland/
11http://www.math.ucsd.edu/∼nwallach/LongLine[1].pdf accessed January 18, 2013.
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the order topology, a subbasis of which is any interval of the form ((x, α), (y, β)).
Clearly around every point except (0, 0) we can find an open interval homeomorphic
to R: just take all points less than (x, α): this is a union of countably many intervals
(0, 1).

So if we just glue together two copies (one on the left, one on the right), we get
a one-dimensional manifold. See Figure 7.5 for a heuristic picture. The problem
with it is that it’s way too long (hence the name) and so for example it’s impossible
to define a distance on it which would generate the topology. It’s also impossible
to embed it into any Euclidean space. This comes from the fact that its topology is
not “second countable” (i.e., there is no countable number of open sets which you
can use, via taking arbitrary unions, to get all other open sets).

Now the reason one wants a manifold to have a second countable topology is
that intuitively one doesn’t want to have all that many coordinate charts. Ideally a
manifold would be compact, and hence covered by finitely many coordinate charts.
Failing that, the next best thing to ask is that we need only countably many co-
ordinate charts, which would allow us to view the manifold as a countable union
of compact sets. We’ll find in general that compactness is quite useful, and so we
don’t want to be too far from a compact set.

Figure 7.5. The “long ray” consists of a square with the lexico-
graphic ordering. “Increasing” in the lexicographic ordering means
going up along the vertical segments until the top, when one moves
to the next vertical segment to the right. (Hence the need for well-
ordering.) The long line is two copies of the long ray with the
origin identified.

,

Example 7.1.4. “The line with two origins.”
In this example, we take the line and put an extra point O′ next to the origin

O. The line with two origins is L = R∪O′. See Figure 7.6. To define the topology,
we take all of the usual open sets from R, and for every open set U containing the
origin O, we add the new set U ′ = (U\{O}) ∪O′.

Since each U is homeomorphic to R, so is U ′. Thus L is a manifold. However,
it is not Hausdorff: in other words, any open set containing O must intersect any
open set containing O′. This is a very nonintuitive sort of property: two distinct
points O and O′ should have disjoint open sets enclosing them.

,

Having seen these counterexamples, we now want to forget them. So now we
give the actual definition of a manifold.



64 STEPHEN C. PRESTON

Figure 7.6. The line with two origins. On top is the actual point,
and below is its identical evil twin. Or is it the other way around!?

Definition 7.1.5. (Actual definition) An n-dimensional topological manifold is a
topological space M which is Hausdorff and second countable, and such that at
each point p ∈M there is an open set U 3 p and a homeomorphism φ from U onto
Rn.

The easiest way to understand these extra requirements in the definition is that
they force the manifold to be metrizable. In other words, there is a distance func-
tion such that all open sets are the union of open balls in the metric. This is a
consequence of the Urysohn metrization theorem. We will never actually care what
the distance function is, but you can always imagine it being there in the back-
ground when we are talking about open sets. That is, you can always imagine that
a subset U of M is open if and only if for every point p ∈ U , there is a number
r > 0 such that

Br(p) ≡ {q ∈M | d(p, q) < r} ⊆ U,
where d is some distance function; you just have to realize that there are lots of
different distance functions that will generate the exact same open sets, so you can’t
take any one of them too seriously.

As in Chapter 6, each pair (φ,U) or (x, U) is called a coordinate chart. Typically
one needs more than one coordinate chart to cover the manifold, since the only
manifold which can be covered by one chart is Rn itself.

Definition 7.1.6. A collection of coordinate charts whose domains cover M is
called an atlas of M .

I’ve used a lot of topology in discussing this, which you don’t really need to
know. In fact one could (and historically many people did) define manifolds without
saying anything about their topology in an abstract sense. Instead one requires the
maps φ to be invertible, and continuity comes in an indirect way by looking at the
transition maps φ ◦ ψ−1, which are maps from one open subset of Rn to another.
In the alternative definition, the requirement is that every such transition map
be continuous, and this is easier since continuity of such maps is well-understood
without any topology background. If one had a space satisfying such conditions,
one could define the topology by declaring a set in M to be open if and only if its
image under any coordinate chart was open in Rn.

Definition 7.1.5 gives us topological manifolds, but we don’t yet have a concept
of smooth manifold. Now continuity can be put into fairly abstract terms, but
for smoothness we really want to work strictly in terms of maps on Rn, where we
understand things. Thus smoothness will be defined only in terms of the transition
functions.
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Example 7.1.7. Consider the unit circle

S1 = {(x, y) ∈ R2 |x2 + y2 = 1}.

Let’s write down some coordinate charts and look at the transitions. I mentioned in
Chapter 1 that there were a few common ways to set up maps of the 2-sphere, and
in Figure 1.1 I demonstrated this schematically in the case of the 1-sphere. Now
we’re going to take seriously the stereographic projection, and redefine it slightly
to make the formulas simpler.

Let U = S1\{(0,−1)}; that is, delete the south pole from the circle. You should
imagine cutting the circle there and then unwrapping it onto a line. We now
construct a map φ : U → R using the following idea: draw a line from (0,−1)
through the point (x, y) ∈ S1; this line eventually crosses the x-axis at coordinates
(u, 0), and the map is φ(x, y) = u. Concretely φ is the restriction of the map
Φ: R2\[R× {−1}]→ R to S1, where

(7.1.1) u = Φ(x, y) =
x

y + 1
.

Obviously φ is undefined at (0,−1) since a line is determined by two distinct points.
We need another coordinate chart to cover all of S1, and so we use the same idea

the other way around: let V = S1\{(0, 1)} and let ψ : V → R by ψ = Ψ|S1 , where

(7.1.2) v = Ψ(x, y) =
x

1− y
.

Since U ∪ V = S1, the charts (φ,U) and (ψ, V ) form an atlas of S1.
On the intersection U ∩V , which is homeomorphic to two disjoint intervals in R,

there are two coordinate charts, and they need to be compatible. Notice that the
point (0,−1) that is missing from U has coordinates ψ(0,−1) = 0 in V . Similarly
φ(0, 1) = 0 in U . The transition map is thus ψ◦φ−1 defined on (−∞, 0)∪(0,∞) ⊂ R.
Let’s compute it algebraically, as shown in Figure 7.7.

Figure 7.7. On the left, the chart (φ,U) defining the south-pole
stereographic coordinate. On the right, the chart (ψ, V ) defining
the north-pole stereographic coordinate. We can check that v =
1/u.
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From formula (7.1.1) we compute φ−1: we just have to solve the equations
x2 + y2 = 1 and x/(y + 1) = u for (x, y), which yields

(x, y) = φ−1(u) =

(
2u

1 + u2
,

1− u2

1 + u2

)
.

Plugging into (7.1.2), we obtain

(7.1.3) v = ψ ◦ φ−1(u) =
2u

1+u2

1− 1−u2

1+u2

=
1

u
.

As expected, this is defined for {u ∈ R |u 6= 0}, which is φ[U ∩V ]. And certainly on
this set it is not merely continuous but infinitely differentiable. Finally it is clear
that φ ◦ ψ−1(v) = 1/v since it must be the inverse function of (7.1.3). Thus (φ,U)
and (ψ, V ) are smoothly compatible, and every other acceptable coordinate chart
on M should have smooth transition functions with one (and hence both) of these
two. ,

Definition 7.1.8. An n-dimensional smooth manifold is an n-dimensional topolog-
ical manifold with an atlas of charts satisfying the following compatibility property:
for each charts (φ,U) and (ψ, V ) on M , the map

φ ◦ ψ−1 : ψ[U ∩ V ] ⊂ Rn → φ[U ∩ V ] ⊂ Rn

is C∞.

We may start with a small number of charts, and add new ones that are com-
patible with the old ones in this sense; frequently we think of a smooth manifold
as having a maximal atlas consisting of all possible coordinate charts which have
smooth transition functions.

It’s worth asking whether, given a topological manifold, there’s always a smooth
atlas for it. It seems like this should be true, but unfortunately it’s not. If the
dimension of the manifold is n = 1, n = 2, or n = 3, this is true. (In fact
we can classify all such manifolds, thanks to recent work of Perelman; we will
discuss this in the next Chapter.) However in four dimensions there is a topological
manifold called “the E8 manifold” found by Freedman in 1982 which has no smooth
structure. One can also ask whether a smooth structure is unique, if it is known
to exist. This is also false, even if one asks for uniqueness only up to equivalence
classes. The first counterexample found was the possibility of multiple structures
on the 7-dimensional sphere S7 (by Milnor in the 1950s); however it’s now known
that there are uncountably many nonequivalent smooth manifold structures even
on R4.

Because of this, we will generally not worry about topological manifolds beyond
this point. Any manifold I define will have a natural smooth structure, and the
continuous structure will fall out of that.

7.2. Practicalities. In the next Chapter I’ll discuss the best-known examples
along with the classification results in low dimensions. For now I just want to
discuss how to determine whether a particular set is a manifold. One pretty much
never actually constructs the charts explicitly. Instead, the most common tech-
niques are using the Inverse Function Theorem 5.2.4 and the Implicit Function
Theorem 5.2.2.
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The first way to define a manifold is via parametrization. We start with a
function F : U ⊂ Rn → Rn+k which is meant to “embed” an n-dimensional manifold
into an (n+ k)-dimensional Euclidean space. To be precise:

Definition 7.2.1. If F : U ⊂ Rn → Rn+k is a C∞ map on an open set U , it is
called an immersion if for every x ∈ U the differential DF (x) has maximal rank as
a linear map from Rn to Rn+k.

We would like to say that the image of an immersion is a manifold, but this is
not always true. An easy example is a self-intersecting curve in the plane, such as
the lemniscate of Jacobi in Figure 7.8a, which is the image of

F (t) =

(
cos t

1 + sin2 t
,

sin t cos t

1 + sin2 t

)
for t ∈ R. This curve has a self-intersection at the points corresponding to t = π

2

and t = 3π
2 , where it has two different tangent lines.

A trickier example is the folium of Descartes in Figure 7.8b, given by the image
of

F (t) =

(
3t

1 + t3
,

3t2

1 + t3

)
for t ∈ (−1,∞). There’s no obvious self-intersection one would see by looking at
the equations algebraically, but in the limit as t → ∞ the loop closes up to meet
the point where t = 0, at the origin. Hence the image is not a manifold, since in
any neighborhood of (0, 0) the image looks like a ‘T.’

Figure 7.8. On the left, the lemniscate of Jacobi, which fails to
be a manifold because of a self-intersection with different tangent
lines. On the right, the folium of Descartes, the image of which is
not a manifold because of the asymptotic self-intersection.

Still one wants to be able to get a manifold by imposing the right conditions. The
immersion condition is meant to accomplish most of this (it will be used, via the
Inverse Function Theorem 5.2.4, to construct a coordinate chart in a neighborhood
of each point in the image), and it always gives good local behavior, but some sort
of global condition is also needed to avoid the problem of self-intersections. Even
with the above examples in mind, this is harder than it seems. One might allow
for intersections—they’re impossible to avoid if one wants to get any interesting
topology out of a subset of the plane—but just require that the derivatives match
up. This would prevent crossing of skew tangent lines, which seems to be mucking
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things up above. But then one could imagine first derivatives matching and not
higher derivatives. Even matching derivatives of all orders doesn’t work, as the
following famous example shows.

Example 7.2.2. Let f : R→ R be defined by

(7.2.1) f(x) =

{
0 x = 0,

e−1/x2

x 6= 0.

You can compute directly that limx→0 f(x) = 0, that f ′(0) exists from the defini-
tion, that f ′(x) is continuous, that f ′′(0) exists, etc. In this way you can see that
f is a C∞ function. However all derivatives of f at x = 0 are zero.

This is an extremely important example and will be used later for various pur-
poses. We will discuss it in much greater depth in Example 13.2.1. For right now,
just notice that it’s a function that is C∞ but not real analytic: its Maclaurin series
converges to g(x) = 0 rather than f(x).

Figure 7.9. The graph of y = e−1/x2

, shown in green. It is
impossible to distinguish this from the graph of y = 0 just by
computing derivatives at x = 0.

,

There’s no great solution to this problem, and whether a particular parametriza-
tion gives an actual manifold has to be worked out case by case. Here’s an example.

Example 7.2.3. (The Möbius band) Consider U = R × (−1, 1) ⊂ R2, an infinite
horizontal band. Let F : U → R3 be given by

(x, y, z) = F (u, v) =
((

1 + v
2 cos u2

)
cosu,

(
1 + v

2 cos u2
)

sinu, v2 sin u
2

)
.

The image of this is called the Möbius band (or Möbius strip) and is shown in
Figure 7.10. Notice that the boundary is v = 1 and v = −1, which are not included
(otherwise it obviously couldn’t be a manifold).

It looks like it’s a manifold, but how would we check? The first thing to do is
verify that F is an immersion. So we compute:

DF (u, v) =

 ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 =

− v4 sin u
2 cosu−

(
1 + v

2 cos u2
)

sinu 1
2 cos u2 cosu

− v4 sin u
2 sinu+

(
1 + v

2 cos u2
)

cosu 1
2 cos u2 sinu

v
4 cos u2

1
2 sin u

2
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Figure 7.10. The Möbius band seen from a few different angles.

To compute the rank of this matrix, we compute the upper 2 × 2 determinant,
which yields − 1

4 cos u2
(
2 + v cos u2

)
. This is nonzero as long as cos (u/2) 6= 0, which

is true as long as u is not an odd integer multiple of π. On the other hand if
u = (2k + 1)π for some integer k, then

DF ((2k + 1)π, v) =

 v
4 0
−1 0
0 1

2

 ,
and the last two rows clearly give a 2 × 2 invertible matrix. Thus DF always has
rank two, using Proposition 3.3.6. So F is an immersion.

Now the map F is certainly not bijective from R2 to R3 since F (u + 4π, v) =
F (u, v) for any (u, v). This is a trivial self-intersection, in much the same way
that the standard parametrization of the unit circle intersects itself. There is also a
nontrivial intersection: F (u+2π, v) = F (u,−v) for any (u, v). It is not hard to check
that these are essentially the only possibilities: F (u, v) = F (p, q) for −1 < v, q < 1
implies that either (u, v) = (p+ 4mπ, q) or (u, v) = (p+ 2π(2m+ 1),−q) for some
integer m.

From this we obtain the following: if we restrict the domain to U1 = (0, 2π) ×
(−1, 1), then F |U1

: U1 → R3 is one-to-one and of maximal rank. Hence there is a
coordinate chart on the subset V1 = F [U1] of the Möbius band M back to U1 which
is smooth by the Inverse Function Theorem 5.2.4. The portion missing is

M\V1 = {F (0, v) | − 1 < v < 1} =
{

(x, 0, 0) | 1
2 < x < 3

2

}
.

Similarly if we restricted the domain to U2 = (−π, π)×(−1, 1), then F |U2 : U2 → R3

generates a coordinate chart on another part V1 = F [U2] of the Möbius band, and
the missing portion is the set

M\V2 = {F (π, v) | − 1 < v < 1} =
{

(x, 0, 0) | − 3
2 < x < − 1

2

}
.

Hence V1 ∪ V2 = M , and these two charts cover the entire Möbius band.
Let’s now look at the transition function and verify that it is smooth. Let

ζ(u, v) = F |−1
U2
◦ F |U1

(u, v). Its domain Ω is the inverse image of V1 ∩ V2 under
F |U1

, which means it’s the set (0, 2π)× (−1, 1) with the set {π} × (−1, 1) deleted,
since F [{π} × (−1, 1)] = M\V2. In other words the domain consists of the disjoint
rectangles Ω = Ω1∪Ω2 where Ω1 = (0, π)× (−1, 1) and Ω2 = (π, 2π)× (−1, 1). The
difference between these two sets is that Ω1 is a subset of both U1 and U2, while
Ω2 is only a subset of U1. We thus have ζ(u, v) = (u, v) if (u, v) ∈ Ω1, while if
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(u, v) ∈ Ω2 then ζ(u, v) = (u− 2π,−v). Obviously these formulas are smooth and
invertible, so we get a differentiable manifold.

To visualize what’s going on, consider the rectangle X = [0, 2π] × (−1, 1). It’s
easy to see that the image F [X] is all of M . Furthermore, since F (0, v) = F (2π,−v)
on X, we can think of F as gluing the left and right sides of X together with a
twist, where for example point (0, 1

2 ) gets glued to (2π,− 1
2 ). See the diagram in

Figure 7.11.

Figure 7.11. The Möbius band coordinate charts: the set U1 is
on top and the set U2 is on the bottom. Imagine gluing the set
above along the gray arrows first to get the setX = [0, 2π]×(−1, 1),
then pulling around and twisting to glue along the black arrows
to get the Möbius strip in Figure 7.10. The transition from U1 to
U2 corresponds to separating U1 at the midpoint, sliding the green
rectangle around to the other side, then flipping it over vertically
to get the black arrows to match up. Hence the transition map ζ
is the identity on the orange set and (u, v) 7→ (u− 2π,−v) on the
green set.

,

The method in Example 7.2.3 is obviously rather cumbersome, although it gives
us a nice explicit picture of coordinate charts and their transitions in a simple but
not trivial case. The essential features which made this work are that F is an
immersion (its derivative has maximal rank everywhere), and that F is invariant
under the action of a discrete group, generated in this case by (u, v) 7→ (u+2π,−v).
This works because the universal cover of the Möbius strip is the strip R× (−1, 1).
We will do the same thing more generally in Theorem 9.1.7.

Clearly the parametrization technique is fraught with problems, although the
idea of finding a fundamental domain ends up being quite powerful. And if it works,
the parametrization automatically gives convenient coordinate charts on a subset
of the original domain. Still it’s much more complicated for most cases. Imagine
trying to prove the same sort of thing with the sphere (where a parametrization by
spherical coordinates has actual singularities).

So we have the following alternative technique.
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Definition 7.2.4. Suppose F : Rn+k → Rk is a C∞ map. Then r ∈ Rk is a regular
value if for every x ∈ F−1(r) ⊂ Rn+k, the rank of DF (x) : Rn+k → Rk is k. If r is
not a regular value, it is called a singular value.

For example, if F : R3 → R is F (x, y, z) = x2 + y2 + z2, then DF (x, y, z) =
(2x 2y 2z), and this will have rank one iff not all of x, y, z are zero. If r > 0 then

F−1(r) consists of points with x2 + y2 + z2 = r, so that DF (x, y, z) has rank one
for all such points. Thus any r > 0 is a regular value. If r = 0 then F−1(r) consists
only of (0, 0, 0) and then DF (0, 0, 0) has rank zero. So r = 0 is a singular point.
If r < 0 then F−1(r) is empty, but then the regular value condition is trivially
satisfied. So any r < 0 is also a regular value but for a different reason.

Theorem 7.2.5. Suppose F : Rn+k → Rk is a C∞ map. Suppose also that r ∈ Rk
is a regular value of F . If F−1(r) is not empty, then it is a C∞ n-dimensional
manifold.

Proof. This is just the Implicit Function Theorem. Let p ∈ F−1(r) be any point;
then DF (p) has rank k. So by rotating the domain Rn+k as in Proposition 3.3.6 and
the discussion before Theorem 5.2.2, we can assume that the right k× k submatrix
of DF (p) is nonsingular. Writing p = (a, b), the hypotheses of Theorem 5.2.2 are
satisfied, so there is an open set V ⊂ Rn containing a and a smooth function
G : V → Rk such that G(a) = b and F

(
x,G(x)

)
= r for every x ∈ V .

The inverse of the coordinate chart will now be g : V → Rn+k given by

g(u1, · · · , un) =
(
u1, · · · , un, G1(u1, · · · , un), · · · , Gk(u1, · · · , un)

)
,

and g maps V into F−1(r), giving a parametrization of F−1(r) in a neighborhood
of p. �

Example 7.2.6. The standard unit sphere S2 is defined by

S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}.

There are two ways to put a manifold structure on S2: one is to use north-pole and
south-pole stereographic coordinates as in the one-dimensional case from Example
7.1.7. This gives us two coordinate charts that together cover S2, which is certainly
sufficient to define a smooth manifold structure.

The other way is to use the Implicit Function Theorem as in Theorem 7.2.5.
Define F : R3 → R by F (x, y, z) = x2 + y2 + z2. Then the derivative operator is

DF (x, y, z) =
(
2x 2y 2z

)
,

and as long as at least one of the components is nonzero, this matrix has rank one,
which is maximal. If F (x, y, z) = r = 1, i.e., x2 + y2 + z2 = r = 1, then not all
components are zero, so r = 1 is a regular value. What charts do we obtain from
Theorem 7.2.5?

Suppose (x0, y0, z0) is a point in S2 with z0 6= 0. Then the right 1× 1 submatrix
of DF (x0, y0, z0) is nonsingular, and there is an open set V ⊂ R2 containing the
point (x0, y0) and a smooth function G : V → R such that G(x0, y0) = z0 and

x2 + y2 + G(x, y)2 = 1. Clearly if z0 > 0 then G(x, y) =
√

1− x2 − y2 on the
open set V = {(x, y) ∈ R2 |x2 + y2 < 1}. This gives the usual parametrization of
the top hemisphere, and if z0 < 0 we would get the parametrization of the bottom
hemisphere.
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We then obtain a map g : V → R3 given by

g(u, v) =
(
u, v,

√
1− u2 − v2

)
.

The actual coordinate chart φ : S2 → R2 is the restriction of Φ: R3 → R2 given by
Φ(x, y, z) = (x, y): we have φ = Φ

∣∣
S2∩[R2×(0,∞)]

. (Obviously φ makes sense on all

of S2, but it is only invertible on the upper half or lower half.)
The assumption z0 6= 0 thus yields two coordinate charts that cover the open

top hemisphere and the open bottom hemisphere, which together leave out the
“equator” circle when z = 0. To cover the rest of S2 with the Implicit Function
technique, we need to be able to switch the coordinates when z = 0. This process
yields a pair of coordinate charts for x > 0 and x < 0, and another pair of charts
when y > 0 and y < 0. Thus in total we obtain six coordinate charts using this
technique. See Figure 7.12 for an illustration of these six charts.

Figure 7.12. The six hemispherical coordinate charts arising
from applying Theorem 7.2.5. This illustration is from the cover
of M.P. do Carmo’s Riemannian Geometry.

Smoothness of the transition functions follows from Theorem 7.2.5, but let’s
check explicitly between the hemisphere x > 0 and the hemisphere z < 0. Set
U = S2 ∩ (0,∞)×R2 and V = S2 ∩R2× (−∞, 0). Then the charts are (φ,U) with
φ(x, y, z) = (y, z) and (ψ, V ) with ψ(x, y, z) = (x, y), and we have

(p, q) = ψ ◦ φ−1(u, v) = ψ
(√

1− u2 − v2, u, v
)

=
(√

1− u2 − v2, u
)

which is defined on the set {(u, v) ∈ R2 |u2 +v2 < 1, v < 0} and has smooth inverse

(u, v) = φ ◦ ψ−1(p, q) =
(
q,−

√
1− p2 − q2

)
.

,

Our final example uses a little of both techniques: the parametrization and
quotient method of Example 7.2.3 and the Implicit Function method of Example
7.2.6.

Example 7.2.7. The 2-torus is denoted by T2. There are a variety of ways to
define it, but the simplest is as the subset

T2 = {(w, x, y, z) ∈ R4 |w2 + x2 = 1, y2 + z2 = 1}.
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If F : R4 → R2 is given by F (w, x, y, z) = (w2 + x2, y2 + z2), then T2 = F−1(1, 1),
and it is easy to verify that DF (w, x, y, z) always has rank two on T2. We then use
Theorem 7.2.5 to show that T2 is a smooth manifold.

Alternatively we can define G : R2 → R4 by the formula

G(u, v) = (cosu, sinu, cos v, sin v).

We check that DG(u, v) always has rank two, so it’s an immersion, and that G(u+
2mπ, v) = G(u, v + 2nπ) = G(u, v) for any integers m and n. We then build
coordinate charts using sets like (0, 2π)× (0, 2π) as in Example 7.2.3.

Of course it’s hard to visualize T2 in R4, so a more common visualization is
through a parametrization like H : R2 → R3 given by

H(u, v) =
(
(a+ b cosu) cos v, (a+ b cosu) sin v, b sinu),

where a > b. This gives the usual doughnut picture, although geometrically it’s not
nearly so nice. For example, near the end of the text we will be able to show that
the embedding in R4 gives a flat surface while the embedding in R3 is intrinsically
curved. ,
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8. Low-dimensional examples of manifolds

“I don’t like sand. It’s coarse and rough and irritating, and it gets everywhere.
Not like here. Here everything’s soft, and smooth.”

In this Chapter and the next, we will go over the basic examples that every
student of differential geometry is expected to see.

In each case the classification of manifolds relies on various topological proper-
ties. This will only work when the manifold is one-, two-, or three-dimensional,
since as mentioned above every topological manifold is a smooth manifold in those
dimensions but not in higher dimensions. Furthermore in higher dimensions there
are too many possibilities to even construct an algorithm for distinguishing mani-
folds, and therefore there cannot be a classification of them.12

Generally the easier case is when the manifold is compact. In the usual (classical)
terminology, a compact connected manifold is called closed.13

8.1. One dimension. There are only two connected one-dimensional manifolds
satisfying Definition 7.1.5. The distinguishing feature is compact vs. noncompact,
so we get either S1 or R. Note that the Hausdorff property and second-countability
are essential for this classification to work—otherwise the long line (Example 7.1.3)
and the line with two origins (Example 7.1.4) would violate the classification. We
will see in the proof exactly where these assumptions are used.

First we need a classification theorem which is fairly well-known in one-variable
real analysis.

Lemma 8.1.1. Every open set Ω in R is a countable union of disjoint open inter-

vals: Ω =
⋃N
n=1(an, bn) where N is either a natural number or infinity.

Proof. We will just sketch the proof. Given any point x ∈ Ω, let bx = sup{y | (x, y) ⊂
Ω} and ax = inf{y | (y, x) ⊂ Ω}. Show that (ax, bx) ⊂ Ω, and that if y ∈ (ax, bx),
then ay = ax and by = bx. Hence either (ax, bx) = (ay, by) or (ax, bx)∩ (ay, by) = ∅
for all x, y ∈ Ω. Every open interval contains a rational number, so there can’t be
more than countably many such open intervals. Finally Ω must actually equal the
union of all these intervals. �

First we use Lemma 8.1.1 to prove a Lemma about coordinate charts on a one-
dimensional (Hausdorff) manifold.

Lemma 8.1.2. Let (φ,U) and (ψ, V ) be two coordinate charts on a one-dimensional
Hausdorff manifold M with φ[U ] = ψ[V ] = R. Suppose U overlaps V but that nei-
ther U nor V is a subset of the other. Then U ∩ V is either homeomorphic to
a single open interval or two disjoint open intervals. In the first case U ∪ V is
homeomorphic to R, and in the second case U ∪ V is homeomorphic to S1.

Proof. Let W be one component of U ∩ V , so that W is homeomorphic to an open
interval; then both I = φ[W ] and J = ψ[W ] are open intervals in R. I claim
these intervals must be half-infinite. Assume to get a contradiction that I = (a, b)

12A.A. Markov, “Insolubility of the Problem of Homeomorphy,” English translation at

http://www.cs.dartmouth.edu/∼afra/goodies/markov.pdf
13Of course, as a topological space, every manifold is closed, so this is a genuine difference in

terminology.
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for finite a, b. Let J = (c, d) where c or d may be infinite. If J is all of R, then
ψ[W ] = ψ[V ] which means V = W ⊂ U , contradicting the fact that neither U nor
V is a subset of the other. So either d is finite or c is finite; assume without loss of
generality that d is finite.

The map ψ ◦ φ−1 : (a, b) → (c, d) is a homeomorphism, which is either strictly
increasing or strictly decreasing. We can assume it’s increasing. Then we must
have

(8.1.1) lim
t→b−

ψ ◦ φ−1(t) = d.

Let δ = ψ−1(d) ∈ V and β = φ−1(b) ∈ U . The point δ cannot be in U ; if it were,
then we’d have δ ∈ U ∩ V , so that δ ∈W and thus d ∈ J , contradicting J = (c, d).
Similarly β cannot be in V , because if it were then β ∈ W and thus b ∈ I. I want
to say that β = δ to get a contradiction. See Figure 8.1.

Figure 8.1. A possible schematic of what must happen if φ[U∩V ]
is a bounded subset of R. Here there are two copies of the open
set W = U ∩ V shown in red; β is an endpoint of W in U and δ
is an endpoint of W in V . Since β ∈ U and δ ∈ V , and β must
equal δ by the Hausdorff property, we see that β = δ ∈ W , which
contradicts the fact that these are endpoints of W .

If β 6= δ, then by the Hausdorff property, there would be disjoint open sets B
and D in M such that β ∈ B and δ ∈ D. Now φ[B] contains b, so it has points
slightly smaller than b; by (8.1.1) all points sufficiently close to b and smaller than
b must end up as close as we want to d under the map ψ ◦ φ−1. But ψ[D] is
an open set containing d, which means there is at least one point x ∈ φ[B] such
that ψ ◦ φ−1(x) ∈ ψ[D]. In other words, the point φ−1(x) is in both B and D,
contradiction. Thus we actually have β = δ, and this contradicts the fact that
β ∈ U\V and δ ∈ V \U .

We derived all this from the assumption that φ[W ] = (a, b) where a and b are
both finite. Thus if U and V are overlapping charts on M , neither of which is a
subset of the other, then any component of U ∩V must map under both φ and ψ to
at least a half-infinite interval in R. Hence in particular there can’t be more than
two components of U ∩ V .

This tells us that exactly one of the following happens for the set I = φ[U ∩ V ]:

(1) I is all of R,
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(2) I = (b,∞) for some finite b,
(3) I = (−∞, a) for some finite a,
(4) I = (−∞, a) ∪ (b,∞) for −∞ < a ≤ b <∞.

Case (1) is impossible since it implies U ∩ V = U , i.e., that U ⊂ V .
In cases (2) or (3), we can easily see that U ∪ V must be homeomorphic to

R. For example in case (2) we know that J = ψ[U ∩ V ] must be homeomorphic
to (b,∞) and must be half-infinite, so it must look like (−∞, a) or (c,∞). Since
any two open intervals in R are homeomorphic whether finite or half-infinite or
infinite, we can compose ϕ and ψ with homeomorphisms to obtain homeomorphisms
ϕ̃ : U → (−∞, 1) and ψ̃ : V → (0,∞) such that φ̃[U ∩ V ] = ψ̃[U ∩ V ] = (0, 1). We
then define the map ζ : U ∪ V → R by setting ζ = φ on U and ζ = ψ on V \U ;
then ζ is continuous since the limit of φ and the value of ψ match up at the point
β = ψ−1(1). See Figure 8.2.

Figure 8.2. As in Figure 8.1, if we have charts that overlap in
exactly one interval, then we can arrange it so that U maps to
(−∞, 1) and V maps to (0,∞). Combining the maps gives a chart
on U ∪ V .

Finally in case (4) I claim U ∪ V is homeomorphic to S1, as in Example 7.1.7.
Obviously ψ[U ∩V ] must also be at least half-infinite, and since it is homeomorphic
to two disjoint open sets, it must also consist of two disjoint open sets; call them
ψ[U ∩ V ] = (−∞, c) ∪ (d,∞) with c ≤ d. We have α = φ−1(a) /∈ V and β =
φ−1(b) /∈ V , along with γ = ψ−1(c) /∈ U and δ = ψ−1(d) /∈ U . See Figure 8.3 for
an illustration, which should make it clear how to write down a homeomorphism
from U ∪ V to S1.

�

Theorem 8.1.3. The only connected one-dimensional topological manifolds are S1

and R.

Proof. Obviously R is a smooth manifold with the identity map as coordinate chart.
That S1 is a smooth manifold follows from our computation of the coordinate
charts in Example 7.1.7; alternatively we can use its expression as F−1(1) where
F (x, y) = x2 + y2, along with Theorem 7.2.5, exactly as we did with S2. The
circle is clearly connected, since it’s the image of R under the parametrization
(x, y) = (cos t, sin t).



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 77

Figure 8.3. In case (4), the union U ∪ V must be homeomorphic
to a circle. Here the purple parts represent U ∩ V .

Now suppose M is a connected one-dimensional manifold. We will prove M is
homeomorphic to S1 or R. Since it’s a manifold, it has coordinate charts consisting
of open sets homeomorphic to R. Our goal will be to reduce the number of coordi-
nate charts actually needed to either one or two; in the former case we should get
R and in the latter we should get S1.

Now we put it all together. Since M is second countable, it is Lindelöf; in other
words every open cover has a countable subcover. Thus we need only countably
many of the coordinate charts to cover all of it. So we can write M = ∪iUi where
there are finitely many or countably many i. Start with U1; if U1 ∩Uj is empty for
every j > 1, then we can write M as the disjoint union of U1 and ∪j>1Uj , which
contradicts the assumption that M is connected. So there is a smallest j such that
U1 ∩ Uj 6= ∅, and we might as well call this U2. From above, either U1 ∪ U2 is
homeomorphic to R or U1 ∪ U2 is homeomorphic to S1. In the former case we can
set U ′1 = U1 and U ′2 = U1 ∪ U2, then look for the next set (suppose it’s U3) which
intersects it. If U ′2 ∪ U3 is not homeomorphic to S1, set U ′3 = U ′2 ∪ U3. Continuing
in this way, we either get a countable nested union of intervals each of which is
homeomorphic to R, in which case the entire manifold is homeomorphic to R, or we
stop at some point because we have found a copy of S1 inside M . (If that happens,
then all other open sets which intersect U ′n must be proper subsets.) �

In the proof above we can see clearly where the assumptions that M is second
countable and Hausdorff enter, as they must: otherwise we could get the line with
two origins or the long line as in Examples 7.1.3–7.1.4. But already the proof is
rather long. In higher dimensions it will be impossible to give a direct proof like
this, and instead we have to apply techniques from algebraic topology.

8.2. Two dimensions. The two-dimensional manifolds have been completely clas-
sified. The easiest to understand are the closed (i.e., compact) manifolds, of which
the foods in Figure 7.4 are the simplest examples.

The essential idea for this classification relies on the idea of triangulation, which
is a way of systematically approximating a manifold by a simplicial complex. The
way in which we do this is very similar to the representation of the Möbius band in
Example 7.11, as a polygon in R2 with certain sides identified. An example of what
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we’re going for is shown in Figure 8.4. Notice the following properties which are
going to make counting things much easier: the intersection of any pair of triangles
is either empty, exactly one edge, or exactly one vertex. Notice also that if we
unhinge the triangle at a few of the edges, we can unfold it into a planar figure, as
garishly illustrated below. (Of course, after cutting it at various edges, we have to
remind ourselves to glue them back together.) The planar figure is substantially
easier to work with than an embedded polyhedron in three (or four) dimensions.
Once we have a planar figure for a triangulation, we can eliminate some edges while
still keeping the figure planar. In this way we end up representing a triangulated
surfaces as a polygon with some sides identified.

Figure 8.4. On top, the round sphere and its triangulation as a
polyhedron in R3. On the bottom, a planar diagram of the tri-
angulation, and a simplified version: the coin-purse model, which
we obtain by zipping up the edges on the triangulation diagram to
remove the C and D vertices. (If we zipped up the edges here, it
would close up to give a topological sphere.)

The smallest triangulation of the torus has 14 faces, as shown in Figure 8.5. The
simplified planar model is shown next to it. You can check that any faces intersect
in only one edge or only one point. If you try to use fewer triangles (for example,
if you tried dividing the planar model into four squares and cut each square in half
diagonally), the triangles end up having too many intersections.
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Figure 8.5. The minimal-face triangulation of the torus due to
Möbius, and the simplified version.

Now that we have an intuitive idea of what a triangulation is, it’s time for some
definitions.

First is the notion of quotient space. I used this already in Example 7.2.3, to
think of the Möbius band as a certain quotient space of [0, 2π]× (−1, 1) modulo the
equivalence (0, v) ∼= (2π,−v), or alternatively as R×(−1, 1) modulo the equivalence

(8.2.1) (x, y) ∼= (x+ 2nπ, (−1)ny) for any n ∈ Z.

(The former is convenient since there is only one pair of edges to be identified; the
latter is convenient since the equivalence is generated by a group action.)

Definition 8.2.1. An equivalence relation is a relation ∼= satisfying the properties

(1) p ∼= p for all p ∈M ;
(2) p ∼= q ⇔ q ∼= p, for all p, q ∈M ;
(3) If p ∼= q and q ∼= r, then p ∼= r.

The equivalence class of a point p is

[p] = {q ∈M | q ∼= p}.

We often write the projection from the set of all points to the set of all equivalence
classes as π(p) = [p].

The quotient space is a topological space Q consisting of all equivalence classes;
a set U in Q is open if and only if π−1(U) = {p ∈M | [p] ∈ U} is open in M .

Example 8.2.2. The Möbius band quotient relation is actually an equivalence
relation. Explicitly, first (x, y) ∼= (x, y) since n = 0 ∈ Z. Second, if (x, y) ∼= (p, q)
then p = x + 2nπ and q = (−1)ny for some n ∈ Z, and therefore (p, q) ∼= (p −
2nπ, (−1)−nq) = (x, y) since −n is in Z whenever n is. Third, if (x, y) ∼= (p, q) and
(p, q) ∼= (c, d), then for some integers m and n we know p = x+ 2mπ, c = p+ 2nπ,
q = (−1)my, and d = (−1)nq. Therefore c = x+ 2(m+ n)π and d = (−1)m+ny, so
(x, y) ∼= (c, d).

Similarly the torus quotient relation (x, y) ∼= (x+2mπ, y+2nπ) for any m,n ∈ Z
is an equivalence relation.

However, the quotient space of a manifold doesn’t have to be a manifold. For
example in R2, if (x, y) ∼= (p, q) whenever x2 + y2 = p2 + q2, then the equivalence
classes are circles along with the origin, and the quotient space is [0,∞), which is
not a manifold. One needs extra assumptions to ensure that it is. We will discuss
this again in Theorem 9.1.7. ,
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Definition 8.2.3. Let T be any standard triangle in R2; to be specific we can use
the one with vertices (0, 0), (0, 1), and (1, 0). The “edges” are the closed subsets
each of which can be identified with the closed interval [0, 1], while the “face” is
the entire closed set.

A triangulation of a two-dimensional manifold M is a finite or countable collec-
tion of closed subsets Ti of M , such that there is a homeomorphism φi : T → Ti.
Via this homeomorphism we can identify the three edges Ei1, Ei2, and Ei3, as
well as the three vertices Vi1, Vi2, and Vi3. We require it to satisfy the following
properties:

• The triangles cover M , i.e.., ∪iTi = M .
• For any i and j, the intersection Ti∩Tj is either exactly one vertex, exactly

one entire edge, or empty.
• An edge of any one triangle is an edge of exactly one other triangle.

The triangulations of the torus and sphere shown above satisfy all three crite-
ria. The second condition is for convenience, while the third condition is clearly
necessary to make the space a manifold.

Note that we only ask that Ti be homeomorphic to the triangle, so it doesn’t
have to look much like one. For example you could pick any three distinct points
on the boundary of a disc and call that a triangle, as in Figure 8.6. In particular we
don’t care if the internal angles add up to π, and thus we don’t care for example if
three triangles in the manifold meet at a single vertex and the sum of angles at the
vertex is more than 2π. This might affect smoothness but not anything topological.
For example, cutting each of the sides of a cube in half diagonally gives a decent
triangulation of the sphere.

Figure 8.6. Either one is just as good a triangle.

It turns out every two-dimensional topological manifold has a triangulation; we
will sketch the proof below. The first rigorous proof of this was in 1925 by Tibor
Radó14 It shouldn’t be too hard to believe this intuitively, although a rigorous
proof is somewhat involved. All proofs I’ve seen depend on the Jordan-Schoenflies
theorem, which states that a simple closed curve separates a plane into two disjoint
regions, and there is a homeomorphism from the plane to itself which maps that
closed curve onto a circle. (This fact itself has a rather involved proof.) The
corresponding result in three dimensions using tetrahedra is even harder15 The

14See for example Ahlfors and Sario, Riemann surfaces, for the original proof in English, or
Doyle and Moran, “A short proof that compact 2-manifolds can be triangulated,” Inventiones

mathematicae, 5 pp. 160–162 (1968).
15E.E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptver-

mutung, Annals of Mathematics (2), 56 pp. 96–114.
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result in four dimensions is false due to the E8 manifold example of Freedman
mentioned above. The result in higher dimensions is unknown, although for smooth
manifolds it is known to be true in any dimension.16

Theorem 8.2.4. Any two-dimensional topological manifold has a triangulation. If
the manifold is compact, then it has a finite triangulation.

Proof (Sketch). The idea of the proof is to set up a covering by coordinate charts,
each of which intersects only finitely many other coordinate charts. (For a compact
manifold this is obvious, since we only need finitely many coordinate charts. Gen-
erally we need second-countability and local compactness.) One then establishes
that the boundary of each chart is a simple closed curve, and the Jordan-Schoenflies
theorem shows that the curves divide the manifold into regions homeomorphic to
a closed disc, overlapping other such sets only at the boundary. Then, again using
finiteness, we subdivide each of these disclike regions into triangles by introducing
new vertices in the interior. �

Our first task is to classify compact surfaces, which is clearly easier since there
are only finitely many triangles to worry about.

The most important step is to reduce a compact surface to a diagram as for the
sphere or torus: a polygon with sides identified in pairs. Examples include those
shown in Figure 8.7, which we will discuss in detail later.

Figure 8.7. Several surfaces expressed as the quotient space of
a polygon. Following the perimeter counterclockwise gives the
“word” which completely describes the manifold structure. The
sphere, expressed as aa−1; the projective plane, expressed as aa;
the torus, expressed as aba−1b−1; and the Klein bottle, expressed
as abab−1.

16S.S. Cairns, On the triangulation of regular loci, Annals of Mathematics (2), 35 pp. 579–587

(1934).
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Theorem 8.2.5. Every connected compact two-dimensional manifold M is home-
omorphic to the quotient of a polygon in the plane, with an even number of sides,
and the sides identified pairwise.

Proof. From Theorem 8.2.4, we know that M is homeomorphic to a space consisting
of finitely many triangles. Pick one, and call it T1. We know T1 intersects some
other triangle in an edge, for otherwise the space wouldn’t be a manifold. So pick
one that intersects T1 in an edge and call it T2. Either we are done, or there are
more triangles in the list. If there are more, then at least one of them must intersect
T1 ∪T2 in an edge, because if the intersection were empty then the manifold would
not be connected, and if the intersection were just one point then it would not be
a manifold. (It would have to look like the union of two cones joined at a point.)
We keep going like this, listing the triangles as T1, . . . , TN where each Ti shares an
edge with at least one triangle that’s listed earlier. Write the specific edges used as
E2 (the edge that T1 and T2 share), E3 (the edge that T3 shares with either T1 or
T2), etc., up to EN .

Now we arrange the triangles in the plane. Technically what we’re going to
do is consider the disjoint union of planar triangles with edges identified as our
equivalence relation (that is, if a point is interior to a triangle, it is equivalent only
to itself; if it is on an edge of a triangle, it is equivalent to exactly one other point
on some other edge). Then the manifold will be homeomorphic to the quotient
space of this union of triangles.

To actually get a workable model, though, we’re going to explicitly eliminate the
edges listed as Ei by actually gluing the triangles together there (and then forgetting
about them); in other words, replace the first triangle with a quadrilateral, add
another triangle to get a pentagon, etc. All the other edges are going to end up on
the outside of the polygon, but there will still be some guide by which they’ll be
identified.

The things to check precisely are that

(1) the union of two polygons homeomorphic to a disc, with one side on each
identified in the quotient topology, is still homeomorphic to a disc;

(2) that quotient spaces can be done sequentially; that is, if side E and side F
are to be identified, we can first identify side E, then identify side F , and the
result will be topologically the same as if we did them both simultaneously.

The reason the second property matters is that we will only glue a triangle onto
the polygon in a way that keeps the diagram planar. Clearly if we already had a
planar polygon and we glued just one new triangle along some edge, the graph would
still be planar; hence we glue edges if they keep the graph planar, and otherwise
just add them to the outside of the polygon.

The fact that an even number of edges are left over on the perimeter is a conse-
quence of the fact that there have to be an even number of edges to start with, since
every edge must belong to exactly two triangles. We eliminate an even number of
edges through identification, and so we have an even number left over. �

So at this point we have a polygon with some edges that we will call a1 through
an, each one repeated once. (So 2n edges in all.) By going counterclockwise and
identifying the edges in order, we can uniquely specify the polygon. Each edge has
a direction, so if we encounter aj facing counterclockwise we list it as aj , and if

it’s facing clockwise we write it as a−1
j . Then the entire path will have a “word”
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like aba−1ccb−1, which specifies it up to rotation. The motivation for writing it
this way is because this is how it would show up in the fundamental group. See
Theorem 8.2.12 a bit later.

Now as you can imagine, there is more than one way to triangulate a surface,
and it’s quite possible we could have the same surface with two different polygons
and two different words. (There’s no reason to have the same number of sides, for
example, and even if they did it’s easy to rearrange the figure so that the words are
different.) So how can we get a classification? Well there’s a nice, easy-to-visualize
procedure for reducing these things to a standard form.

Lemma 8.2.6. (First reduction) If the word obtained by following the polygon
boundary contains a term of the form aa−1, and these are not the only edges, then
we can eliminate this expression.

Proof. If the entire word is aa−1, then we have a sphere. Otherwise, we just fold
that part over and zip it up, and we end up with two fewer edges. See Figure
8.8. �

Notice this does not work if you see aa: this represents a projective plane which
cannot be eliminated.

Figure 8.8. Lemma 8.2.6 example: eliminating a word that con-
tains aa−1. Fold the polygon over between those edges and glue
them together. Then you can ignore them completely.

Lemma 8.2.7. (Second reduction) Any word formed by the boundary of a polygon
can be set up so that there is only one vertex (i.e., every edge is actually a circle).

Proof. Again I’ll illustrate with a simple explicit example. In Figure 8.9, we start
with a polygon with word abcabc. It has three different vertices: P which is always
the start of a and the end of c, Q which is the start of b and the end of a, and R
which is the start of c and the end of a. Q appears twice here, and let’s say I want
to get rid of it. I look at two edges coming out of Q, and I draw a triangle taking a
shortcut past Q. This gives a new side, here called d, which I can then cut along.
I take the newly created triangle and detach it, then flip/rotate/slide it across so
I can join it onto another side. I join it so that the Q points match up, and in
so doing I’ve now reduced the number of Q from two to one. (I’ve also added one
more R.) This works generally: no matter how many times a point Q appears, I
can cut a triangle along a diagonal such that Q is the opposite end, then glue that
triangle up against another Q appearing somewhere else, and in so doing I have
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reduced the number of Q points by one (and increased some other type of point
by one). Eventually I get down to one Q remaining, as in this case, and when that
happens we must get to something as shown: Q has two edges facing out of it going
in the same direction, which we can then zip up as in Lemma 8.2.6 to eliminate Q
entirely from the perimeter. So instead of three different vertices we end up with
two. Then we can go after one of those using the same construction and eliminate
it, until all vertices are identified with the same point. �

Figure 8.9. Lemma 8.2.7 example: eliminating one vertex in fa-
vor of another. Cut out the offending vertex with a triangle, slide
it over to match it with another copy of it, then reattach it there.

Lemma 8.2.8. (Third reduction) Suppose an edge shows up twice in the word of
a polygon boundary in the same direction both times, such as · · · a · · · a · · · , then
we can replace the pair by another pair of edges in the same direction and also
consecutive, i.e., · · · ee · · · .

Proof. The idea is shown in Figure 8.10. We draw a line from the end of one copy
of a to the same end of the other copy of a. The shortcut arrow e goes in the
same direction as a. We now cut along e and end up with two polygons (there’s
no reason either has to be a triangle), which we now paste along a. Since both a
arrows were going in the same direction, we need to flip over one of the polygons in
order to glue it to the other. Now in what remains of the original polygon there is a
sequence a→ e, and in the new cut polygon we have a and e both having the same
tail and facing the same direction. So when we glue along a, we get a sequence ee
with both arrows in the same direction. �

Lemma 8.2.9. (Fourth reduction) Suppose we have two edges a going in opposite
directions and two edges b going in opposite directions, such as · · · a · · · b · · · a−1 · · · b−1 · · · .
Then we can assume they appear consecutively as aba−1b−1.

Proof. See Figure 8.11. We draw a line from one end of a to the other and cut
there, calling the new edge e. We then slide this piece across the diagram so that
we can glue it along b. Notice that since the b edges were in opposite directions, we
don’t have to flip this piece. Now we end up with a sequence aea−1. Furthermore,
since we didn’t have to flip the second polygon, the two e edges are now also going
in opposite directions. So we can perform the same trick, drawing a line from one
endpoint of e to the other and cutting along the new edge f . Gluing along a, it is
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Figure 8.10. Lemma 8.2.8 example: replacing two arrows going
in the same direction with two consecutive arrows in the same
direction. Cut from the tail of one to the tail of the other, flip
over, slide and reattach along the arrows you want to replace.

easy to see that we end up with the two f edges now interspersed between the e
edges and in opposite directions. �

Figure 8.11. Lemma 8.2.9 example: if we have two pairs of edges
a and b, both of which are in opposite directions and not adjacent,
we can eliminate them and get new edges e and f such that they
appear in the pattern efe−1f−1 in the word. We just do the same
operation twice: cut a line from the tail of one to the tail of the
other, then glue along the original edge.

Putting this all together, we see that we can separate all pairs into those going
the same way (in which case they become consecutive and look like cc) or pairs
going the opposite way (in which case they either cancel out, or end up in the form
aba−1b−1).
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Now let’s see what we’ve got. Notice that cc (by itself) is the word corresponding
to the projective plane shown in Figure 8.7 (upper right corner), while aba−1b−1

is the word corresponding to the torus (lower left corner). Looking at the diagram
in Figure 8.12, we see that we can separate all a, b sides from all c sides by cutting
a new d side. d is topologically a circle (remember, all vertices are going to be
identified to the same point by Lemma 8.2.7, so that any segment from one vertex
to another is actually a circle). Hence we can think of ccaba−1b−1 as coming from
two disjoint manifolds which are connected by cutting a disc out of each and then
gluing the manifolds along that disc. As long as we only do one at a time, this will
still be a manifold (in a neighborhood of the boundary circle, we have half of Rn
coming from one manifold and the other half coming from the other manifold). In
this way we can break up any complicated two-dimensional manifold into “prime
factors.”

Figure 8.12. Decomposing a manifold with word ccaba−1b−1 into
the connected sum of the torus T2 and the projective plane P2.

Again it’s time for a general definition. Connected sums are very intuitive and
easy to visualize, and they are also one of the most useful ways we have of finding
interesting manifolds.

Definition 8.2.10. SupposeM andN are two 2-dimensional topological manifolds.
The connected sum S, denoted by M#N , is a new topological space constructed
by the following procedure. Take any subsets D ⊂ M and E ⊂ N which are
homeomorphic to the closed unit ball

B1(0) = {x ∈ R2 | ‖x‖ ≤ 1}.

Remove the interiors of D and E to get just the boundaries ∂D and ∂E. Let
γ : S1 → ∂D and δ : S1 → ∂E be homeomorphisms. Put an equivalence relation on
the disjoint union (M\ intD) ∪ (N\ intE) by saying γ(θ) ∼= δ(θ) for every θ ∈ S1.
Then S = M#N is the quotient space, and it is a topological manifold. See Figure
8.13.

We can also define higher-dimensional connected sums; for example we might
take two copies of R3 and cut out a solid torus from each, then glue the spaces
together along the boundary (a 2-torus). Clearly this operation can get much more
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Figure 8.13. An illustration stolen form the “Connected Sum”
article on Wikipedia. Here a 2-holed torus has been combined with
a standard 1-holed torus to give a 3-holed torus.

complicated than in the two-dimensional case, but it’s still considered the basis for
any possible classification of three-dimensional manifolds.

One can prove (using the polygonal representations) that the connected sum
operation is commmutative, i.e., M#N = N#M homeomorphically, and that it is
associative, i.e., (M#N)#P = M#(N#P ) homeomorphically. Hence it really is
appropriate to think of it as a kind of multiplication. It’s not hard to see that the
sphere S2 serves as the identity in this multiplication, since cutting a disc out of
the sphere gives another disc left over, and gluing that in to replace a disc in M
just gives M back again.

The Lemmas above, along with the triangulation result, have now almost proved
the following famous classification.

Theorem 8.2.11. Every two-dimensional compact topological manifold is either
S2, or a connected sum of n copies of the torus T2 for some positive integer n, or
the connected sum of n copies of the projective plane P2 for some positive integer
n.

To see this, just write the word as some number of terms of the form aibia
−1
i b−1

i

and some number of terms of the form cici, and separate all the terms by cutting.
The manifold is then a connected sum of the pieces we have separated.

The only issue is what happens if we have T2# · · ·#T2#P2# · · ·#P2. Actually
we can reduce all the terms to projective planes, just using the following formula:
T2#P2 = P2#P2#P2. (You’ll prove this in the homework.)

To prove these are all actually different, one uses the fundamental group. This
computation can basically be done in a standard topology course using the Seifert-
van Kampen theorem, so we will not prove it here.

Theorem 8.2.12. Suppose M is an compact two-dimensional manifold that comes
from a polygon with word reduced to the form a1b1a

−1
1 b−1

1 · · · anbna−1
n b−1

n . Then the
fundamental group of M is the group generated by all possible combinations of the
elements ak and bk modulo the single relation

a1b1a
−1
1 b−1

1 · · · anbna−1
n b−1

n = 1.

Alternately if M is a compact two-dimensional manifold that comes from a poly-
gon with word reduced to the form a1a1 · · · anan, then the fundamental group of M
is the group generated by all possible combinations of ak modulo the single relation

a1a1 · · · anan = 1.
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For example in case n = 1 with word aba−1b−1, we have M ∼= T2, and the
fundamental group is generated by a and b with relation aba−1b−1 = 1, which
translates to ab = ba. So it’s commutative and must be Z2. In case n = 1 with
word aa, the fundamental group is generated by a with relation a2 = 1, so it’s Z2.

The fundamental groups are pretty nasty in most other cases, but an easy way
to distinguish them is to abelianize; that is, demand that all the elements commute
with each other in addition to satisfying the relevant relation in Theorem 8.2.12.
(This is equivalent to considering the first homology group rather than the first ho-
motopy group.) Then ifM is a connected sum of n tori, the abelianized fundamental
group is Z2n (the single relation is automatically true). And if M is a connected
sum of n projective planes, the abelianized fundamental group is Zn−1 × Z2, since
the one relation is equivalent in the abelianized case to (a1 · · · an)2 = 1.

Two concepts are used to distinguish compact surfaces: genus and orientability.

Definition 8.2.13. If M is a two-dimensional compact manifold which is the con-
nected sum of n tori or the connected sum of n projective planes, then n is called
the genus of M . The sphere S2 has genus zero.

The genus is the number of disjoint simple closed curves (i.e., homeomorphic to
S1) that can be removed from the surface without making it disconnected. Thus it
is a topological invariant, and surfaces with different genus are not homeomorphic.

Definition 8.2.14. If there is a family (φi, Ui) of C∞ coordinate charts covering a
smooth manifold M such that whenever Ui∩Uj 6= ∅, the map φi◦φ−1

j : φj [Ui∩Uj ] ⊂
Rn → φi[Ui ∩ Uj ] ⊂ Rn has det(D(φi ◦ φj)−1) > 0 everywhere, then M is called
orientable.

Note that since φi ◦ φ−1
j is C∞ and its inverse is as well, the derivative must

be nonsingular everywhere, and hence the determinant is either always positive or
always negative on any connected subset. There is a purely topological definition
of orientability, but it’s a bit more complicated, and we won’t need it.

The simplest orientable manifold is the sphere.

Example 8.2.15. The 2-sphere S2 is orientable. For example we can use the
explicit coordinate charts given by hemispherical charts in Example 7.2.6. Even
more simply we can use the two-dimensional analogue of the stereographic coor-
dinates from Example 7.1.7; then there are only two coordinate charts, and you

can check that the transition map is (p, q) =
(

u
u2+v2 ,

v
u2+v2

)
. Unfortunately we

have puqv − pvqu = −1/(u2 + v2)2, which is negative! However we could just

switch the coordinates to get (p̃, q̃) =
(

v
u2+v2 ,

u
u2+v2

)
, which yields puqv − pvqu =

1/(u2 + v2)2 > 0. ,

We can also check that the torus T2 is orientable.

Example 8.2.16. The torus T2 is orientable. The basic idea is to use the exact
same method as in Example 7.2.3 to parametrize the torus, such as by a map

F (u, v) =
(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)
.

The image of this map is shown in Figure 8.16. The parametrization is defined on
R2, but restricting to certain open sets, we obtain bijections that yield coordinate
charts. The transition maps all end up being formulas of the form (u, v) 7→ (u +
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2mπ, v + 2nπ) where m and n are either 0, 1, or −1, and these transition maps all
have positive Jacobian determinant. ,

It can be shown that the connected sum of two orientable manifolds is also ori-
entable, and thus Example 8.2.16 shows that an n-holed torus is always orientable.

Example 8.2.17. The Möbius band defined in Example 7.2.3 is not orientable.
We already showed there how to cover it with two coordinate charts which intersect
in two disjoint open sets. The transition map is given by either (u, v) 7→ (u, v) or
(u, v) 7→ (u − 2π,−v); the first of these has positive Jacobian determinant, while
the second one has negative Jacobian determinant. No trick like switching variables
in Example 8.2.15 will change this, since it will correct the sign on one component
and break it on the other component.

Furthermore even if we had some totally different family of coordinate charts,
they could not possibly satisfy the positive-Jacobian compatibility condition: they
would have to be compatible with the charts we already have, and the charts we
have are not compatible with each other. ,

Finally one can prove that an open subset of an orientable manifold is also ori-
entable. This fact shows that any manifold which contains a subset homeomorphic
to the Möbius strip is not orientable. Examples include the projective plane P2 (see
Figure 8.14) and the connected sum P2#T2# · · ·#T2.

Figure 8.14. Deleting a closed disc from a projective plane yields
a Möbius strip. Hence the projective plane cannot be orientable.

Thus a two-dimensional manifold is completely determined by its genus and
whether it is orientable.

Having classified the two-dimensional manifolds using polygons, we now analyze
these manifolds in more detail.

• The standard representation of the 2-sphere S2 is {(x, y, z) ∈ R3 |x2 + y2 +
z2 = 1}, as in Example 7.2.6. Standard spherical coordinates (θ, φ) cover
all but a closed half of a great circle: the formulas

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

are smooth and invertible on the open set (0, π) × (0, 2π), and cover the

sphere except for the points (
√

1− z2, 0, z) for −1 ≤ z ≤ 1. See Figure 8.15
for an illustration.
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Figure 8.15. The image of [ε, π−ε]×[ε, 2π−ε] under the standard
(physicist’s) spherical coordinate chart. As ε→ 0 we approach the
sphere but are always missing a closed half of a great circle.

Another common coordinate chart is stereographic projection, given by

(x, y, z) = ( 2u
u2+v2+1 ,

2v
u2+v2+1 ,

u2+v2−1
u2+v2+1 ) for (u, v) ∈ R2, which is just a gen-

eralization of the circle charts in Example 7.1.7. Because the stereographic
charts cover the entire sphere minus a single point, the sphere is often
thought of as the completion of the plane by a single point at infinity.17 So
for example, if it’s convenient we might think of a function on the plane,
which has the same limit at infinity in all directions, as a function on the
sphere instead. This is very common in complex analysis.
• The most convenient representation of the torus is as the quotient space of
R2 under the equivalence relation (x, y) ∼= (x+2mπ, y+2nπ) for integers m
and n, which is equivalent to the planar diagram. It’s frequently visualized
as the image of (x, y, z) = ((a + b cosu) cos v, (a + b cosu) sin v, b sinu), for
constants a > b > 0, as in Figure 8.16. A more convenient embedding
is into R4 given by the formula (w, x, y, z) = (cosu, sinu, cos v, sin v), as
discussed in Example 7.2.7.
• The projective plane, denoted by P2, is the quotient of the 2-sphere under

the equivalence relation (x, y, z) ∼= (−x,−y,−z). Historically it was impor-
tant as the space of lines through the origin in R3. Each line through the
origin is determined by a single point on it, and so we might as well find
the point of intersection with the unit sphere. However there are always
two such intersections (and they are negatives of each other), and since we
want both points to represent the same object, we might as well identify
them. A simpler but equivalent way to think about it is as one hemisphere
of the sphere with the boundary sealed up via identifying antipodal points
there.

We cannot embed the projective plane (or any non-orientable surface) in
R3. If we could, then it would be the boundary of a compact region which
is orientable (as a subset of R3); the outer unit normal vector field could be

17If you know about the “one-point compactification,” this is just saying that S2 is the one-
point compactification of R2. Typically one should not expect a one-point compactification of a

manifold to also be a manifold, but here it works.
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Figure 8.16. The standard embedding of the torus in R3.

used to provide an orientation, which contradicts the fact that P2 is non-
orientable since it contains the Möbius strip as in Figure 8.14. If we try to
embed in three dimensions, it will be forced to intersect itself, for exactly the
same reason that a closed curve that forms a knot must intersect itself when
projected onto the plane, but need not intersect itself in R3. As long as we
don’t take the self-intersections seriously, we can use these to try to visualize
the projective plane. A good embedding of the projective plane is given
by the image of the sphere under the map F (x, y, z) = (xz, yz, xy, 1

2 (y2 −
z2)); it satisfies F (x, y, z) = F (−x,−y,−z), and these are the only self-
intersections, and therefore it is actually a homeomorphism of the projective
plane. (See Theorem 9.1.7.) If we ignore the fourth coordinate and project
onto what’s left, we get Steiner’s Roman surface, and if we ignore the third
coordinate, we get the cross-cap. See Figure 8.17.

Figure 8.17. Two common representations of the projective
plane, as self-intersecting surfaces in R3. On the left is the Ro-
man surface, and on the right is the cross-cap.

• The Klein bottle is the connected sum of P2 and P2, so it has word aabb,
which can be simplified to the square with word aba−1b. It is constructed
like the torus: we wrap up the square in the usual way to get a cylinder,
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except instead of wrapping the ends of the cylinder around to get a torus,
we turn one end inside out to glue it to the other circle the opposite way.
This forces the bottle to cross itself if we try to embed it in R3, just like
for the projective plane. See Figure 8.18.

Figure 8.18. The usual picture of the Klein bottle as a self-
intersecting surface in R3 on the left (although the surface does
not intersect itself in higher dimensions). On the right, the Klein
bottle as a quotient of a rectangle under a twist (compare to Figure
8.5 which is almost the same).

As with the torus, the best way to think about the Klein bottle is as the
quotient of R2 under the equivalence relation (x, y) ∼= ((−1)nx+ 2mπ, y +
2nπ). We can embed the Klein bottle into R4, although the parametrization
is not quite so simple. The embedding

(u, v) 7→ (cosu, cos 2v, sin 2v, sinu cos v, sinu sin v)

into R5 works and is relatively simple.
• Higher-genus surfaces are just connected sums of these. It is easy to visu-

alize the connected sum of tori using the explicit embedding in R3, as in
Figure 8.13.

If you know about Gaussian curvature for surfaces, you can think of genus-
zero surfaces like the projective plane and sphere as having constant curvature +1,
and you can think of genus-one surfaces like the torus and Klein bottle as having
constant curvature 0. It’s less obvious that higher-dimensional surfaces can be made
to have constant curvature −1, but it’s true. In fact the easiest way to see that the
torus and Klein bottle have curvature zero is to tile the plane with copies of them:
curvature is a local property, so locally you can’t tell a torus or Klein bottle from
the Euclidean plane.

Unfortunately you can’t tile the Euclidean plane with regular versions of the
higher-dimensional polygons corresponding to other surfaces. (You can tile it with
hexagons, which are used to build P2#T2, but you can’t get the identifications to
match up with the usual tiling.) The problem is that the angles at each vertex have
to add up to 2π radians in order for it to smoothly correspond to Euclidean space
(otherwise you get something that looks like a cone, which is fine topologically but
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not so good geometrically). The interior angles of a regular octagon for example are
3π
4 radians, and so we cannot put together an integer number of regular octagons

in the flat plane all meeting at the same point.
However on the hyperbolic plane the angles of a triangle don’t need to add up

to π. In fact the sum of the sides can be arbitrarily small just by taking a large
enough triangle. The same rules apply for other polygons. In particular we can
construct a large octagon with interior angles adding up to 2π, use isometries of
the hyperbolic plane to get the others, then match eight of them up at each point
to get a nice regular tiling. Figure 8.19 shows what a tiling of the Poincaré disc
by regular octagons looks like. Note that all the octagons are actually isometric:
some of them look small because they’re approaching the disc boundary, but that
boundary is actually infinite distance from everything else.

Figure 8.19. A hyperbolic plane (modeled as the Poincaré disc)
can be tiled by regular octagons, and also by any other polygon
diagram representing a surface of genus two or more.

Poincaré proved that any polygon diagram of a compact surface with equal
lengths can tile the hyperbolic plane, so we can think of any surface of genus two or
higher as a quotient of the hyperbolic plane, which thus has constant curvature −1.
These surfaces cannot be embedded in Euclidean 3-space (no compact negative-
curvature surface can), but they can be embedded in 4-space.

This theorem is called the uniformization theorem: every two-dimensional com-
pact surface can have a constant-curvature geometry put on it.18 The corresponding
result for three dimensions is the substance of Thurston’s conjecture, and Perel-
man’s proof of Thurston’s conjecture showed that all three-dimensional compact
manifolds could be geometrized. This has not quite gotten us a full classification
of three-dimensional manifolds, but most people think we are close.

The only other thing to say about two-dimensional manifolds is the case where
they are noncompact. The classification here is harder, mainly because any open
subset of a manifold is a manifold. So we can remove finitely many or countably

18Details will come in an addendum.
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many discs from any compact surface and get a noncompact surface. Essentially the
idea of the classification19 is to compactify the surface by taking a connected sum
with finitely many or countably many discs. To do this, we first have to figure out
how many discs are needed: the set of all such discs is called the “ideal boundary,”
with one point in the ideal boundary for each component of the surface minus a
compact subset, and it may be quite complicated.

19See B. Kerékjártó, Vorlesungen über Topologie. Vol. I, Springer, Berlin, 1923, or I. Richards,
On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269.

MR 26 #746.
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9. Higher-dimensional examples of manifolds

“I think my eyes are getting better. Instead of a big dark blur, I see a big light
blur.”

In the last Chapter, we classified all one-dimensional manifolds (there are two
cases: compact and noncompact) and all two-dimensional manifolds (determined by
the genus and whether they are orientable or not). There is no similar classification
known in three dimensions, although the solution of Thurston’s geometrization
conjecture by Perelman leaves us pretty close to a complete classification (but not
quite so explicit as “compute this list of algebraic quantities for the two manifolds,
and all of them are the same if and only if the two manifolds are homeomorphic,”
which is where we stand in dimension one or two). The geometrization conjecture
basically says that a simply-connected 3-dimensional manifold can be decomposed
into a connected sum of simpler 3-dimensional pieces, each of which has exactly one
of eight “model” geometries. Here the connected sum is taken using either 2-tori
or 2-spheres, and the eight model geometries are the generalization of the three
model geometries in two dimensions (that is, the sphere S2 of constant positive
curvature, the plane R2 of zero curvature, and the hyperbolic plane H2 of constant
negative curvature). Once we discuss Riemannian metrics, it will be easier to
describe the model spaces, but for now you can consider the standard ones to be
S3, R3, H3, S2 × R, H2 × R, along with three that are special types of Lie groups
with left-invariant metrics (which we are not ready to discuss yet; we will only begin
discussing them in our final Chapter 20).

In four dimensions, no classification of compact manifolds is even possible. This
comes from the fact that every manifold has a group, called the fundamental group,
associated with it. If two manifolds are homeomorphic, then their fundamental
groups must be isomorphic, and it’s easier to determine the latter than the former.
In two dimensions the fundamental group of a compact manifold coming from a
polygon with 2n sides is a group with n generators satisfying one relation coming
from the word around the perimeter. The easiest way to understand this is with
some examples. On the torus T2 the word is aba−1b−1, and so the group is generated
by taking powers of a and b, inverses of a and b, and multiplying as many of these
together as desired. The only simplification we get comes from the fact that the
word is 1: aba−1b−1 = 1, which (multiplying by b and then a on the right) means
that ab = ba. So the group is actually commutative, which forces it to be Z2. For a
projective plane the group is generated by one element a with one relation a2 = 1,
which means it consists of only two elements: {1, a}, so it’s Z2.

There aren’t that many groups one can get as the fundamental group of a sur-
face though, since a general group on finitely many generators can have all sorts
of relations while the fundamental group of a surface can only have one. We get
more possibilities in three dimensions, and in four dimensions we can get any group
with finitely many generators and finitely many relations as the fundamental group
of some compact manifold. Unfortunately the algebraists have proved that there
cannot be an algorithm for deciding whether two such groups are the same20, and

20This is known as the word problem, which is algorithmically undecidable. See for example
the Wikipedia article http://en.wikipedia.org/wiki/Word_problem_for_groups
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the consequence for geometry is that there is no algorithm to distinguish the fun-
damental groups of 4-manifolds. Thus there can’t be an algorithm to distinguish
between homeomorphism classes of 4-manifolds, which is exactly what we mean by
a classification.

Hence we won’t worry too much about trying to capture all possible manifolds,
instead just working with the most popular examples. First we discuss the ways of
building new manifolds from old ones.

9.1. New manifolds from old manifolds. We already have one method, which
comes from inverse images of regular values. If F : Rn+k → Rk is C∞ and r ∈ Rk
is a regular value, so that whenever F (x) = r the rank of DF (x) is k, then F−1(r)
is a smooth n-dimensional manifold. We can actually generalize this a bit.

Definition 9.1.1. Suppose N is an (n + k)-dimensional smooth manifold and K
is a k-dimensional smooth manifold. Let F : N → K be a continuous function. We
say that F is smooth if for any coordinate chart (U, φ) on N and coordinate chart
(V, ψ) on K, the map ψ ◦ F ◦ φ−1 is C∞ on its domain, which is an open subset of
Rn+k). We say that F has rank k at a point p ∈ N if the map D(ψ ◦ F ◦ φ−1) has
rank k at φ(p).

Note that the only way we could possibly check smoothness and the rank of the
derivative is by moving things over to Euclidean space, and there’s only one logical
way to do this. Note also that if we find that F has rank k in some coordinate
charts, then it must have the same rank in all other compatible coordinate charts,
since the transition maps all are smooth and have maximal rank.

Theorem 9.1.2. If F : N → K is smooth as in Definition 9.1.1 and has rank k
at every point of F−1(r) for some r ∈ K, then F−1(r) is a smooth manifold of
dimension n.

Proof. The only thing to do is check the existence of coordinate charts. But if
that’s all we’re doing, then we might as well be doing everything locally anyway,
and then we can just use the implicit function theorem in any coordinate chart as
in Theorem 7.2.5. �

We have already worked this out for the 2-sphere S2 in R3 in Example 7.2.6.
Higher-dimensional spheres work in exactly the same way.

It is rare that one actually proves that a smooth manifold comes from a map
from one manifold to another: usually one works with functions on a Euclidean
space. However it is sometimes interesting; see Example 9.1.12 below.

Another popular way to build more complicated manifolds is to take the Carte-
sian product of two simpler manifolds.

Theorem 9.1.3. If M is an m-dimensional manifold and N is an n-dimensional
manifold, then the product space M ×N is an (m+n)-dimensional manifold. If M
and N are smooth, then so is M ×N .

Proof. The product of Hausdorff spaces is Hausdorff, and the product of second-
countable spaces is second-countable. So we just have to check the coordinate
charts. If (U, φ) is a chart on M and (V, ψ) is a chart on N , then U × V is an open
set in the product topology, and the map φ×ψ given by (φ×ψ)(p, q) = (φ(p), ψ(q))
is a homeomorphism from U × V to Rm × Rn ∼= Rm+n. The transition maps
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on the product are obviously C∞ if each component’s transition maps are, since
(φ1 × ψ1) ◦ (φ2 × ψ2)−1 = (φ1 ◦ φ−1

2 )× (ψ1 ◦ ψ−1
2 ). �

In this way we get manifolds like Sm × Sn, which is typically considered the
second-simplest type of compact manifold (after the spheres themselves). We also
get tori.

Example 9.1.4. The n-torus21 Tn is the product of n copies of S1; or if you
prefer the inductive approach, T1 = S1 and Tn = Tn−1 × S1. Here S1 is either
a quotient space of [0, 2π] or [0, 1] with endpoints identified, depending on what’s
more convenient for you. The typical choice is [0, 1] unless you’re doing Fourier
series.

You can also think of the n-torus as the quotient of Rn by the lattice Zn or
(2πZ)n, as we did in Example 7.2.7 in two dimensions. In fact this is typically
how one ends up dealing with a torus: one wants to talk about a function on Rn
which is periodic, so one descends to the torus instead because the torus is compact
(and compact spaces are much more convenient than noncompact spaces for almost
every purpose).

The n-torus can also be easily embedded in R2n using the same sort of technique
as in Example 7.2.7, writing it as the image of (cos θ1, sin θ1, · · · , cos θn, sin θn).
This is nice to know, but not usually all that useful. ,

We now generalize the notion of connected sum, which we previously defined for
surfaces in Definition 8.2.10. It just involves replacing discs with balls.

Definition 9.1.5. The connected sum of two n-dimensional manifolds M and N
is a new manifold M#N defined by removing the interiors of closed subsets of M
and N which are homeomorphic to the closed unit ball, then gluing what remains
along the boundary spheres Sn−1 that remain.

As long as we consider only balls and spheres as their boundary, this doesn’t get
too complicated, but it’s a very useful way to get interesting manifolds without much
trouble. Just like in two dimensions, this operation is symmetric and associative,
and the n-sphere acts like the identity.

The last and perhaps most interesting construction is a quotient space by a
discrete group. We have already seen several examples of this: Tn is the quotient
of Rn by the discrete group Zn, the projective plane P2 is the quotient of S2 by the
discrete group Z2, etc. Let’s formalize this procedure and figure out some conditions
under which the quotient space of a manifold is guaranteed to be another manifold.

Definition 9.1.6. A group G is a set of objects with a “multiplication” operation
(x, y) 7→ x⊗ y satisfying:22

(1) Associativity: x⊗ (y ⊗ z) = (x⊗ y)⊗ z for all x, y, z ∈ G;
(2) Identity: there is an identity element e such that e⊗ x = x⊗ e = x for all

x ∈ G;
(3) Inverse: for each x ∈ G there is an x−1 ∈ G such that x⊗x−1 = x−1⊗x = e.

21Some people use “n-torus” for a two-dimensional compact orientable manifold with genus
n. These people are wrong. Don’t do this. Almost everyone agrees that an n-torus is an n-
dimensional manifold, and you’d confuse them.

22Don’t confuse this operation with the tensor product, which only makes sense in a totally
different context.
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If M is a manifold, a group action on M is a group G such that for each g ∈ G
there is a homeomorphism φg : M →M such that φg ◦ φh = φg⊗h.

For example, Z is a group, where m ⊗ n = m + n, the identity is e = 0, and
m−1 = −m. A corresponding group action on R is φm(u) = u+m. Another group
action with the same group is φm(u) = 2mu. (If you’re not familiar with groups,
you should definitely work out all the details of this example to understand what
we’re doing.) This generalizes easily to Zn and Rn.

Z2 = {1,−1} is a group under multiplication. More frequently one also uses
{0, 1} under addition and declares that 1 + 1 = 0; think of 0 as representing even
numbers and 1 as representing odds. This generalizes to Zp for any integer p, where
one works with addition and just declares p = 0. A group action on Rn is φ1(x) = x
and φ−1(x) = −x. This gives a group action on Sn as well since it clearly preserves
lengths.

A group doesn’t have to be discrete: we can think of R as a group under addition,
and a group action on R2 by rotation φx(u, v) = (cosxu − sinxv, sinxu + cosxv).
Alternatively we can think of the group as S1 = R/(2πZ), which yields essentially
the same group action.

Clearly a group action generates an equivalence relation, via the definition p ∼= q
if and only if φg(p) = q for some g ∈ G. (Associativity of the group is used to
prove transitivity of the equivalence relation, existence of inverses is used to prove
symmetry, and existence of an identity is used to prove that p ∼= p. Work this all
out if this stuff is foreign to you!) So we can consider the quotient space, which we
denote by M/G.

Because I don’t care about the greatest possible generality and want proofs to
be easy, I’m going to make a fairly strong assumption about the group actions we
will consider.

Definition 9.1.7. A free and proper discrete group action is a group action for
which

• for any p ∈ M there is a neighborhood U 3 p such that U ∩ φg[U ] = ∅ for
all g ∈ G except the identity.

• for any distinct p, q ∈ M with p 6= φg(q) for all g ∈ G, there are neighbor-
hoods U 3 p and V 3 q such that U ∩ φg[V ] = ∅ for all g ∈ G.

The two conditions are basically saying the same sort of thing: that the group
action pushes points far away from themselves and keeps separated points far away
from each other.

Theorem 9.1.8. If M is a manifold and the action of a discrete group G on M
is free and proper, then the quotient space M/G is a manifold. If M is smooth and
every φg is smooth, then M/G is smooth.

Proof. Let π : M →M/G be the projection. Let y ∈M/G be arbitrary. Choose any
x ∈ π−1(y), and let U be an open subset of M containing x such that φg[U ]∩U = ∅
for all g ∈ G with g not the identity. Take any coordinate chart (ψ, V ) with x ∈ V .
Then ψ maps U∩V into some open subset of R, which we can assume (by restricting
V ) is an open ball. Then composing with a homeomorphism, we can assume that

ψ̃ maps U ∩ V onto all of Rn homeomorphically. We then set (W, ψ̃) to be the new
coordinate chart on M .

Since φg[U ] ∩ U = ∅ if g is not the identity, we easily see that φg[W ] ∩W = ∅
if g is not the identity. Now π[W ] is open in M/G by definition of the quotient
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topology, and the map ψ̃ ◦ π−1 takes π[W ] onto Rn homeomorphically. This gives
us coordinate charts. It remains to check the Hausdorff property and second-
countability.

To prove M/G is Hausdorff, pick any two points p and q such that π(p) 6= π(q).
Choose open sets U and V such that p ∈ U and q ∈ V and φg[U ]∩V is empty for all
g ∈ G; by shrinking U and V we may also assume that φg[U ]∩U = φg[V ]∩V = ∅ for

all g not the identity. Let Ũ = ∪g∈Gφg[U ] and Ṽ = ∪g∈Gφg[V ], and let A = π[U ]

and B = π[V ]; then A and B are open in M/G since π−1[A] = Ũ and π−1[B] = Ṽ .

Furthermore Ũ and Ṽ are disjoint since otherwise we would have φg[U ]∩φh[V ] 6= ∅
for some g, h ∈ G, and then φh−1·g[U ] ∩ V 6= ∅. We conclude that A and B are
disjoint open sets containing π(p) and π(q).

Second-countability of M/G is easy: given a countable basis {Ωn} of M , just
take π[Ωn] and check that it’s a countable basis of M/G. �

An example of a group action satisfying the first condition in Definition 9.1.7
but not the second is the action of Z on R2 given by

φn(x, y) = (x+ n, 2−ny).

A neighborhood U = (x− 1
2 , x+ 1

2 ) satisfies φn[U ]∩U 6= ∅ iff n = 0, but we cannot
separate (0, 0) from (0, 1) by translation-invariant open sets: any open neighbor-
hood of (0, 0) will eventually contain some (0, 2−n). The quotient space under this
action is not Hausdorff; it looks like a cylinder where all the copies of the circle are
mashed together. Hence the second condition really is necessary to get the quotient
to be Hausdorff.

The action of Zn on Rn given by addition is clearly both free and proper: around
one point we consider a ball of radius 1/2, and around two points we observe that
the minimum distance from the images of one point to the other point is positive,
and take balls of half that distance. Thus Tn is a manifold (which we already knew,
because we wrote it as a product).

Similarly the action of Z2 on Sn given by reflection is free and proper. The fact
that it’s free comes from the fact that reflection preserves only the origin which is
not a point on the sphere. Properness comes from the fact that for a single point we
can choose an open hemispherical neighborhood (whose reflection does not intersect
the original hemisphere), and for two points we just consider two small balls such
that none of the four sets including reflections intersect. The quotient space is Pn,
the space of lines through the origin in Rn, which is therefore also a manifold.

Definition 9.1.9. If N is a topological manifold and M is a subset of N , we
say that M is a m-dimensional submanifold if the subspace topology makes it a
manifold of dimension m.

If N is a smooth manifold and M is a topological submanifold, we say that M
is a smooth submanifold if for every p ∈M there is a coordinate chart (φ,U) of N
such that M ∩ U = φ−1{x1, · · · , xm, 0, · · · , 0 |x1, · · · , xm ∈ R}.

Example 9.1.10. The typical example is something like the circle S1 ⊂ R2. Let
p be a point on the right half of the circle, and consider the polar coordinate chart
φ defined on the set U given by right open half of the plane given by the formula

φ(x, y) =
(

arctan (y/x),
√
x2 + y2 − 1

)
.
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Then φ−1(θ, 0) = {(cos θ, sin θ) | − π
2 < θ < π/2} = U ∩S1. Similar charts are easy

to find for other points of S1.
More typically these charts are obtained by the Inverse Function Theorem in

the following way. In this case if F (x, y) = x2 + y2, then S1 = F−1(1). Consider
new coordinates s = x and t = F (x, y) − 1. This will give a genuine coordinate
chart in a neighborhood of any point (x, y) ∈ S1 where the Jacobian determinant
sxty − sytx 6= 0, which happens precisely when Fy(x, y) 6= 0; in other words,
exactly when we can solve F (x, y) = 1 for y in terms of x. In such a coordinate
chart, t = 0 precisely when F (x, y) = 1. Explicitly, we have the coordinate chart
(s, t) = φ(x, y) = (x, x2 + y2 − 1), which is invertible on the open upper half-

plane and has inverse map (x, y) = φ−1(s, t) = (s,
√

1 + t− s2). Furthermore

φ−1(s, 0) = {(s,
√

1− s2) | − 1 < s < 1} is the intersection of the circle with the
upper half-plane. ,

Theorem 9.1.11. Suppose F : N → K is a smooth function from an n-dimensional
smooth manifold M to a k-dimensional smooth manifold K, and that DF has rank
k everywhere on F−1(r). Then F−1(r) is a smooth submanifold of N of dimension
n− k.

Proof. To prove this, it is sufficient to work locally in coordinate charts, and so we
lose nothing by assuming N = Rn and K = Rk. We are going to use the same
technique as in Example 9.1.10.

Assume we have rotated N so that at a particular point p ∈ F−1(r), the k × n
matrix DF (p) has a nonsingular k × k matrix on the right. That is, we break up
Rn into Rn−k × Rk and write x ∈ Rn−k and y ∈ Rk and F (x, y). We assume that
the matrix of partials with respect to the k y-variables is nonsingular at the point
p.

Consider the function G : Rn → Rn given by

G(x, y) = (x, F (x, y)− r).

Then the derivative of G is a square matrix that looks like

DG(x, y) =

(
I 0
Fx Fy

)
,

and since Fy is nonsingular, so is DG. Thus by the Inverse Function Theorem 5.2.4
G locally has an inverse function (x, y) = (s,H(s, t)); note that F (s,H(s, t)) = r
so H is the function obtained by the Implicit Function Theorem 5.2.2. Then G
is a smooth coordinate chart and G−1(s, 0) is the set of points (x, y) satisfying
F (x, y) = r on the open set where G has an inverse, i.e., the set M ∩U where U is
the domain of G as a coordinate chart. �

Most of our examples of submanifolds have had the ambient manifold N = Rd,
but in some cases we have interesting submanifolds of other manifolds.

Example 9.1.12. The best-known example is the flat torus T2 in R4, considered
as the set

T2 = {(w, x, y, z) ∈ R4 |w2 + x2 = 1, y2 + z2 = 1}.
Obviously this is a subset of the 3-sphere with radius

√
2,

S3√
2

= {(w, x, y, z) ∈ R4 |w2 + x2 + y2 + z2 = 2}.
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To see this, just consider the function G : R4 → R given by G(w, x, y, z) = w2 +x2−
y2 − z2. The function ι : S3 → R4 is smooth since in the submanifold coordinate
chart it just looks like ι(u1, u2, u3) = (u1, u2, u3, 0), and thus G ◦ ι : S3 → R4 is a
smooth map. It’s easy to see that G has rank one on S3, and thus G−1(0) = T2 is
a submanifold.

The reason this is interesting is that usually one thinks of submanifolds as having
“more positive curvature” than the ambient space, based on the example of surfaces
embedded in R3, which must have positive curvature somewhere. In this example
the 3-sphere has positive sectional curvature in all directions, but the torus has zero
Gaussian curvature. ,

What’s a little strange about this is that a subset of RN could be a manifold,
and could have a smooth structure, but not be a smooth submanifold. The best
example is a square in R2. It’s clearly not a smooth submanifold (at a corner,
there’s no smooth invertible map from R2 to R2 whose level sets are a square).
Yet it’s homeomorphic to a circle, and a circle has a smooth structure, so in that
sense we could think of the square as homeomorphic to a smooth manifold. The
issue is that if you lived inside the square with no ability to leave or even look
outside, you’d never notice the corners. But if you could see the outside space R2,
you would notice them. There’s a big difference between intrinsic properties that
can be detected by people living in the manifold and extrinsic properties that are
noticed by people with a view of the outside world in which the manifold sits.

Every manifold we’ve discussed so far can be embedded as a submanifold in
some RN for a large N . (That’s less obvious for the projective spaces Pn but still
true, using the same sort of technique of finding a map from Sn to RN which is
invariant under reflection and has enough components that it’s one-to-one.) This
is no coincidence; in fact any manifold (which satisfies our basic assumptions of
Hausdorff and second-countable) can be embedded in RN , so they really aren’t
terribly strange objects. This is not always the most convenient way to think of a
particular manifold, but it’s nice to know in general if you can use it.

The hard part of this theorem is proving it for noncompact manifolds, and finding
the minimal dimension that will always work (which is 2n for an n-dimensional
manifold). The complete version is due to Whitney. The basic idea for compact
manifolds is to consider finitely many coordinate patches (say m) and map each
one into a separate copy of Rn; then the whole thing ends up in Rmn. We just have
to take care of the overlaps, which we do using a trick called a partition of unity.
For now though I’ll just tell you the result; we’ll prove a somewhat easier version
of it in Theorem 13.4.3.

Theorem 9.1.13. Any n-dimensional smooth manifold which is Hausdorff and
second-countable is homeomorphic to a closed subset of R2n.

9.2. Other examples. The vast majority of examples come from some combina-
tion of the above techniques. But let’s look at a few really useful ones that are a
bit different.

The next two examples are the Grassmann manifolds and Stiefel manifolds. They
are some of the most useful manifolds in applications such as electrical engineering.

Example 9.2.1. The Grassmann manifold (or “Grassmannian manifold” or some-
times just “Grassmannian”) Gr(k, n) is the set of all k-dimensional subspaces of
Rn. Some people denote it by Gr(n, k) or Grk(n) or Gk(n).
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If k = 1, the Grassmann manifold Gr(1, n) is the set of lines through the origin
in Rn; hence it’s the same thing as Pn−1.

If k = 2 and n = 3, the Grassmann manifold is the set of planes through
the origin in R3, and there is a correspondence between unit normal vectors to
these planes and the planes themselves (except that the positive and negative unit
normals give the same plane). Using that two-to-one identification, we see that
we can identify the planes through the origin with the lines through the origin
that they’re perpendicular to, and this is actually a bijection. Hence Gr(2, 3) is
homeomorphic to Gr(1, 3) and thus to P2.

After all these pages, projective space is not too hard to understand, so the
first interesting Grassmann manifold is the set of 2-planes in R4. To describe
it, we want some kind of coordinate representation for it. Now any plane is the
span of two 4-vectors, so we can start with an eight-dimensional space spanned by
a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4). Yet clearly the resulting space is not
eight-dimensional; for example I could rescale both a and b so that they’re both
unit vectors, and that wouldn’t change the plane that the vectors span. So at most
the space could be six-dimensional.

In fact it’s smaller than that, since two different pairs of vectors could easily
describe the same plane. Choose a vector perpendicular to the plane (there’s a
two-dimensional space of these in R4) and rotate everything around this normal
vector; that changes the spanning vectors but not the actual plane. There’s a two-
dimensional family of perpendicular vectors, and for each vector we have a one-
dimensional family of rotations around it, so it seems reasonable we could reduce
the number of dimensions of Gr(2, 4) by two more, to four.

To prove this, we write down coordinates. Suppose for example that we take our
base point P in Gr(2, 4) to be the plane spanned by vectors (1, 0, 0, 0) and (0, 1, 0, 0).
Nearby planes should have nearby vectors spanning them, and this plane has the
property that if we consider the projection onto the first two coordinates, we still
get a plane (rather than a line or a point). So we choose an open set U containing P
to be the set of planes in R4 such that the projection onto the first two coordinates
is also a plane. In terms of vectors (a1, a2, a3, a4) and (b1, b2, b3, b4) which span a
plane Q in U , this condition says that (a1, a2) and (b1, b2) span a plane in R2, and a
necessary and sufficient condition for this is that a1b2−a2b1 6= 0. If that’s the case,
then we can rotate the vectors so that the first two components are actually (1, 0)
and (0, 1); in other words we span the plane Q by (1, 0, a3, a4) and (0, 1, b3, b4).

In this way we construct an identification between U and R4. We could clearly do
the same thing near any other plane P : choose an orthonormal basis {e1, e2, e3, e4}
of R4 such that {e1, e2} spans P ; then the spans of {e1+a3e3+a4e4, e2+b3e3+b4e4}
are all distinct planes. In this way we get a coordinate chart around every plane of
Gr(2, 4), thus proving that Gr(2, 4) is a 4-dimensional manifold. Clearly the same
technique generalizes to give a coordinate chart for any Gr(k, n). ,

Example 9.2.2. The Stiefel manifold V (k, n) is the set of orthonormal sets of k
vectors in Rn. Note that an orthonormal set of k vectors is automatically linearly
independent, so it spans a k-plane in Rn; hence there is a nice surjective map
F : V (k, n)→ Gr(k, n).

If k = 1 then there is only one vector, and it needs to have unit length. So
V (1, n) is the standard round sphere Sn−1.
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If k = n then an orthonormal set of n vectors can be listed as the columns
of an n × n matrix which is orthogonal. So V (n, n) is homeomorphic to the set
of orthogonal n × n matrices O(n) satisfying ATA = In. (We will discuss the
orthogonal group O(n) shortly.)

If k = n − 1 then there are only two unit vectors we can pick to complete
the n − 1 orthonormal vectors to n orthonormal vectors, which means that every
element in V (n−1, n) corresponds to two elements of V (n, n). Notice that a matrix
in O(n) has (detA)2 = 1, so that either detA = 1 or detA = −1. The matrices
with detA = 1 are called the special orthogonal group SO(n); we will discuss this
shortly as well. If we have n−1 orthonormal vectors which we put in the first n−1
columns of a matrix, then there is a unique way to choose the sign of the last unit
vector orthogonal to all the others so that the determinant of the matrix is one.
Hence V (n− 1, n) is homeomorphic to SO(n).

More generally we can write a k × n matrix A consisting of the orthonormal

vectors in columns, and the product ATA is a k×k matrix Ik. So if F : Rnk → Rk2 is
the map F (A) = ATA from n×k matrices to k×k matrices, then the Stiefel manifold
is V (k, n) = F−1(Ik), which makes clear that V (k, n) is actually a manifold.

In general for any k we can pick a unit vector e1 in Rn, and there is an (n− 1)-
dimensional space of these (the unit sphere Sn−1). Having chosen e1 the space of
vectors orthogonal to e1 is homeomorphic to Rn−1, and we then have to pick a unit
vector e2 in that space; this is an (n−2)-dimensional space homeomorphic to Sn−2.
Continuing, it’s easy to see that the dimension of V (k, n) is

k∑
j=1

(n− j) = k
(
n− k+1

2

)
.

It is also easy to see how we can construct a coordinate chart near any point of
the Stiefel manifold using this idea: just take a coordinate chart on each sphere. ,

The most popular sort of manifold is a Lie group, since it’s got a lot of symmetry.
The geometry reduces to algebra in this case, and so computations simplify a lot.

Example 9.2.3. A Lie group is a topological manifold which is also a group, and
such that the group operations are continuous.

The most basic example is GL(n), the general linear group consisting of all

invertible n × n matrices. We think of it as a subset of Rn2

. The determinant
function det : Rn2 → R is continuous (using the explicit formula for it in (3.3.1)),
and so the singular matrices (with determinant zero) form a closed set. So the
invertible matrices are an open set, and any open subset of a manifold is another
manifold. Notice that GL(n) is not connected: it has two components consisting
of those matrices with positive determinant and those with negative determinant.
The group operation is matrix multiplication, which we know is continuous since it
just involves multiplication of components, and therefore GL(n) is a Lie group.

Example 9.2.4. The next example is SL(n), the special linear group, consisting
of n × n matrices such that detA = 1. The value 1 is a regular value of the
determinant function; for example if n = 2 and a matrix is written

(w x
y z

)
, we have

det(w, x, y, z) = wz − xy so that D det =
(
z −y −x w

)
. As long as wz − xy = 1, at

least one of these numbers is nonzero so the rank of D det is maximal. The same
idea works in general. Thus SL(n) is a smooth manifold of dimension n2−1. Like all
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groups we will discuss, it inherits the group operation of matrix multiplication from
GL(n), and it is a subgroup of GL(n) since det (AB) = (detA)(detB) = 1. ,

Example 9.2.5. A third popular example is O(n), the orthogonal group. This is
the set of n × n matrices such that ATA = In, as discussed in Example 9.2.2. It
has two connected components since ATA = In implies that either detA = 1 or
detA = −1. We can think of it as defined by an implicit function theorem, using

the map F : Rn2 → Rn(n+1)/2 given by F (A) = ATA. (Note that the image of this
map is symmetric matrices only, which are completely determined by the upper
triangular portion including the diagonal; there are 1 + 2 + · · · + n = n(n + 1)/2
components here.) We can check that In is a regular value; for example if n = 2 then
the map is F (w, x, y, z) = (w2 + y2, wx+ yz, x2 + z2), which has maximal rank on
F−1(1, 0, 1). Thus O(n) = F−1(In) is a smooth manifold of dimension n(n− 1)/2.
It is a subgroup of GL(n) since (AB)T (AB) = BT (ATA)B = BTB = In.

A closely related example is SO(n), the special orthogonal group. This is just the
intersection of O(n) with SL(n); in other words it is the connected component of
O(n) which contains the identity In. It also has dimension n(n−1)/2. If n = 3 then
it is a 3-dimensional group which is the group of orientation-preserving rotations
of R3 (or of S2). In general the word “special” applied to Lie groups is a shortcut
for “determinant one.” ,

The orthogonal group is the set of linear transformations that preserve distances,
since it preserves the inner product: if A ∈ O(n), then

〈Ax,Ay〉 = 〈x,ATAy〉 = 〈x, y〉.
Hence it consists of the symmetries of an inner product. If some other tensor is
important to us, then its symmetry group will also be important. For example, if
we have an antisymmetric matrix ω which is nondegenerate (which must be on an
even-dimensional space R2n), then the matrices that preserve ω form the symplectic
group Sp(n). Specifically, we have ATωA = ω for all A ∈ Sp(n). As before, this is
a smooth manifold which is also a subgroup.

The unitary group U(n) is the set of complex matrices A such that A∗A = In.
The Hermitian matrices with B∗ = B have real dimension n2, while all complex
matrices have dimension 2n2, so that the unitary group has dimension n2. The
determinant of a unitary matrix is a complex number of norm 1, so it could be
any point on the circle; the special unitary group SU(n) is of course the unitary
matrices that have determinant one, so it has dimension n2 − 1. ,

Although the above is in some sense the “standard list” of Lie groups, there
are many others. Some special ones are R\{0}, R2\{(0, 0)} and R4\{(0, 0, 0, 0)}
under multiplication by real numbers, complex numbers, and quaternionic numbers
respectively. (Recall that the quaternions are numbers of the form a+ bi+ cj + dk
where a, b, c, d ∈ R and i, j, k satisfy the multiplication rules i2 = j2 = k2 = −1
and ij = k, jk = i, ki = j, ji = −k, kj = −i, and ik = −j.) These are the
only Euclidean spaces that have a multiplicative group structure which respects
the vector space structure.

From the reals, complex numbers, and quaternions, we get via looking at the
unit-length elements the group structures also on S0 = {−1, 1} = Z2, on S1, and
on S3. No other spheres have group structures, although S7 comes close. (You
can define Cayley numbers which have some of the right properties, but they don’t
have associativity.)
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Finally we can consider complex versions of many of the spaces discussed above.
For example the complex projective space CPn is the set of complex lines through
the origin in Cn+1, so it has dimension 2n (complex dimension n). Similarly we have
complex Grassmann manifolds and complex Stiefel manifolds (the latter defined in
terms of a complex inner product).
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10. Vectors

“All his life has he looked away to the future, to the horizon. Never his mind on
where he was, what he was doing.”

This Chapter is probably the most important in the entire book: in previous
chapters you have essentially been reviewing old material such as linear algebra,
multivariable calculus, and topology, while here we have a fundamentally new con-
cept (which looks rather old). Furthermore, every operation on a smooth manifold
is defined in terms of what it does to vectors, which means you won’t really un-
derstand anything that follows unless you have a deep understanding of vectors.
Hence read carefully.

10.1. Tangent vectors, historically. In the traditional description which one
learns in vector calculus, vectors are lists of numbers representing a direction and
magnitude; they may have a base point, although we can always translate in an
obvious way in order to assume the base point is at the origin. In Rn, points and
vectors are described in exactly the same way. None of these things generalize,
so we need to figure out what we really want vectors to do and how vectors are
different from points.

The motivation for everything we will do in this Chapter comes from the study
of surfaces in R3. There are two basic ways to describe a surface: as a level set of a
function G : R3 → R, or as the image of a parametrization F : R2 → R3. In the first
case, we want DG to have maximal rank (one), and in the second case, we want
DF to have maximal rank (two). We saw in Section 7.2 that parametrizations may
be difficult globally, but locally either of these maximal rank conditions will ensure
that the surface is locally a smooth manifold. (Two hundred years ago, of course,
working locally was the best one could hope for anyway.)

A tangent vector is the derivative of a curve that lies completely within the
surface M . If γ(t) satisfies γ(0) = p, then γ′(0) is a tangent vector to M at p. If
the surface is G−1(r) and the curve γ(t) is given by γ(t) =

(
x(t), y(t), z(t)

)
, then

we have G
(
x(t), y(t), z(t)

)
= r for all t. Thus by the Chain Rule we have

Gx
(
x(t), y(t), z(t)

)
ẋ(t) +Gy

(
x(t), y(t), z(t)

)
ẏ(t) +Gz

(
x(t), y(t), z(t)

)
ż(t) = 0.

If γ(0) = p and γ̇(0) = 〈a, b, c〉, this tells us that Gx(p)a + Gy(p)b + Gz(p)c = 0.
In vector calculus, you’d write gradG(p) = 〈Gx(p), Gy(p), Gz(p)〉 and call it the
gradient of G, and say that the condition for v to be a tangent vector is that
gradG(p) · v = 0. This explains why we need the rank of G to be one: otherwise
gradG(p) = 0 and we will not actually get a tangent plane. In our approach we
say instead that the tangent space is the kernel of the map DG(p) : R3 → R, which
is actually a covector.

Now suppose the surface is M = F [Ω] for some open Ω ⊂ R2 and a maximal-
rank function F . Write (x, y, z) = F (u, v) =

(
f(u, v), g(u, v), h(u, v)

)
. If p =

F (u0, v0), then a curve γ : (−ε, ε) → M satisfying γ(0) = p, then we can write
γ(t) = F

(
u(t), v(t)

)
for some functions u(t) and v(t) with u(0) = u0 and v(0) = v0.

Now by the Chain Rule, we have

γ′(t) =
d

dt
F
(
u(t), v(t)

)
= Fu

(
u(t), v(t)

)
u̇(t) + Fv

(
u(t), v(t)

)
v̇(t).
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If u̇(0) = a and v̇(0) = b, then we have

γ′(0) = Fu(u0, v0) a+ Fv(u0, v0) b.

Since a and b are arbitrary numbers, we have expressed any tangent vector at p
as a linear combination of two basis vectors Fu and Fv. This is why we needed
F to have rank two: so that these vectors would span a two-dimensional space.
Of course, a surface may be described by many possible parametrizations, so the
vectors Fu and Fv by themselves are not important: only their span is. Classically
one might take the normalized cross-product N = (Fu × Fv)/|Fu × Fv| in order to
obtain a vector that is perpendicular to the tangent plane; however nothing like
this works in any other dimension, so we will not care about it.

Example 10.1.1. The simplest example is the 2-sphere S2. Let p ∈ S2 be a point
p = (x, y, z) with G(x, y, z) = x2 + y2 + z2 = 1; then the condition for a vector
v = 〈a, b, c〉 to be in TpS

2 is that

DG(x, y, z)v =
(
2x 2y 2z

)ab
c

 .

In other words, we just need xa+ yb+ zc = 0.
Alternatively we can use a parametrization F (u, v) = (sinu cos v, sinu sin v, cosu)

on the open set 0 < u < π, 0 < v < 2π. The vectors Fu and Fv are given by

Fu =

cosu cos v
cosu sin v
− sinu

 and Fv =

− sinu sin v
sinu cos v

0

 .

Certainly these vectors are both in the kernel of the covector DG
(
F (u, v)

)
=(

2 sinu cos v 2 sinu sin v 2 cosu
)
, as we’d expect. They are linearly independent

as long as sinu 6= 0.
Finally we can view portions of the sphere as graphs of functions, via a parametriza-

tion like H(u, v) = (u, v,
√

1− u2 − v2) defined on the open unit disc. Then the
vectors spanning the tangent space are

Hu =

 1
0

− u√
1−u2−v2

 and Hv =

 0
1

− v√
1−u2−v2

 .

Again these are both orthogonal to DG
(
H(u, v)

)
=
(
2u 2v 2

√
1− u2 − v2

)
.

Figure 10.1 shows a couple of typical tangent spaces to S2.
,

Now the sphere has lots of tangent spaces, all of which are isomorphic to a two-
dimensional vector subspace of R3, but none of which are actually the same. So
we certainly could not add vectors at T(0,0,1)S

2 to vectors in T(1,0,0)S
2 and expect

to get anything that makes sense. Nor is there any way to translate vectors from
(0, 0, 1) to (1, 0, 0). Now you might object that this is clearly false as you can just
rotate all of R3 around the origin until the point (0, 0, 1) is (1, 0, 0), and then the
tangent space at one point can be identified with the other point. But this depends
on having lots of isometries (which a general space won’t have) and even more
importantly it depends on how you do it. If you rotated (0, 0, 1) into (1, 0, 0) and
looked at what happened to particular tangent vectors, then instead rotated (0, 0, 1)
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Figure 10.1. The usual picture of tangent spaces to points of a
surface. The tangent planes are all isomorphic to R2, but not in a
natural or coordinate-independent way.

into (0, 1, 0) and then into (1, 0, 0), you’d find that the vector space isomorphisms
from one tangent space to the other are different. So for now you should throw
away the idea of relating tangent vectors at one point to tangent vectors at another
point; in this Chapter we will work with tangent vectors at a single point.

Furthermore there is a philosophical difficulty with the approach of defining
tangent spaces through reference to an ambient space like R3. Particles moving in
the surface have positions and velocities (since their trajectories are differentiable
curves), but people living inside the surface cannot see the velocity as a vector in
R3. So what are they seeing? A manifold is defined without reference to ambient
space, and so vectors should properly also be defined without reference to the
ambient space. Finally there is the problem that we are treating vectors tangent
to a manifold as fundamentally different from vectors in R2 or R3.

10.2. Tangent vectors, conceptually. In standard vector calculus, the Cartesian
coordinates lead to vectors; on the plane we have ex and ey which have unit length
and point in the directions of increasing x and y respectively. By the translation
invariance, specifying ex and ey at a single point (e.g., the origin) will specify
the same directions at all points. If we are working in some other coordinate
system, the first thing we have to do is figure out how to change the vectors. For
example, in polar coordinates, we have unit vectors er and eθ, whose directions
change depending on r and θ. Drawing a diagram as shown in Figure 10.2, we can
figure out how the vectors ex and ey are related to er and eθ. We easily see that
er = cos θ ex + sin θ ey and eθ = − sin θ ex + cos θ ey.

The problems with this approach, when generalizing to arbitrary coordinate
systems, are numerous:

• We start with the Cartesian coordinate vectors and define everything else in
terms of them. This obviously violates the principle that everything should
be defined independently of coordinates and without any preferred basis.

• We need to draw a diagram. In general the level sets may not be well-
understood, the diagrams may be quite complicated, and there may not be
any general pattern for the formulas.

• For Cartesian coordinates the unit vectors happen to be derivatives of the
level curves: the horizontal line γx(t) = (xo+t, yo) has derivative γ′x(0) = ex
at (xo, yo), and similarly for the y-direction. On the other hand, for polar
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Figure 10.2. The standard basis for polar vectors

coordinates this is not so nice: for γr(t) = (ro + t, θo) we have γ′r(0) = er,
but for γθ(t) = (ro, θo + t) we have γ′θ(0) = roeθ instead of eθ. In non-
Cartesian systems, we thus have to decide whether to work with the actual
derivatives of coordinate curves, or with a unit basis.
• The third problem is that a general coordinate system may not have or-

thogonal level curves. (All the classical coordinate systems defined above
do, but this need not be true in general.) If this occurs, it is not at all clear
how we should choose the e’s.

To get a definition of vectors that does not depend on coordinates, we should first
figure out what we want to do with vectors. Intuitively we think of them as tangents
to curves: for example a vector aex + bey located at (xo, yo) is the tangent vector
γ′(0) to the curve γ(t) = (xo+at, yo+bt), and more generally it’s also the derivative
of any curve γ(t) = (γ1(t), γ2(t)) satisfying the conditions γ1(0) = xo, γ2(0) = yo,
γ′1(0) = a, and γ′2(0) = b. This still doesn’t get us coordinate-independence, though:
to know whether two curves have the same tangent vector, we are taking their
coordinate components and checking whether those have the same derivatives. We
need something a bit more abstract, but this idea will be helpful.

What we can do instead is the following: consider curves γ : (a, b) → M on the
plane and functions f : M → R from the plane to the real numbers. Curves and
functions are topological objects: they make sense independently of any particular
coordinate system. Then f ◦ γ : (a, b)→ R is just a real function of a real variable,
and if it is smooth, then (f ◦γ)′(to) is a particular number for any to ∈ (a, b), again
independently of any coordinate system.

Example 10.2.1. For a particular example, consider again R2 ∼= C, as in Chapter
6. Let f : C → R be defined by f(z) = Re(z2), and let γ : R → C be defined by
γ(t) = (t+1)eit. Then (f ◦γ)(t) = Re((t+1)2e2it) = (t+1)2 cos 2t, and when t = 0
we have (f ◦γ)′(0) = 2. We can also do this computation in a particular coordinate
system: in rectangular coordinates x : C→ R2, we have f ◦x−1(x, y) = x2−y2 and
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x ◦ γ(t) =
(
(t+ 1) cos t, (t+ 1) sin t

)
. We can compute using the Chain Rule that

d

dt

∣∣∣
t=0

(f ◦ γ) =
d

dt

∣∣∣
t=0

(f ◦ x−1) ◦ (x ◦ γ)

=
∂(f ◦ x−1)

∂x

∣∣∣
x(γ(0))

d(x ◦ γ)

dt

∣∣∣
t=0

+
∂(f ◦ x−1)

∂y

∣∣∣
x(γ(0))

d(y ◦ γ)

dt

∣∣∣
t=0

= 2x
∣∣
(1,0)

(
− (t+ 1) sin t+ cos t

)
|t=0 − 2y

∣∣
(1,0)

(
(t+ 1) cos t+ sin t

)
|t=0

= 2.

We can do the same computation in polar coordinates u : U ⊂ C → R2, where
f◦u−1(r, θ) = r2 cos 2θ and u◦γ(t) = (t+1, t), and of course we get the same answer
2, even though (u ◦ γ)′(0) is different. You can check the details for practice. ,

More generally, for a smooth n-dimensional manifold M with any coordinate
system y : U ⊂M → Rn, we will have by the Chain Rule that

(10.2.1)
d

dt

∣∣∣
t=0

(f ◦ γ)(t) =

n∑
k=1

∂

∂yk
(f ◦ y−1)

∣∣∣
y◦γ(0))

· d
dt

∣∣∣
t=0

(yk ◦ γ)(t).

This is extremely important! It says that f ◦γ1 and f ◦γ2 have the same derivative
for all functions f if and only if (yk ◦ γ1)′(0) = (yk ◦ γ2)′(0) for all k; that is,
if and only if the curves have the same derivative in any coordinate chart. As a
result, we can say two curves γ1, γ2 : (a, b) → M with γ1(to) = γ2(to) have the
same derivative at to if and only if, for every smooth function f : M → R, we
have (f ◦ γ1)′(to) = (f ◦ γ2)′(to). This gets us a a coordinate-independent notion
of vectors, and to use this we think of vectors as being objects that are used to
differentiate functions in certain directions.

In Figure 10.3 there are several curves with the same derivative at t = 0.

Remark 10.2.2. It is not yet clear that there are any smooth functions f : M → R.
Obviously given a coordinate chart (φ,U) we may define a function f : U → R in

any way we like, by taking an arbitrary function f̃ : Rn → R and setting f = f̃ ◦ φ.
But we don’t know in general that a smooth function defined on an open set can
be extended to a smooth function on the entire manifold. Hence technically when
we want to compute objects near a point, we actually mean all objects may only
be defined in a neighborhood of that point. We will fix this later on when we talk
about bump functions.

10.3. Tangent vectors, formally. To formalize this discussion, we have to define
exactly what we mean by smooth curves and smooth functions on M . The basic
notion is that the curves and functions are purely topological objects and defined
independently of coordinates, but to do calculus, we need to introduce coordinates.
Our point of view is that “honest calculus” only really works for functions from R
to R, and all higher-dimensional calculus (whether on Rn or on a smooth manifold)
only makes sense when reduced to real functions.

Definition 10.3.1. Suppose M is a smooth n-dimensional manifold. A curve
γ : (a, b) → M is called smooth if, for every to ∈ γ there is a coordinate chart
(x, U) with γ(to) ∈ U such that x ◦ γ : (a, b) → Rn has infinitely many continuous
derivatives.
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Figure 10.3. On the left, we have several parametric curves
γi : R→M which all appear to have the same derivative at the cir-
cled point (represented by the dotted tangent line). On the right,
we compose each curve γi with a function f : M → R and plot
f ◦ γi(t) as a function of t, then compute the one-variable deriva-
tive at t = 0. As long as we get the same result no matter which
function f we compose with, the curves will have the same deriv-
ative.

A function f : M → R is called smooth if, for every p ∈M there is a coordinate
chart (x, U) with p ∈ U such that f ◦ x−1 : x[U ] ⊂ Rn → R has infinitely many
continuous partial derivatives.

Now we finally come to the definition of tangent vectors, which are the basic
objects in differential geometry around which everything else is structured.

Definition 10.3.2 (Tangent vectors). Two smooth curves γ1 and γ2 defined on
neighborhoods of to ∈ R are said to have the same derivative at to if, for every
smooth function f : Ω ⊂M → R, we have

(f ◦ γ1)′(to) = (f ◦ γ2)′(to).

Having the same derivative at to is an equivalence relation.
The tangent space at p ∈M , denoted by TpM , is defined as the set of all curves

γ : (−ε, ε) → M , for some ε > 0, satisfying γ(0) = p, modulo the equivalence
relation of having the same derivative. A tangent vector v ∈ TpM is thus an
equivalence class v = [γ] of locally-defined curves γ through p that all have the

same derivative, and we write v = γ′(0) = dγ
dt

∣∣
t=0

for every γ ∈ v.

Observe that the only actual derivative computation we ever do here is the
derivative of a function f ◦γ1 : (a, b)→ R; we defined the derivative of a curve γ′(0)
rather indirectly. By this definition, tangent vectors are actually fairly complicated
and abstract objects. But because of this definition, we can think of tangent vectors
as being pointwise operators on functions: a tangent vector v at the point p operates
on smooth functions f defined in any neighborhood of p by the formula

(10.3.1) v(f) =
d

dt
f
(
γ(t)

)∣∣∣
t=0

, where γ ∈ v.
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By definition of a tangent vector as an equivalence class, the number v(f) is inde-
pendent of γ ∈ v (although of course it depends on the function f).

Remark 10.3.3. The number v(f) is also independent of the domain of f , as long
as it is some open set. Hence we think of vectors as being defined on germs of
functions at p: here a germ of a function at p is a pair (f,Ω) where Ω is an open
set containing p and f : Ω→ R is smooth. (f,Ω1) and (g,Ω2) are equivalent if for
some open U ⊂ Ω1 ∩Ω2 with p ∈ U , we have f |U = g|U . The idea is that it makes
sense to think of germs as telling you all the derivatives at p but not much beyond
that (however note that the derivatives are not enough to tell you the germ: the
function in Example 7.2.2 is not germ-equivalent to the zero function at x = 0 in
spite of having all the same derivatives). Properly when one is thinking of tangent
vectors as derivative operators on functions, the domain of these operators is the
space of germs at p. Later on in Chapter 13 we will prove that for any germ there
is a representative f : M → R.

First we check that a tangent vector is completely specified by its operation on
smooth functions.

Lemma 10.3.4. Suppose v and w are both tangent vectors in TpM . If v(f) = w(f)
for all smooth functions f defined in some neighborhood of p, then v = w.

Proof. This proof just involves checking our definitions. Since a vector is an equiv-
alence class of curves, we can choose representative curves α ∈ v and β ∈ w. Then
for any smooth function f , we have

v(f) =
d

dt
f
(
α(t)

)∣∣∣
t=0

=
d

dt
f
(
β(t)

)∣∣∣
t=0

= w(f).

Since the middle two terms are equal for any function f , the curves α and β must
have the same derivative at t = 0 (by definition). As a result, the equivalence class
v must be the same as the equivalence class w. �

The definition of tangent vector makes the following proposition easy; it gives a
method that is often more convenient for checking that two vectors are the same.

Proposition 10.3.5. Suppose v, w ∈ TpM , and that for some coordinate chart
(x, U) defined in a neighborhood of p, and for some representatives α ∈ v and
β ∈ w, that

(10.3.2)
d

dt
xk
(
α(t)

)∣∣∣
t=0

=
d

dt
xk
(
β(t)

)∣∣∣
t=0

.

Then v = w.
Conversely if v = w then (10.3.2) is true for every chart and every pair of

representatives.

Proof. In the coordinate system (x, U), the Chain Rule (10.2.1) gives

(10.3.3) v(f) =
d

dt
(f ◦ α)(t)

∣∣∣
t=0

=

n∑
k=1

∂

∂xk
(f ◦ x−1)

∣∣∣
x(p)

d

dt
xk
(
α(t)

)∣∣∣
t=0

,

which shows that v(f) depends only on the components (xk ◦ α)′(0) since the

components
∂

∂xk
∣∣
x(p)

(f ◦ x−1) are independent of v. Since the value v(f) does not

depend on choice of α ∈ v, the numbers (xk◦α)′(0) do not depend on α either. Thus
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v(f) = w(f) for every smooth function f if and only if (xk ◦ α)′(0) = (xk ◦ β)′(0)
for some representatives α of v and β of w. By Lemma 10.3.4, this tells us that
v = w.

To prove the converse, just notice that for any coordinate chart (x, U), the
individual component functions xk are smooth functions xk : U → R. So (10.3.2)
is just a special case of Lemma 10.3.4 using definition (10.3.1). �

We now want to actually put a vector space structure on the tangent space. To
do this, we need to define multiplication by scalars and addition of vectors. In
vector calculus we would just do this by multiplying the actual curves by scalars,
and adding the curves together, using the fact that points and vectors are the same
thing. Here we are keeping points and vectors separate, so we can’t really do this.
For example, if α and β are curves representing vectors v and w in TpM , then
α(0) = p and β(0) = p but (α + β)(0) = 2p; thus we can’t really add the curves
unless we allow ourselves to move the vectors around. Instead it is more useful to
think of vectors as operators that differentiate functions.

Definition 10.3.6. Suppose v1, v2, v ∈ TpM . We say that v = v1 + v2 if, for every
smooth function f defined in a neighborhood of p, we have

v(f) = v1(f) + v2(f).

Similarly if a ∈ R, we say that v = av1 if, for every smooth function f defined
in a neighborhood of p, we have

v(f) = av1(f).

It is straightforward to check that TpM satisfies the usual vector space axioms
with this definition. Notice that we do not yet know that this vector space is
n-dimensional. We will prove this by constructing an explicit basis in the next
Section.

10.4. Tangent vectors in coordinates. We have seen in Proposition 10.3.5 that
a vector v is completely determined by the numbers (xk ◦ γ)′(0) for any coordinate
system x for every representative curve γ. As a result, these numbers should be the
coefficients of v in some basis. Below we actually construct this basis. What we are
aiming for is a generalization of the standard basis ex, ey for R2; to obtain it, we
think of ex as being the derivative of the coordinate curve x = t+ const, y = const.
The construction below does this. It looks a little awkward, since the coordinate
curves are defined naturally in terms of the coordinates themselves: thus we need
to apply the coordinate inverse to actually get a curve in M .

Definition 10.4.1. Suppose (x, U) is a coordinate chart on M , with p ∈ U . Let
x1, x2, . . .xn be the smooth functions representing each of the coordinates, with
ck = xk(p). Since a coordinate map x is a homeomorphism, we know that x[U ] is
an open subset of Rn containing (c1, c2, . . . , cn); hence it also contains an open box
(c1−ε, c1 +ε)×· · ·× (cn−ε, cn+ε). For each k ∈ {1, . . . , n}, let γxk : (−ε, ε)→M
be the curve γxk(t) = x−1(c1, . . . , ck + t, . . . , cn). For each k, define ξxk ∈ TpM to
be the tangent vector which is the equivalence class of γxk . Clearly the ξxk ’s will
depend on the particular coordinate system. (This notation for the basis vectors is
just temporary.)
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The first thing to observe is that the coordinate vectors ξxk do not generally agree
with the usual bases used in vector calculus. For example, in polar coordinates,
we have the orthonormal basis er, eθ defined in Section 10.2; on the other hand,
ξr = er but ξθ = reθ, since the θ coordinate curves are given (in rectangular
coordinates) by the formula γθ(t) =

(
ro cos (θo + t), ro sin (θo + t)

)
, and thus ξθ =

γ′θ(0) = −ro sin θoex + ro cos θoey = roeθ. We will prefer using the nonorthonormal
bases ξxk because the transition formulas between coordinate systems are much
easier (as we will see soon).

Now we come to the main Proposition, which expresses all of the abstract notions
in concrete terms; in particular it tells us that TpM is actually an n-dimensional
vector space.

Proposition 10.4.2. In the coordinate chart (x, U), the vectors ξxk for 1 ≤ k ≤ n
form a basis for TpM .

Proof. First we show that {ξxk} span, i.e., that any v ∈ TpM can be written as
v =

∑n
k=1 a

kξxk for some numbers {ak}. By the definition of vector addition and
scalar multiplication, we just need to show that for any smooth function f defined
in a neighborhood of p, we have

(10.4.1) v(f) =

n∑
k=1

akξxk(f).

First we compute ξxk(f):

ξxk(f) =

n∑
j=1

∂

∂xj
(f ◦ x−1)

∣∣∣
x(γ

xk
(0))

d

dt
xj(γxk(t))

∣∣∣
t=0

.

Now use fact that xj(γxk(t)) = xj(p) if j 6= k and xk(γxk(t)) = xk(p) + t, by our

definition of γxk in Definition 10.4.1, to obtain
d

dt
xj(γxk(t))

∣∣∣
t=0

= δjk, so that

(10.4.2) ξxk(f) =
∂

∂xk
(f ◦ x−1)

∣∣∣
x(p)

.

Thus, equation (10.4.1) follows from the fact that if α is any curve representing
v, then by formula (10.3.3),

v(f) =
n∑
k=1

(xk ◦ α)′(0)
∂

∂xk
(f ◦ x−1)

∣∣∣
x(p)

=

n∑
k=1

(xk ◦ α)′(0)ξxk(f).

Thus we can take ak = (xk ◦ α)′(0) for any representative curve α ∈ v to obtain
(10.4.1).

Finally we need to show that {ξxk} are linearly independent. So suppose we have∑n
k=1 a

kξxk = 0 for some numbers {ak}. Now we apply this vector to the function
xj , for some j; by (10.4.2), we have

n∑
k=1

akξxk(xj) =

n∑
k=1

akδkj = aj = 0.

Since j was arbitrary, we see that all {ak} are zero, so that {ξxk} are linearly
independent. Thus we have an n-element basis coming from any coordinate system.

�
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Now we come to the question of how to change coordinates. Because of our
definition of the basis vectors ξxk , the formula is fairly simple.

Proposition 10.4.3. Suppose (x, U) and (y, U) are two coordinate systems on the
same open set U ⊂M containing a point p. Then the basis vectors ξxk and ξyk are
related by the formulas

(10.4.3) ξxk =

n∑
j=1

∂yj

∂xk

∣∣∣
x(p)

ξyj and ξyk =

n∑
j=1

∂xj

∂yk

∣∣∣
y(p)

ξxj .

Here
∂yj

∂xk
stands for

∂

∂xk
(yj ◦ x−1), the partials of the transition function.

In addition, if a vector v is expressed in two ways as

v =

n∑
k=1

akξxk =

n∑
k=1

bkξyk ,

then the components ak and bk are related by the formulas

(10.4.4) ak =

n∑
j=1

∂xk

∂yj

∣∣∣
y(p)

bj and bk =

n∑
j=1

∂yk

∂xj

∣∣∣
x(p)

aj .

Proof. By Lemma 10.3.4, vectors are completely determined by their operation on
smooth functions. As a result, we just have to compute, for any smooth f ,

ξxk(f) =
∂

∂xk

∣∣∣
x(p)

(f ◦ x−1)

=
∂

∂xk

∣∣∣
x(p)

(
f ◦ y−1) ◦ (y ◦ x−1)

)
=

n∑
j=1

∂

∂yj
(f ◦ y−1)

∣∣∣
y(p)

∂yj

∂xk

∣∣∣
x(p)

=

n∑
j=1

ξyj (f)
∂yj

∂xk

∣∣∣
x(p)

.

The first part of equation (10.4.3) follows, since the function f was arbitrary, and
the second is of course proved by the same technique in reverse.

The change-of-components formula follows from the change-of-basis formula ex-
actly as in a general vector space, in equation (3.1.2) at the beginning of Section
3.1. Notice that components transform in the opposite way as basis vectors just as
we saw then. �

Proposition 10.4.3 formed the basis of what is now called “classical differential ge-
ometry,” as invented by Ricci and Levi-Civita in the late 1800s. One defined vectors
by their components in some coordinate system, then checked that the components
in different systems satisfied the transition formulas (10.4.4). Some mathematicians
still do this, but most differential geometers now prefer the derivative-operator ap-
proach, since it helps explain why the transition formulas are valid. This more mod-
ern approach was devised in the mid-1900s, once the notions of topological curves
and functions, along with the notion of an abstract equivalence class, were under-
stood. The main conceptual difference is that in the classical approach, one defines
everything by coordinates but then checks that the objects obtained are actually
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independent of coordinates; in the modern approach, one defines objects abstractly
by their operation on more basic objects (such as functions), then checks that the
operations are independent of the choice of basic object. The two approaches differ
more philosophically than mathematically.

It would be difficult to remember the formulas in Proposition 10.4.3 with this
notation. Henceforth we are going to abandon the ξxk notation for another, which
will help us remember the formulas in the same way the Leibniz notation for calculus
was invented to make the formulas seem obvious. The motivation for this comes
from the formula (10.4.2).

Definition 10.4.4. From now on, we will write the vector basis ξxk at p ∈ M as

ξxk =
∂

∂xk

∣∣∣
p
. Thus general vectors in TpM will be written as

v =
n∑
k=1

ak
∂

∂xk

∣∣∣
p
,

and the corresponding operation on functions will be

v(f) =

n∑
k=1

ak
∂

∂xk

∣∣∣
p
(f) =

n∑
k=1

ak
∂

∂xk
(f ◦ x−1)

∣∣∣
x(p)

.

The derivative of a curve γ : (−ε, ε)→M can be written as

(10.4.5)
d

dt
γ(t)

∣∣∣
t=0

=

n∑
k=1

d

dt
xk
(
γ(t)

) ∂

∂xk

∣∣∣
γ(0)

Observe that this definition serves as a mnemonic for the formulas in Proposition
10.4.3. The following Corollary gives the coordinate change formula in the form
we will find most useful. Notice that once we decide to write vectors as partial
derivatives, the coordinate change formula is an obvious consequence of the Chain
Rule.

Corollary 10.4.5. If (x, U) and (y, V ) are two coordinate charts with p ∈ U ∩ V ,
then the two vector bases at p are related by

(10.4.6)
∂

∂xk

∣∣∣
p

=

n∑
j=1

∂yj

∂xk

∣∣∣
x(p)

∂

∂yj

∣∣∣
p
.

There are several features of this formula that will be very important to us:

• The index k appears on the “bottom” in both equations. In general we will
see that formulas representing coordinate-invariant objects must always
have this property.
• The index j being summed over appears once on top and once on the

bottom. This is natural here because it’s a consequence of the Chain Rule;
in general we will place the indices in such a way that all sums will have an
index which appears once on “top” and once on the “bottom.” The formula
v =

∑n
k=1 a

k ∂
∂xk

is another example of this, and explains why we are using
superscripts instead of subscripts. The idea is that it helps you remember
formulas; any formula that involves summing over two lower indices must
not be coordinate-invariant.
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• The basis-change formula implies the component-change formula. We have

v =

n∑
k=1

ak
∂

∂xk
=

n∑
k=1

bk
∂

∂yk
=

n∑
k=1

n∑
j=1

bk
∂xj

∂yk
∂

∂xj
.

Components change in the opposite way that the basis vectors do, which
needs to happen to get coordinate invariance. We have consistency because

n∑
k=1

bk
∂

∂yk
=

n∑
k=1

n∑
j=1

aj
∂yk

∂xj

n∑
i=1

∂xi

∂yk
∂

∂xi

=

n∑
j=1

aj

(
n∑
k=1

n∑
i=1

∂yk

∂xj
∂xi

∂yk
∂

∂xi

)
.

Now notice that, by the Chain Rule, we have
n∑
k=1

∂yk

∂xj
∂xi

∂yk
=
∂xi

∂xj
= δij .

As a result the formula above reduces to
n∑
k=1

bk
∂

∂yk
=

n∑
j=1

aj
n∑
i=1

δij
∂

∂xi
=

n∑
j=1

aj
∂

∂xj
.

Again, notice how in the above computations all indices summed over ap-
pear twice: once above, and once below.

Because of these properties, we will always write vectors in the partial-derivative
notation, even when we are not planning to actually differentiate any functions.
We should keep in mind, however, that a vector actually exists independently of
any coordinate system: its formula in a particular system is just a single element
of an equivalence class.

As a familiar application, we transform rectangular vectors into polar vectors,
using the transition functions (x, y) = (r cos θ, r sin θ):

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
(10.4.7)

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
(10.4.8)

In terms of our abandoned notation ξr and ξθ, this gives the formulas ξr = cos θ ξx+
sin θ ξy and ξθ = −r sin θ ξx + r cos θ ξy. Since ξx = ex and ξy = ey in the standard
vector calculus basis, and these are orthonormal in the Euclidean norm, we have
|ξr| = 1 and |ξθ| = r, so that we can get orthonormal polar vectors er = ξr and
eθ = r−1ξθ. (Observe that we get the same formulas as we started the section with;
the difference is that we didn’t need any diagrams to figure out the formulas.) In
general we don’t have an inner product on TpM , and even if we did our coordinate
vectors would not necessarily be orthogonal, so it doesn’t make sense to ask for an
orthonormal basis associated to a coordinate system. Thus the difficulty in finding
transition formulas for vector calculus in different coordinate charts is entirely due
to the fact that we thought orthonormal bases were the correct way to think about
things.
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11. Derivatives

“If one is to understand the great mystery, one must study all its aspects.”

11.1. Derivatives as operators on tangent spaces. This new notion of vector
means that we need to redefine the notion of derivative of maps. Suppose we have
some smooth map F : M → N , where M and N are smooth manifolds. What do
we mean by the derivative of F?

In standard vector calculus, we think of the derivative of a multivariable function
as being a matrix: for example, when we have F : R3 → R2 given by (u, v) =(
f(x, y, z), g(x, y, z)

)
, then the derivative of F = (f, g) is the 2× 3 matrix

DF =

(
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

)
.

In conjunction with our new thinking about tangent vectors as abstract elements
of certain linear spaces, we want to think about derivatives as linear operators from
one such space to another. First recall the definition of smooth maps from one
manifold to another in Definition 9.1.1, which sets up our context.

We assume in the definition of smoothness that F has infinitely many partial
derivatives in coordinates even though for right now we only want a single derivative
map. We will be able to obtain the higher derivatives later on as naturally more
complicated objects, and in so doing we will see why for example acceleration is
more complicated than velocity. Even in multivariable calculus, it is already clear
that the correct notion of derivative is as a linear map from one Euclidean space to
another (rather than the set of partial derivatives). The correct analogue for maps
of manifolds is a linear map from one tangent space to another. For each p ∈ M ,
we are looking for a map F∗ : TpM → TF (p)N . When the point p may be changing,
as in the next Chapter, we denote this map by (F∗)p. Let’s figure out what it has
to look like.

Since vectors are basically equivalence classes of curves, we just need to consider
how a smooth map F changes one class of curves to another. Clearly, if γ : (−ε, ε)→
M is a smooth curve with γ(0) = p, then F ◦ γ : (−ε, ε) → N is a smooth curve
with (F ◦ γ)(0) = F (p). For this to make sense, we need to check that if α and β
are curves in M through p that have the same derivative at t = 0, then F ◦ α and
F ◦ β are curves in N through F (p) that have the same derivative. The following
Proposition accomplishes this.

Proposition 11.1.1. Let M and N be smooth manifolds, and suppose that F : M →
N is smooth. Let α and β be two curves from (−ε, ε) to M , with α(0) = β(0) = p,
which have the same derivative (in the sense of Definition 10.3.2). Then the
curves F ◦ α and F ◦ β also have the same derivative. Thus there is a map
F∗ : TpM → TF (p)N defined so that F∗v is the equivalence class of F ◦ γ when-
ever γ is a representative of v.

Equivalently we may specify F∗v by its action on smooth functions h defined in
a neighborhood of F (p): we have

(11.1.1) (F∗v)(h) = v(h ◦ F ).

Hence in particular F∗ is linear.
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Proof. Suppose α and β have the same derivative at t = 0 in the sense of Definition
10.3.2; we want to show that F ◦α and F ◦β do as well. By definition, we just need
to check that for any smooth function h : Ω ⊂ N → R with F (p) ∈ Ω, we have

(11.1.2)
d

dt
(h ◦ F ◦ α)

∣∣∣
t=0

=
d

dt
(h ◦ F ◦ β)

∣∣∣
t=0

.

Now f = h◦F is a smooth function by the Chain Rule 5.1.10: using the definition of
smoothness we can write f ◦x−1 = (h◦y−1)◦(y◦F ◦x−1) which is the composition
of smooth functions on Euclidean spaces. We have f : F−1[Ω] ⊂ M → R and
p ∈ F−1[Ω], so (11.1.2) follows from Definition 10.3.2.

The formula (11.1.1) comes, as all our formulas have, from the Chain Rule. Let
h be any smooth function defined in a neighborhood of F (p). Choose any curve
γ representing v, and let δ = F ◦ γ; then δ ∈ F∗v by definition. Then, again by
chasing through the definitions, we have

(F∗v)(h) =
d

dt

∣∣∣
t=0

(h ◦ δ)(t) =
d

dt

∣∣∣
t=0

(h ◦ F ◦ γ)(t) = v(h ◦ F ).

Thus we have for any v, w ∈ TpM and a, b ∈ R that

(F∗(av+bw))(h) = (av+bw)(h◦F ) = av(h◦F )+bw(h◦F ) = a(F∗v)(h)+b(F∗w)(h).

Since this is true for every function h, we conclude F∗(av + bw) = aF∗v + bF∗w by
Lemma 10.3.4, so that F∗ is actually a linear operator. �

If you keep track of domains and ranges of the various objects (for example by
drawing a diagram), formula (11.1.1) is the only possible formula that could make
sense. F∗v is a vector at F (p) in N , so the only smooth functions it could operate
on are real-valued functions h defined on N . If we want to relate it to v, a vector
at p in M , we need to get a real-valued function from M , which must therefore be
h ◦ F .

Example 11.1.2. Here is an explicit example. Suppose we are thinking of M and
N (which happen to be the same space) as C. Let F : M → N be the continuous
function F (z) = −iz2/2. Put a Cartesian coordinate system x = (x, y) on the
domain and a Cartesian coordinate system u = (u, v) on the range. Then first of
all, u◦F ◦x−1 : R2 → R2 is given by (u, v) =

(
xy, 1

2 (y2−x2)
)
, and this is obviously

smooth.
Consider a fixed point zo ∈M with wo = F (zo) ∈ N , given in coordinates respec-

tively by x(zo) = (xo, yo) and u(wo) = (uo, vo) = (xoyo,
1
2 (y2

o − x2
o)). An arbitrary

vector V ∈ TzoM can be expressed in the coordinate basis as V = a
∂

∂x

∣∣∣
zo

+b
∂

∂y

∣∣∣
zo

for some a, b ∈ R. Take γ(t) = zo + (a + ib)t; then in coordinates we have
x ◦ γ(t) = (xo + at, yo + bt) so that γ′(0) = v.

Now F ◦ γ(t) = −i/2
(
zo + (a+ ib)t

)2
, which is given in coordinates by(

u(t), v(t)
)

= u◦F◦γ(t) =
(
xoyo+ayot+bxot+abt

2, 1
2y

2
o− 1

2x
2
o+byot−axot− 1

2a
2t2+ 1

2b
2
)
;

thus the derivative at t = 0 is

(F ◦γ)′(0) = u′(0)
∂

∂u

∣∣∣
wo

+v′(0)
∂

∂v

∣∣∣
(uo,vo)

= (ayo+bxo)
∂

∂u

∣∣∣
wo

+(byo−axo)
∂

∂v

∣∣∣
wo
.

We have thus computed that

F∗

(
a
∂

∂x

∣∣∣
zo

+ b
∂

∂y

∣∣∣
zo

)
= (ayo + bxo)

∂

∂u

∣∣∣
F (zo)

+ (byo − axo)
∂

∂v

∣∣∣
F (zo)

.
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As expected from Proposition 11.1.1, the map F∗ is linear, and the rectangular
coordinate bases we have
(11.1.3)

F∗

( ∂
∂x

∣∣∣
zo

)
= yo

∂

∂u

∣∣∣
F (zo)

−xo
∂

∂v

∣∣∣
F (zo)

and F∗

( ∂
∂y

∣∣∣
zo

)
= xo

∂

∂u

∣∣∣
F (zo)

+yo
∂

∂v

∣∣∣
F (zo)

.

Not coincidentally, in matrix form this is precisely what we’d get by viewing
F : R2 → R2 as the map (u, v) =

(
xy, 1

2 (y2 − x2)
)

and computing

DF (xo, yo) =

(
ux(xo, yo) vx(xo, yo)
uy(xo, yo) vy(xo, yo)

)
.

Also notice that even though the domain and range are the same space, we use
different coordinates to represent them; it’s what allows us to use the matrix ∂u

∂x to
compute F∗. If we used the same coordinate labels (x, y), it would be easy to get
confused between both the partial derivatives and especially the locations of the
vectors.

Now suppose we use a genuinely different coordinate system for the domain
and range. Let x = (x, y) be rectangular coordinates on the domain, and let
s = (σ, τ) be parabolic coordinates on the range as in (6.2.4), which are related to
the rectangular coordinates (u, v) on the range by (u, v) =

(
στ, 1

2 (τ2 − σ2)
)
. Then

the map in coordinates, s ◦ F ◦ x−1, is given by

(σ, τ) = s ◦ F ◦ x−1(x, y)

= s ◦ u−1 ◦ u ◦ F ◦ x−1(x, y)

= s ◦ u−1
(
xy,

1

2
(y2 − x2)

)
= (x, y).

Thus in these coordinates, F looks like the identity map. Using the same technique
as above, we can compute that

(11.1.4) F∗

( ∂
∂x

∣∣∣
zo

)
=

∂

∂σ

∣∣∣
F (zo)

and F∗

( ∂
∂y

∣∣∣
zo

)
=

∂

∂τ

∣∣∣
F (zo)

.

,

Equation (11.1.4) is basically just an expression of the fact that a linear trans-
formation from one vector space to another has only one invariant—the rank—and
if we can change the basis of both the domain and range, we can make a maximal-
rank linear transformation look like the identiy as in the discussion after Definition
3.2.2. In our context, where the linear transformation comes from the derivative of
a smooth map and our basis vectors come from coordinate charts, we can think of
this as the ability to choose coordinates on the domain and range (separately) so
that any invertible map F actually looks locally like

(11.1.5) s ◦ F ◦ x−1(x1, . . . , xn) = (y1, . . . , yn).

In fact the Inverse Function Theorem essentially tells us that if we have chosen
coordinates x and u on the domain and range in some way, and that if u ◦F ◦ x−1

has an invertible derivative somewhere, then s = x ◦ F−1 = (u ◦ F ◦ x−1)−1 ◦ u
is also a coordinate chart on N in which F takes the trivial form (11.1.5); this is
precisely what we did in the Example above.
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This is the first instance of a general phenomenon: a map F from one manifold
to another which is smooth and has smooth inverse can, for many purposes, be
treated just as a coordinate change on a single manifold. We did something like
this when discussing linear transformations: in trying to prove that the determinant
was basis-independent in Proposition 3.3.4, we first proved detAB = detAdetB
and then used it in the case where A was a coordinate-change matrix and B was a
matrix expressing a linear transformation (genuinely different types of objects that
happen to both look like matrices), and we did it again in order to make sense of
the “nonzero determinant” condition for a linear transformation from one vector
space to another to be invariant. The consequence for manifolds is that objects
which are coordinate-invariant also end up being invariant under smooth maps and
well-behaved in the category theory sense. This will be most obvious when we work
with differential forms, and is hugely important for things like deRham cohomology.

Returning to the situation of Example 11.1.2, let’s view F as a map from M to
itself and consider the special case of a fixed point F (zo) = zo.

Example 11.1.3. If F (z) = −iz2/2, then F has two fixed points at zo = 0 and
zo = 2i. In either case, F∗ is a linear map from TzoM to itself. Notice that even if
F is a smooth map from M to itself, it’s still convenient for actual computations to
separate the domain and range and use different names for the coordinates, as we
did in Example 11.1.2. For example if I have coordinates (x, y) on both the domain
and range, I will frequently use (x, y) as the domain coordinates and (u, v) as the
range coordinates, and only when I’m done with the computation will I then put
(u, v) back in terms of (x, y). This is especially true for the type of computation
I’m doing here at a fixed point of the map.

When zo = 0 we have (xo, yo) = (0, 0), and the map F∗ : T0M → T0M is
identically zero by formula (11.1.3). Since it is zero in the rectangular coordinate
basis, it is zero in every coordinate basis: the map F∗ is a linear map defined
independently of any coordinates, and so it either sends all vectors to zero or not
regardless of what basis we are working in. Notice that since F∗ is not invertible
at the origin, we cannot get any coordinate chart at the origin which makes F look
like the identity as in (11.1.5).

On the other hand when zo = 2i we have xo = 0 and yo = 2, so that F∗ : T2iM →
T2iM is given according to (11.1.3) by

F∗

(
∂

∂x

∣∣∣
2i

)
= 2

∂

∂x

∣∣∣
2i

and F∗

(
∂

∂y

∣∣∣
2i

)
= 2

∂

∂y

∣∣∣
2i
.

In other words, F∗ is twice the identity, and hence it will be twice the identity in
any other coordinate chart as well: here the number 2 actually means something.

,

We now come to a very simple but extremely useful result: the Chain Rule. As
an indication of the utility of the definition F∗, we find that the Chain Rule on
manifolds is actually simpler than the Chain Rule 5.1.10 for multivariable func-
tions (although as always the multivariable calculus is really behind our elegant
definitions).

Theorem 11.1.4. Suppose L, M , and N , are smooth manifolds of dimensions `,
m, and n respectively. Let F : L → M and G : M → N be smooth maps, and let
H : L → N be the smooth map H = G ◦ F . Let p ∈ L, and define q = F (p) ∈ M
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and r = G(q) ∈ N . Then the linear maps F∗ : TpL → TqM and G∗ : TqM → TrN
and H∗ : TpL→ TrN are related by H∗ = G∗ ◦ F∗.

Proof. Let v ∈ TpL be an arbitrary vector, and let h : Ω ⊂ N → R be an arbitrary
function defined in a neighborhood Ω of r ∈ N . Then for any representative curve
γ : (−ε, ε) → L with γ(0) = p and γ′(0) = v, we have by Definition 11.1.1 that

(H∗v)(h) =
d

dt
(h ◦H ◦ γ)(t)

∣∣∣
t=0

. On the other hand we have

h ◦H ◦ γ(t) = (h ◦G) ◦ (F ◦ γ)(t).

If w = F∗v ∈ TqM then β = F ◦ γ is a representative curve of w, and by we have

(H∗v)(h) =
d

dt

(
(h ◦G) ◦ (F ◦ γ)

)
(t)
∣∣∣
t=0

=
d

dt
(h ◦G ◦ β)(t)

∣∣∣
t=0

= (G∗w)(h).

Since h was an arbitrary function, we conclude H∗v = G∗w whenever w = F∗v.
And since v was arbitrary we conclude H∗ = G∗ ◦ F∗. �

What’s nice about the formula (G ◦ F )∗ = G∗ ◦ F∗ is that the star opera-
tion keeps track of base points in the correct way automatically. Even the usual
one-dimensional version of the Chain Rule (G ◦ F )′(t) = G′(F (t))F ′(t) is more
complicated to write. Ironically, the differential geometry approach is more useful
precisely because one is allowed to do less with it; the fact that points are different
from vectors prevents a lot of confusion, and the fact that tangent spaces at different
points cannot be naturally identified helps us remember where all our operations
must be taking place.

11.2. A coordinate approach to derivatives. We have defined F∗ in a coordinate-
independent way, but as in Example 11.1.2, it is usually convenient to compute in
given coordinate bases on TpM and TF (p)N . Here we demonstrate the general for-
mula. We also make our first attempt to relate the modern approach to the classical
approach.

Proposition 11.2.1. Let M and N be smooth manifolds of respective dimensions
m and n. Suppose we have a coordinate chart (x, U) on M and (u,W ) on N and
a smooth map F : M → N with p ∈ U and F (p) ∈ W . Then the linear map
F∗ : TpM → TF (p)N is given in the coordinate bases by

(11.2.1) F∗

(
∂

∂xj

∣∣∣
p

)
=

n∑
k=1

∂

∂xj
(
uk ◦ F ◦ x−1

)∣∣∣
x(p)

∂

∂uk

∣∣∣
F (p)

, 1 ≤ j ≤ m.

Proof. Let (a1, . . . , am) = x(p). For each j ∈ {1, . . . ,m}, consider the “coordinate
curve” γk given by

γj(t) = x−1(a1, . . . , aj + t, . . . , am)

and defined on some small neighborhood (−ε, ε) of t = 0. Then γj(0) = p, and
since x ◦ γj(t) = (a1, . . . , aj + t, . . . , am) we know that γj is in the equivalence

class
∂

∂xj

∣∣∣
p

by Definition 10.4.1 (after the renaming by Definition 10.4.4) of the

coordinate basis vectors. For each k ∈ {1, . . . , n}, define functions gkj : (−ε, ε)→ R
by gkj = uk ◦ F ◦ γj where u = (u1, . . . , un) are the components of the coordinate
chart on N . Then the curve F ◦ γj : (−ε, ε)→ N in coordinates takes the form

u ◦ F ◦ γj(t) =
(
g1
j (t), . . . , gnj (t)

)
.
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Thus by formula (10.4.5), we have

F∗

(
∂

∂xj

∣∣∣
p

)
= (F ◦ γj)′(0) =

n∑
k=1

dgkj
dt

∣∣∣
t=0

∂

∂uk

∣∣∣
F (p)

.

Clearly we have
dgkj
dt

∣∣∣
t=0

=
∂

∂xj
(uk ◦ F ◦ x−1)

∣∣∣
(a1,...,an)

,

which gives formula (11.2.1). �

Of course if F : Rm → Rn, we would just write u = F (x), and the derivative map

F∗ would just be DF as the matrix with components ∂uj

∂xk
. Obviously this looks

simpler once we are working in Euclidean coordinates, but it makes coordinate
changes very difficult.

Example 11.2.2. For example suppose we have a simple map from R2 to itself
which is naturally expressed in polar coordinates as F (r, θ) = (r4, 2θ), and I want
to compute DF (er) and DF (eθ) in the orthonormal polar basis. The classical
approach already has some difficulty here, and people unfamiliar with differential
geometry are often tempted to do things like convert everything to Cartesian coor-
dinates, take the derivatives, and then convert back (often getting the wrong answer
along the way).

In the differential geometric approach, the computation is trivial: we would write

F∗

(
∂

∂r

∣∣∣
p

)
= 4r3 ∂

∂r

∣∣∣
F (p)

and F∗

(
∂

∂θ

∣∣∣
p

)
= 2

∂

∂θ

∣∣∣
F (p)

.

Of course in the classical approach the “correct vectors” are er and eθ, which satisfy
er|p = ∂

∂r

∣∣
p

and eθ|p = 1
r(p)

∂
∂θ

∣∣
p

where r(p) is the radius of point p, and thus in

this basis

F∗(er|p) = 4r3er|F (p) and F∗(eθ|p) = 2
r4

r
eθ|F (p),

or in the usual vector calculus notation where you forget where your vectors live,
F∗(er) = 4r3er and F∗(eθ) = 2r3eθ, and now that factor of r3 in front of eθ is
mysterious.

These computations are manageable since polar coordinates are common enough
that people just copy them from the back of a classical mechanics textbook, but
clearly working in a nonstandard coordinate system in the classical approach is
going to be extremely difficult and for no good reason. This is an example of a
situation where understanding things from the geometric point of view is extremely
helpful even if you’re not doing geometry. ,

We have defined F∗ in a coordinate-independent way, and the coordinate formula
(11.2.1) is a consequence. Thus if we had two different coordinate charts x and y
on M , and two different charts u and v on N , then we would certainly have

(11.2.2) F∗

(
∂

∂yj

∣∣∣
p

)
=

n∑
k=1

∂

∂yj
(
vk ◦ F ◦ y−1

)∣∣∣
y(p)

∂

∂vk

∣∣∣
F (p)

.

Now classically a vector would be defined in terms of its components in some par-
ticular coordinate chart, but it would only really represent an invariant object if
we knew that its components in a different coordinate chart satisfied the formulas
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in Corollary 10.4.5. As such, the map F∗ would have been defined by the formula
(11.2.1), and one would have needed to prove formula (11.2.2) from it using the
transition formulas (10.4.6). In the next Proposition, we will show that this actu-
ally works. The proof is just the Chain Rule a few times, and if you’re willing to
believe it, you can skip the proof entirely and move on to the next Section. Later
on we will need this technique when we start trying to differentiate vector fields or
related objects, but you can wait until then if you want.

Proposition 11.2.3. The linear map

(11.2.3) F∗

 n∑
j=1

aj
∂

∂xj

 =

n∑
j=1

n∑
k=1

aj
∂

∂xj
(uk ◦ F ◦ x−1)

∂

∂uk

is coordinate-invariant; in other words, if we define the operation F∗ by (11.2.3) in
x- and u-coordinates on M and N , then in any other coordinate systems y on M
and v on N , we will have

F∗

 n∑
j=1

bj
∂

∂yj

 =

n∑
j=1

n∑
k=1

bj
∂

∂yj
(vk ◦ F ◦ y−1)

∂

∂vk
.

Proof. We just apply Proposition (10.4.3) and the Chain Rule. So let us start with
(11.2.3) and change coordinates from x to y on M (keeping coordinates u on N).
Then for any index j,

F∗

(
∂

∂yj

)
= F∗

(
n∑
i=1

∂xi

∂yj
∂

∂xi

)

=

n∑
i=1

∂xi

∂yj
F∗

(
∂

∂xi

)
(since F∗ is a linear map)

=

n∑
i=1

∂xi

∂yj

n∑
k=1

∂

∂xi
(uk ◦ F ◦ x−1)

∂

∂uk

=

n∑
i=1

∂xi

∂yj

n∑
k=1

∂

∂xi

(
(uk ◦ F ◦ y−1) ◦ (y ◦ x−1)

) ∂

∂uk

=

n∑
k=1

∂

∂yj
(uk ◦ F ◦ y−1)

∂

∂uk
,

using the Chain Rule
∂

∂yj
(g(y)) =

n∑
i=1

∂

∂xi
(
g(y ◦ x−1(x))

)∂xi
∂yj

.
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Now we show that F∗ does not depend on coordinates on the range:

F∗

(
∂

∂yj

)
=

n∑
k=1

∂

∂yj
(uk ◦ F ◦ y−1)

∂

∂uk

=

n∑
k=1

n∑
l=1

∂

∂yj
(uk ◦ F ◦ y−1)

∂vl

∂uk
∂

∂vl

=

n∑
l=1

∂

∂yj
(vl ◦ u−1) ◦ (u ◦ F ◦ y−1)

∂

∂vl
(Chain Rule again)

=

n∑
l=1

∂

∂yj
(vl ◦ F ◦ y−1)

∂

∂vl
,

which is again the same formula as (11.2.3) with the u-coordinates replaced with
v-coordinates. �

11.3. The classical tangent space. Recall that for surfaces in R3, we described
in Section 10.1 the tangent space as a particular two-dimensional plane, a partic-
ular subspace of R3. Our actual definition of a tangent space is a rather abstract
space which happens (in this case) to also be two-dimensional. Of course all two-
dimensional tangent spaces are isomorphic to each other, but it’s not obvious that
there is any natural or basis-independent isomorphism. In this Section we will use
the maps F∗ to define the isomorphism.

First of all, note that Rn is a manifold, and so our new notion of tangent vector
should coincide with the old notion in this case. Considering M ∼= Rn as the
abstract Euclidean space and x : M → Rn as the Cartesian coordinate chart, the

space TpM is spanned by the coordinate vectors
∂

∂xk

∣∣∣
p
, and the correspondencea

1

...
an

←→ a1 ∂

∂x1

∣∣∣
p

+ · · ·+ an
∂

∂xn

∣∣∣
p

gives a natural isomorphism.
Now suppose that we have a surface in R3 defined locally as the inverse image

G−1{r} for a function F : R3 → R where r is a regular value. Let M = G−1{r};
we know that M is a smooth submanifold by Theorem 9.1.11. Let ι : M → R3

be the inclusion. By definition of submanifold, there is a coordinate chart (x, U)
around any point of M on R3 such that U ∩M = φ−1[{x1, x2, 0}]. The restriction

φ̃ = φ|M = φ ◦ ι is thus a coordinate chart defined on U ∩M . In these coordinates
we have the formula

(11.3.1) φ ◦ ι ◦ φ̃−1(x1, x2) = (x1, x2, 0),

which is obviously a C∞ function from R2 to R3. This shows that ι is smooth in the
sense of Definition 9.1.1. As a consequence we must have that G◦x−1(x1, x2, x3) =
x3 + r.

Now G ◦ ι : M → R is constant since M = G−1{r}. Thus for any curve
γ : (−ε, ε)→M , we know that (G ◦ ι ◦ γ)(t) is constant so that (G ◦ ι)∗(v) = 0 for
every v in every tangent space TpM . In particular (G ◦ ι)∗ is identically zero. By
the Chain Rule for manifolds, Theorem 11.1.4, this implies that G∗ ◦ ι∗ = 0. Now
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formula (11.3.1) shows that ι∗ has maximal rank (in particular that the image of
ι∗ : TpM → TpR3 is a two-dimensional subspace of TpR3). Furthermore the map
G∗ : TpR3 → TrR ∼= R has maximal rank by assumption that r ∈ R is a regular
value of G, and hence the kernel of G∗ is two-dimensional. The only way the image
of ι∗ can be contained in the kernel of G∗ is if they are actually equal. Hence we
have

ι∗[TpM ] = ker(G∗|TpM ),

and this shows that the historical description of TpM was actually the image
ι∗[TpM ].

Similarly suppose F : Ω ⊂ R2 → R3 locally defines a manifold M . Again let
ι : M → R3 denote the inclusion, and define F̃ : Ω ⊂ R2 →M to be the restriction
of F to its image M . Then obviously ι◦ F̃ = F . In submanifold coordinates we can
check that ι and F̃ are smooth in the sense of manifolds. By the Chain Rule for
manifolds, Theorem 11.1.4, we have ι∗◦F̃∗ = F∗. Now by the usual assumptions, the
immersion F∗ has rank two as a map from TaR2 ∼= R2 to Tι(p)R3 ∼= R3, if p = F (a).

Now F̃∗[TaR2] is a linear subspace of the two-dimensional space TpM , and since

ι∗
[
F̃∗[TaR2]

]
= F∗[TaR2] is two-dimensional, we conclude that F̃∗[TaR2] = TpM .

Thus we have ι∗[TpM ] = F∗[TaR2], which again shows that the image under the
inclusion ι∗ of TpM is what mathematicians historically thought of as the tangent
space.
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12. The tangent bundle

“Traveling through hyperspace ain’t like dusting crops, boy!”

In the past two Chapters we have thought of tangent vectors as being defined
at a single point p ∈ M . We have a vector space structure on each tangent space
TpM , but we must think of the space TpM and TqM as different and not related in
any natural way. However we still want to fit these tangent spaces together and try
to get another smooth manifold. For example, if γ : R→M is a smooth curve, then
γ′(t) is a tangent vector in Tγ(t)M for each t. Since γ is C∞ in coordinate charts,
we want to think of γ′ as being at least a continuous and preferably a smooth curve
in some other space. Classically we would think of a particle in Rn as having a
position and a velocity, and keep track of both x and v; the pair (x, v) then lives in
the phase space Rn ×Rn. This is natural since Newton’s equations of motion then
become a first-order differential equation on Rn × Rn.

12.1. Examples. The tangent bundle TM is the disjoint union of all the tangent
planes:

TM =
⋃
p∈M

TpM.

However to do anything useful on it, we need to put a topology on it. The easiest
way to do this is to define the manifold structure on it. Let’s do some examples
first to figure out what’s important.

Example 12.1.1. Observe that if M is homeomorphic to Rn, then we expect TM
to be homeomorphic to R2n. We just take a global coordinate chart φ = x on M ,
get at each p ∈ M a basis of vectors ∂

∂xk

∣∣
p
, and then say that our coordinates on

TM are given by the following rule: if v ∈ TpM is expressed as v =

n∑
i=1

ai
∂

∂xi

∣∣∣
p

where x(p) = (q1, · · · , qn), then the coordinate chart Φ on TM will be given by23

Φ(v) = (q1, · · · , qn, a1, · · · , an).

Since φ is a globally-defined chart, every p and every v ∈ TpM has a unique repre-
sentation in this way, and conversely given the coordinates (q1, · · · , qn, a1, · · · , an),
we set p = x−1(q1, . . . , qn) and v ∈ TpM to be v =

∑
i a
i ∂
∂xi

∣∣
p
.

Let’s see what happens in a different coordinate system such as polar coordinates
on M ∼= R2. Here the natural vector basis to use is the coordinate basis { ∂∂r ,

∂
∂θ}.

For any vector v in any tangent space TpM , we can write φ(p) = (x, y) and v =

a ∂
∂x

∣∣
p

+ b ∂
∂y

∣∣
p

for some numbers Φ(v) = (x, y, a, b) which give us the Cartesian

coordinates of v ∈ TM . The same point p and vector v ∈ TpM may be written

as ψ(p) = (r, θ) and v = c ∂
∂r

∣∣
p

+ d ∂
∂θ

∣∣
p
, to obtain the polar coordinates Φ(v) =

(r, θ, c, d) of v ∈ TM .
Of course we know the transition map φ ◦ ψ−1: we have (x, y) = φ ◦ ψ−1(r, θ) =

(r cos θ, r sin θ), and we can solve for r and θ in the standard way. But what is the

23Notice that Φ is a function of v ∈ TM : every v is in some TpM and no vector can be in two
different tangent spaces, which means we always know what p is as soon as we know what v is.

Hence we should not write Φ(p, v) because that makes it look like TM is actually M × Rn.
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transition map Φ ◦Ψ−1? To get it, we need to use the coordinate vector transition
formula (10.4.6) to obtain

∂

∂r

∣∣∣
p

= cos θ
∂

∂x

∣∣∣
p

+ sin θ
∂

∂y

∣∣∣
p

and
∂

∂θ

∣∣∣
p

= −r sin θ
∂

∂x

∣∣∣
p

+ r cos θ
∂

∂y

∣∣∣
p

in order to compare the two expressions of v. We have

v = c
∂

∂r

∣∣∣
p

+ d
∂

∂θ

∣∣∣
p

=
(
c cos θ − dr sin θ

) ∂

∂x

∣∣∣
p

+
(
c sin θ + dr cos θ

) ∂
∂y

∣∣∣
p

= a
∂

∂x

∣∣∣
p

+ b
∂

∂y

∣∣∣
p
,

which implies a = c cos θ−dr sin θ and b = c sin θ+dr cos θ. Putting it all together,
we get the transition formula

(x, y, a, b) = Φ ◦Ψ−1(r, θ, c, d) =
(
r cos θ, r sin θ, c cos θ − dr sin θ, c sin θ + dr cos θ

)
.

Obviously this is C∞, but more important is that it is linear in the velocity compo-
nents (c, d), though of course quite nonlinear in the position components (r, θ). ,

The fact that Rn can be covered by a single coordinate chart means that the
tangent bundle TRn can as well, and this implies that TRn must be trivial. Still
we see that coordinate changes twist the tangent spaces in various ways. Now let’s
see what happens in the first nontrivial case, when M = S2.

Example 12.1.2. We cover S2 with north-pole and south-pole stereographic co-
ordinate charts as in Example 8.2.15, given by the formulas

(u, v) = φ(x, y, z) =

(
x

1− z
,

y

1− z

)
and (s, t) = ψ(x, y, z) =

(
x

1 + z
,

y

1 + z

)
,

where the inverses are given by

(x, y, z) = φ−1(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

u2 + v2 + 1

)
= ψ−1(s, t) =

(
2s

1 + s2 + t2
,

2t

1 + s2 + t2
,

1− s2 − t2

1 + s2 + t2

)
.

Here φ covers all but (0, 0, 1) and ψ covers all but (0, 0,−1). The transition map is

(s, t) = ψ ◦ φ−1(u, v) =

(
u

u2 + v2
,

v

u2 + v2

)
which is its own inverse, so that u = s/(s2 + t2) and v = t/(s2 + t2).

Using (10.4.6), we find that

∂

∂s

∣∣∣
p

=
v2 − u2

(u2 + v2)2

∂

∂u

∣∣∣
p
− 2uv

(u2 + v2)2

∂

∂v

∣∣∣
p

and

∂

∂t

∣∣∣
p

= − 2uv

(u2 + v2)2

∂

∂u

∣∣∣
p

+
u2 − v2

(u2 + v2)2

∂

∂v

∣∣∣
p
.

Hence if a vector V ∈ TpM is written in two ways as V = a ∂
∂s

∣∣
p

+ b ∂
∂t

∣∣
p

and as

V = c ∂
∂u

∣∣
p

+ d ∂
∂v

∣∣
p
, so that Ψ(V ) = (s, t, a, b) and Φ(V ) = (u, v, c, d), then

c =
a(v2 − u2)− 2buv

(u2 + v2)2
and d =

−2auv + b(u2 − v2)

(u2 + v2)2
.
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Writing this in terms of s and t, we obtain the transition formula

(u, v, c, d) = Φ ◦Ψ−1(s, t, a, b)

=

(
s

s2 + t2
,

t

s2 + t2
, a(t2 − s2)− 2bst,−2ast+ b(s2 − t2)

)
.

Again the first two components are just the coordinate transition map, while the last
two components are linear in the vector components (a, b). Clearly the transition
map Φ ◦Ψ−1 is a diffeomorphism on its domain.

The chart Φ is defined on U1 = TS2\T(0,0,1)S
2 while the chart Ψ is defined on

U2 = TS2\T(0,0,−1)S
2. Now define the topology on TS2 as Ω ⊂ TS2 is open if and

only if Φ[Ω ∩ U1] and Ψ[Ω ∩ U2] are both open. This topology makes both Φ and
Ψ homeomorphisms (since the transition map Φ ◦Ψ−1 is a homeomorphism), and
thus makes TS2 a smooth manifold. ,

The example above gives us two coordinate charts which cover the entire space
TS2, and we have thus defined a smooth manifold structure on TS2. However it’s a
bit mysterious; for example it’s not entirely obvious that TS2 is not homeomorphic
to S2 × R2. (See Example 12.2.5.) Let’s work in a more concrete situation.

Example 12.1.3. Recall that TR3 is basically R3 × R3, using the Cartesian co-
ordinate chart. For the surface S2 in R3, we have computed the tangent spaces
TpS

2 both informally as in Section 10.1 and then rigorously as in Section 11.3. We

saw that if p = (x, y, z) ∈ S2, then a vector ṽ = a
∂

∂x

∣∣∣
p

+ b
∂

∂y

∣∣∣
p

+ c
∂

∂z

∣∣∣
p

can be

identified with v ∈ TpS2 if ax+ by + cz = 0; since x2 + y2 + z2 = 1, this condition
always gives a two-dimensional subspace of R3.

Now consider the map F : R6 → R2 given by F (x, y, z, a, b, c) =
(
x2 + y2 +

z2, ax + by + cz
)
, and let M = F−1{(1, 0)}. I claim that TS2 ∼= M , and the first

step to showing this is to see that M actually is a manifold. Computing

DF (x, y, z, a, b, c) =

(
2x 2y 2z 0 0 0
a b c x y z

)
,

it is easy to see that this has rank two everywhere on M , which means that M is a
submanifold of dimension four. Now we want to set up the correspondence between
TS2 (as constructed in Example 12.1.2) and our concrete space M .

The easiest way to do this is to define a map J : TS2 → M as follows: let
ι : S2 → R3 be the inclusion (which is smooth since S2 is a submanifold). As
discussed in Section 11.3, we get at each p ∈ S2 a map (ι∗)p : TpS

2 → Tι(p)R3, and

the image (ι∗)p[TpS
2] is the kernel of the map F∗ : Tι(p)R3 → R which is given in

this case by

(F∗)(x,y,z)

(
a
∂

∂x

∣∣∣
(x,y,z)

+ b
∂

∂y

∣∣∣
(x,y,z)

+ c
∂

∂z

∣∣∣
(x,y,z)

)
= 2(ax+ by + cz).

Now if π : TS2 → S2 denotes the projection which gives the base point of a vector,

(12.1.1) π(v) = p if v ∈ TpS2,

then we define J̃(v) =
(
ι
(
π(v)

)
, (ι∗)π(v)(v)

)
∈ R6; then since (x, y, z) = ι(p) satisfies

x2 +y2 +z2 = 1 and a ∂
∂x +b ∂

∂y +c ∂
∂z satisfies ax+by+cz = 0, we know J̃ actually

maps TS2 into M , and we define J : TS2 → M to be the restriction to M of J̃ .
Clearly for every (x, y, z, a, b, c) ∈ M we can let p = (x, y, z) ∈ S2 and find a
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v ∈ TpM such that (ι∗)p(v) = a ∂
∂x + b ∂

∂y + c ∂
∂z (because (ι∗)p is surjective onto

the kernel of F∗), so that J(v) = (x, y, z, a, b, c). Hence J is actually a bijection.
To prove that J is actually smooth we can compute it in coordinates. Let’s just do

north-pole coordinates; south-pole coordinates are basically the same. Recall that
if V = c ∂

∂u

∣∣
p

+ d ∂
∂v

∣∣
p

where φ(p) = (u, v), then Φ(V ) = (u, v, c, d). Furthermore

since

(x, y, z) = ι ◦ φ−1(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
,

we compute from the coordinate formula (11.2.1) that

ι∗

(
∂

∂u

)
=
∂x

∂u

∂

∂x
+
∂y

∂u

∂

∂y
+
∂z

∂u

∂

∂z

=
2(v2 − u2 + 1)

(u2 + v2 + 1)2

∂

∂x
− 4uv

(u2 + v2 + 1)2

∂

∂y
+

4u

(u2 + v2 + 1)2

∂

∂z

ι∗

(
∂

∂v

)
= − 4uv

(u2 + v2 + 1)2

∂

∂x
+

2(u2 − v2 + 1)

(u2 + v2 + 1)2

∂

∂y
+

4v

(u2 + v2 + 1)2

∂

∂z
.

Thus we have

J̃ ◦ Φ−1(u, v, c, d) = J̃

(
c
∂

∂u

∣∣∣
φ−1(u,v)

+ d
∂

∂v

∣∣∣
φ−1(u,v)

)
=
( 2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1
,

2c(v2 − u2 + 1)− 4duv

(u2 + v2 + 1)2
,

4uvc+ 2d(u2 − v2 + 1)

(u2 + v2 + 1)2
,

4cu+ 4dv

(u2 + v2 + 1)2

)
.

This shows that the map J̃ is smooth, and since M is a smooth submanifold of R6

with J̃ [TS2] ⊂M , we must have that J is smooth as well. ,

We have seen in the examples above how the coordinate charts on M generate
coordinate charts on TM automatically. Let’s generalize this to get the manifold
structure on TM ; in a moment we will point out the special features of this manifold
structure that make it a bundle.

Definition 12.1.4. If M is a smooth n-dimensional manifold, the tangent bundle
TM is defined to be the union of all tangent spaces TM = ∪p∈MTpM . Given
any coordinate chart (φ,U) on M , a coordinate chart Φ on TM is defined on
TU = ∪p∈UTpM by

(12.1.2) Φ

(
n∑
k=1

ak
∂

∂xk

∣∣∣
p

)
=
(
φ(p), a1, . . . , an

)
∈ R2n.

These coordinate charts cover TM and are C∞-compatible. The topology on TM
is defined by the condition that Ω ⊂ TM is open if and only if Φ[Ω∩TU ] is open in
R2n, and in this topology the charts Φ are all homeomorphisms onto their images.

This definition includes several claims, and to prove them, we need to verify
that the transition maps are C∞ and that the charts are homeomorphisms in the
specified topology. First of all, suppose (φ,U) and (ψ, V ) are two charts on M ;
then the transition map φ ◦ ψ−1 is C∞. Using the vector change-of-basis formula
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(10.4.6), we compute that if φ(p) = (x1, . . . , xn) and ψ(p) = (y1, . . . , yn), then a
vector

v =

n∑
k=1

ak
∂

∂xk

∣∣∣
p

=

n∑
k=1

bk
∂

∂yk

must have its components related by

ak =

n∑
j=1

∂xk

∂yj
bj ,

where ∂xk

∂yj denotes the partial derivative of the kth component of φ ◦ ψ−1 with

respect to its jth variable. Thus the transition map is

(x1, . . . , xn, a1, . . . , an) = Φ ◦Ψ−1(y1, . . . , yn, b1, . . . , bn)

whose components are

xk = φk ◦ ψ−1(y1, . . . , yn) and ak =

n∑
j=1

bj
∂φk ◦ ψ−1

∂yj
(y1, . . . , yn).

Since φ◦ψ−1 is C∞, so are its partial derivatives, and thus Φ◦Ψ−1 is C∞. Again we
note that while x is almost never linear as a function of y, the vector components
a are always linear as a function of b (for fixed y).

To check that the charts (Φ, TU) are homeomorphisms, suppose W is an open
set in R2n. Then Φ−1[W ] ⊂ TM is open if and only if Ψ[TV ∩ Φ−1[W ]] ⊂ R2n is
open for every chart (Ψ, TV ). But we know Ψ[TV ∩Φ−1[W ]] = (Ψ ◦Φ−1)(Φ[TU ∩
TV ]∩W ]); furthermore Φ[TU ∩TV ] = φ[U ∩V ]×Rn is open, and since Ψ◦Φ−1 is a
homeomorphism, we conclude Ψ[TV ∩Φ−1[W ]] is open for every chart (Ψ, TV ). The
fact that Φ is an open map is even easier: if Ω ⊂ TU is open, then Φ[TU∩Ω] = Φ[Ω]
is open in R2n by definition.

Now we have defined a smooth manifold structure on TM , and the projection
map π : TM → M is smooth in this structure, but TM is clearly more than just
a manifold. For every p ∈ M the set π−1{p} = TpM is a vector space, and the
coordinate charts respect this vector space structure (since the transition maps are
all linear in the last n variables). We are going to want to generalize this pretty
soon, since as soon as we have a vector space TpM we have lots of other vector
spaces constructed in terms of it as in Chapter 4 (such as the dual space, the space
of k-forms, the space of (0, 2) symmetric tensors, etc.). We’ll want to fit together all
these vector spaces just as we fit together all the tangent spaces, and we’d expect to
see the same structure. Let us now describe the properties of TM that we expect
any vector bundle structure to have:

• There is a smooth projection π : TM →M .
• For every p ∈ M , the set TpM = π−1{p} is a vector space isomorphic to
Rn.
• The coordinate charts (Φ, TU) define an diffeomorphism from TU = π−1[U ]

to φ[U ]× Rn.
• For each chart (Φ, TU) and p ∈ π[TU ], we have Φ[TpM ] = {x} × Rn, and

Φ|TpM is a vector space isomorphism. (That is, if you hold the base point
constant, you get an invertible linear transformation.)

A space which satisfies properties like these is called a smooth vector bundle; the
tangent bundle is the prototypical example.
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Definition 12.1.5. A smooth vector bundle consists of a smooth manifold M (the
base space), a smooth manifold E (the total space), and a vector space V (the fiber
space) with a map π : E →M (the projection) such that

(1) π is smooth and surjective;
(2) For each p ∈M the space Ep = π−1{p} (the fiber over p) is a vector space

isomorphic to V .
(3) For each p ∈M there is an open Ω ⊂M and a diffeomorphism Ψ: π−1[Ω]→

Ω× V (a local trivialization) such that:
(a) Ψ[TqM ] = {q} × V for all q ∈ Ω
(b) Ψ|TqM is a linear isomorphism onto {q} × V .

The tangent bundle is of course a special case of a vector bundle: in that case
E = TM and V = Rn, and the local trivializations (Ψ,Ω) come from coordinate
charts (x = φ,U) by Ω = U and Ψ(v) =

(
π(v), a1, . . . , an) if v =

∑
k a

k ∂
∂xk

∣∣
π(v)

.

Note that this is slightly different from the coordinate charts Φ defined in the
Examples above; the last n components of Φ and Ψ are the same, but the first
component of Φ is φ(p) ∈ Rn while the first component of Ψ is p itself. The reason
for the difference is that in Definition 12.1.5 we allow for the possibility that the
local trivialization Ψ may be defined globally on all of M even if M itself is not
homeomorphic to Rn. See Example 12.2.2 in the next Section.

Definition 12.1.6. Suppose E and Ẽ are two smooth vector bundles over M , with
projections π : E → M and π̃ : Ẽ → M and fiber spaces V and Ṽ . We say that E
and Ẽ are bundle-isomorphic if there is a diffeomorphism Υ: E → Ẽ such that

(1) π̃ ◦Υ = π.

(2) For each p ∈M , the restriction Υ|Ep is a linear isomorphism onto Ẽp.

Since Ep = π−1{p} and Ẽp = π̃−1{p}, the first condition is what allows the
second condition to make sense.

Definition 12.1.5 could be weakened to topological vector bundle by replacing
“smooth” everywhere with “continuous,” although all vector bundles we care in
differential geometry are smooth. Note that a tangent bundle is a smooth vector
bundle, although a topological manifold which does not have a smooth structure
may not have a tangent bundle (differentiating the coordinate transition maps was
essential to get our local trivializations on TM).

Finally one frequently understands the global structure of a tangent bundle by
looking at vector fields defined on M .

Definition 12.1.7. If E is a vector bundle over M with projection π and fiber
space V , a section of the bundle is a smooth map X : M → E such that π ◦X is
the identity; in other words X(p) ∈ Ep for all p ∈M . If E = TM with Ep = TpM ,
a section of the bundle is called a vector field.

12.2. Special cases. The first question one can ask about a vector bundle is
whether it is trivial or not.

Example 12.2.1. If M is any smooth manifold and V is any vector space, then
E = M × V is a vector bundle over M . I just take π to be projection on the first
factor, and a single global trivialization (Φ,M) defined by Φ(p, v) = (p, v). This
is called a trivial bundle. More generally any bundle which is bundle-equivalent
to a trivial bundle is also called a trivial bundle, and the bundle-equivalence map
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is called a “trivialization,” which justifies the terminology “local trivialization” for
the maps in Definition 12.1.5.

Suppose we know that TM is a trivial bundle with projection π, and let Υ: TM →
M × Rn be a trivialization. Let x be an arbitrary nonzero vector in Rn. Define
a map X : M → TM by the formula X(p) = Υ−1(p, x). Since Υ−1 maps each
{p} × Rn to TpM isomorphically, we know that X(p) ∈ TpM for each p and that
X(p) is never zero. Furthermore since Υ must be a diffeomorphism we conclude
that X is smooth. Thus X is a vector field on M as in Definition 12.1.7.

For example when M = Rn we have many nowhere zero vector fields such as

X(p) =

n∑
k=1

ak
∂

∂xk

∣∣∣
p
,

for any choice of constants (a1, . . . , an), expressed in the global Cartesian chart. In

particular the vector fields Ek defined by Ek(p) = ∂
∂xk

∣∣∣
p

for 1 ≤ k ≤ n form a basis

of every TpM . ,

We can use the same idea in the opposite direction to show that a vector bundle
is trivial.

Example 12.2.2. Let M = S1 considered as a submanifold of R2, and let ι : S1 →
R2 be the inclusion. We will construct a nowhere zero vector field on S1. Begin
with the vector field X̃ : R2 → TR2 given by

(12.2.1) X̃(x, y) = −y ∂

∂x

∣∣∣
(x,y)

+ x
∂

∂y

∣∣∣
(x,y)

.

Certainly this is smooth and is zero if and only if (x, y) = (0, 0). Let X : S1 → TR2

be X = X̃ ◦ ι; since ι is smooth, so is X.
Recall that the circle is defined as F−1{1} where F (x, y) = x2 + y2. Thus

as in Section 11.3, we know ι∗[TpS
1] = kerF∗ ⊂ Tι(p)R2, which means a vector

a ∂
∂x

∣∣
(x,y)

+ b ∂
∂y

∣∣
(x,y)

is in ι∗[TpS
1] if and only if ι(p) = (x, y) and ax+ by = 0. We

therefore check immediately that X(p) ∈ ι∗[TpS1] for every p ∈ S1; since ι∗ is an
isomorphism we conclude that for each p ∈ S1 there is a unique vector X(p) ∈ TpS1

such that ι∗(X(p)) = X(p).
This gives a map X : S1 → TS1 with π ◦X equal to the identity, but we need

to check that X is actually smooth in order to conclude that X is a vector field
on S1. By definition we have to check its expression in coordinates, so consider a
stereographic coordinate chart (φ,U) as in Example 7.1.7, given explicitly by

(12.2.2) (x, y) =

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)
, t =

x

1− y
.

In this chart we have

(12.2.3) ι∗

(
∂

∂t

∣∣∣
p

)
=

2(1− t2)

(t2 + 1)2

∂

∂x

∣∣∣
ι(p)

+
4t

(t2 + 1)2

∂

∂y

∣∣∣
ι(p)

,

while equations (12.2.1) and (12.2.2) combine to give

X(p) = − (t2 − 1)

t2 + 1

∂

∂x

∣∣∣
ι(p)

+
2t

t2 + 1

∂

∂y

∣∣∣
ι(p)

.
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Matching against (12.2.3) and using ι∗ ◦X = X, we find that

X(p) =
2

t2 + 1

∂

∂t

∣∣∣
p

where t = φ(p),

so that its expression in coordinates is

Φ ◦X ◦ φ−1(t) =

(
t,

2

t2 + 1

)
which is certainly C∞ as a function on R. The same computation works in the
other stereographic chart.

We have defined a vector field X : S1 → TS1 which is nowhere zero; since TpS
1

is one-dimensional for every p, we see that X(p) spans TpS
1 for every p. Define

a map Υ: S1 × R → TS1 by Υ(p, a) = aX(p). Given any vector v ∈ TS1 with
p = π(v), we know v = aX(p) for some unique a and thus v = Υ(p, a); hence Υ is
a bijection. To prove that Υ is a bundle-isomorphism, we write it in coordinates as

Φ ◦Υ ◦ φ̃−1(t, a) = aX(φ−1(t)) =

(
t,

2a

t2 + 1

)
where φ̃ = φ× id is a coordinate chart on S1 ×R. Clearly this map is smooth and
has smooth inverse (s, b) 7→ (s, (s2 + 1)b/2), so that Υ is a diffeomorphism. The
other parts of Definition 12.1.6 are easy to check: Υ maps {p} × R isomorphically
onto TpS

1 for each p. ,

In Example 12.2.2, we get a trivialization Υ−1 : TS1 → S1 × R which does not
come from a coordinate chart on S1. This is the reason that our Definition 12.1.5
did not require that the open sets Ω ⊂M be homeomorphic to Rn. The technique of
Example 12.2.2 works the same way in general: if we have a collection X1, . . . , Xn

of smooth vector fields on a manifold M such that at every p ∈ M the vectors
{X1(p), . . . , Xn(p)} form a basis of TpM , then the tangent bundle is trivial. This
is a very useful result which we write as a theorem.

Theorem 12.2.3. A vector bundle E over M with projection π and fiber space
V of dimension K is trivial if and only if there is a collection of smooth sections
X1, . . . , XK such that at every p ∈ M , the vectors {X1(p), . . . , XK(p)} are a basis
of Ep.

Proof. If E is trivial and Υ−1 : E →M ×V is a trivialization, then given any basis
{x1, . . . , xK} of V , we define Xk(p) = Υ(p, xk) for any p and 1 ≤ k ≤ K; then
each Xk is smooth, and since for fixed p the map v 7→ Υ(p, v) is a vector space
isomorphism, the vectors Xk(p) are a basis if and only if the vectors xk are a basis.

Conversely if {X1, . . . , XK} is a set of vector fields which form a basis at every
point, define a map Υ: M × V → E by constructing a basis {x1, . . . , xK} and
setting

Υ

(
p,

K∑
k=1

akxk

)
=

K∑
k=1

akXk(p)

for any collection of coefficients {a1, . . . , aK}. We know Υ is smooth, that it maps
{p} × V isomorphically onto Ep, and that it is thus a bijection globally. The fact
that its inverse is also smooth follows from using the trivializations. Hence it is a
bundle isomorphism. �
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The simplest vector bundle which is not trivial is the Möbius bundle over S1,
which we will construct in the next example. Of course, this bundle is distinct
from TS1, which is trivial. The simplest tangent bundle which is nontrivial is TS2,
which we will discuss in a moment.

Example 12.2.4. The only vector bundles you can easily visualize are one-dimensional
vector bundles over S1, since they are two-dimensional manifolds. There are es-
sentially two such bundles. The trivial bundle over S1 with one-dimensional fibers
looks like S1 × R, and you can visualize it as a cylinder. You can visualize TS1 in
the same way by imagining it as a tangent line attached to the circle at each point:
rotating the tangent line into a direction perpendicular to the plane of the circle
gives the cylinder, and this is the trivialization.

The nontrivial bundle with one-dimensional fibers is homeomorphic to the Möbius
band; compare Example 7.2.3. Let E be the quotient space of R × R modulo the
equivalence relation (x, y) ≡ (2nπ + x, (−1)ny), which is a free and proper discrete
group action on R2. A fundamental domain is the set [0, 2π]×R, and we can think
of E as the quotient modulo the identification (0, v) ≡ (2π,−v). There are two
trivializations: let Ω1 = E\{0} × R ∼= (0, 2π) × R with the obvious trivialization
Φ1, and let Ω2 = E\{π} × R which is equivalent to (−π, π) × R with its obvious
trivialization.

To prove this bundle is nontrivial, we prove there is no nonzero section. Certainly
on Ω1 there are plenty of nonzero sections, and every one can be expressed in the
trivialization Φ1 as X(t) ' t 7→ (t, f(t)) where f(t) is a positive function on (0, 2π).
In the other trivialization, this section would be defined on (−π, 0) ∪ (0, π) and
would take the form

X(t) '

{
f(t) 0 < t < π,

−f(t+ 2π) −π < t < 0,

using the transition formulas found in Example 7.2.3. The only way for this to
represent a restriction of a vector field on S1 is if we can define X at t = 0, where it
would have to be zero (since f is always positive). Hence there is no way to construct
a nowhere-zero vector field on the Möbius bundle, and it is nontrivial. ,

Now let us prove that TS2 is nontrivial; in fact we can prove the stronger result
that there is no nowhere-zero smooth vector field on S2. This result is called the
“hairy ball theorem” (I did not name it). The best proofs use tools of algebraic
topology and can be easily generalized; however there is a cute proof due to Milnor24

which I will present here.

Example 12.2.5. Using the bundle-isomorphism we constructed in Example 12.1.3
between TS2 and the set

{(x, y, z, u, v, w) ∈ R6 |x2 + y2 + z2 = 1 and xu+ yv + zw = 0},

it is sufficient to show that any smooth map X = (u, v, w) : S2 → R3 satisfying

(12.2.4) xu(x, y, z) + yv(x, y, z) + zw(x, y, z) = 0 whenever x2 + y2 + z2 = 1

must be (0, 0, 0) somewhere on the sphere.

24Analytic proofs of the “hairy ball theorem” and the Brouwer fixed point theorem, Amer.
Math. Monthly, July 1978, pp. 521–524
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Assume that u2 +v2 +w2 6= 0 everywhere on S2; then the norm of X is a smooth
function which we can divide by, and so we lose no generality by assuming that X
is a unit vector field with u2 + v2 + w2 = 1. Define F : R× S2 → R3 by

F (t, x, y, z) =
(
x− tu(x, y, z), y − tv(x, y, z), z − tw(x, y, z)

)
.

Then the orthogonality condition (12.2.4) together with the fact that (x, y, z) is on
the sphere and X is unit implies that

‖F (t, x, y, z)‖2 = 1 + t2.

Hence F maps the unit sphere into the sphere of radius
√

1 + t2. I want to prove
that it is in fact a bijection, at least for t close to 0. For a fixed (small) t = to,
compute

DF (t, x, y, z) =

1− tux −tuy −tuz
−tvx 1− tvy −tvz
−twx −twy 1− twz

 .

This is of the form DF (to, x, y, z) = I − toM(x, y, z) and since determinant is a
continuous function, for any particular (x, y, z) there is a positive T (x, y, z) such
that for |to| < T (x, y, z) the matrix DF (to, x, y, z) is invertible. In fact we can
estimate T (x, y, z) explicitly in terms of M and conclude that T is continuous on
S2, which means it attains its (positive) minimum somewhere. Hence for sufficiently
small values of to the map p 7→ F (to, p) is a diffeomorphism from the unit sphere

onto the sphere of radius
√

1 + t2.
Now extend F to a map G : R× R3 → R3 by

G(t, p) = |p|F (t, p/|p|).
Then since at each fixed time F maps the unit sphere onto the sphere of radius√

1 + t2, we know that the image of the unit ball under G is the ball of radius√
1 + t2, and that means by the change-of-variables formula Theorem (5.3.2), we

have

(12.2.5)

∫
B1(0)

detDG(x, y, z) dx dy dz =

∫
G[B1(0)]

dx dy dz

= vol{G[B1(0)]} = vol{B√1+t2(0)} =
4π

3
(1 + t2)3/2.

On the other hand, detDG(x, y, z) is clearly a polynomial in t and that means the
left side of (12.2.5) is also a polynomial in t. This is a contradiction, and thus
(u, v, w) must be zero somewhere on the sphere. ,

There is actually a quite simple thing going on here. In R2 we can define a
rotation vector field X = −y ∂

∂x +x ∂
∂y which is zero only at the origin and descends

to a nowhere-zero vector field on S1 as in Example 12.2.2. On the other hand every
rotation vector field in R3 is basically equivalent to the rotation that fixes the z-
axis, which is X = −y ∂

∂x +x ∂
∂y (with zero components in the ∂

∂z direction); hence

it fixes the north and south poles of the 2-sphere. But on R4 we can set up the
vector field X = −x ∂

∂w + w ∂
∂x − z

∂
∂y + y ∂

∂z , which lies in the tangent space of

the 3-sphere everywhere. Since w2 + x2 + y2 + z2 = 1 on the 3-sphere, this vector
field descends to a nowhere-zero vector field on S3. Hence there is a very significant
distinction between odd-dimensional spheres and even-dimensional spheres in terms
of the tangent bundle.
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12.3. The push-forward map. Now recall from that if F : M → N is a smooth
map, we know from Chapter 11 that for each p there is a derivative map (F∗)p : TpM →
TF (p)N , defined by the condition that

((F∗)pv)(h) = v(h ◦ F )

for any smooth function h defined in a neighborhood of F (p). We can put these all
together to get a global derivative map on the tangent bundles:

(12.3.1) F∗ : TM → TN

given in the obvious way, where F∗ maps any vector v based at p to the vector
(F∗)p(v) based at F (p).

This is a special case of a bundle map, which is a generalization of a bundle-
isomorphism: we still want to commute with the projections and obtain linear
maps, but we no longer demand that the linear maps be isomorphisms. We will
mostly be concerned with bundle maps that are induced by maps of manifolds in
this text.

The notion (12.3.1) makes it easier to talk about global properties of maps. For
example the nicest maps F : M → N are those where the rank of F∗ is constant.

Definition 12.3.1. Suppose F : M → N is a smooth map.
F is called an immersion if the rank of F∗ is everywhere equal to the dimension

of M . If F is both an immersion and a homeomorphism onto its image, then F is
called an embedding.
F is called a submersion if the rank of F∗ is everywhere equal to the dimension

of N .

Clearly F can only hope to be an immersion if dim(N) ≥ dim(M), and can only
hope to be a submersion if dim(M) ≥ dim(N). Finding an immersion or submersion
between two manifolds is a great way to relate their topological properties. For
example a nonsingular curve γ : R→M with γ′(t) 6= 0 for every t is an immersion.
And if F is a submersion then all its inverse images are smooth manifolds.

We have already computed the bundle maps F∗ in coordinates: we computed
the maps at each individual tangent space using Proposition 11.2.1, and we defined
coordinates on the tangent bundle by Definition 12.1.4. We just have to combine
these to get the coordinate expression of F∗.

Proposition 12.3.2. Let F : M → N be a smooth map, and let F∗ : TM → TN
denote the map defined on each TpM for p ∈M by Proposition 11.1.1. Then F∗ is
a smooth map from TM to TN .

Proof. We just have to compute in charts. Given coordinate charts (φ,U) on M
and (ψ, V ) on N with corresponding charts (Φ, TU) on TM and (Ψ, TV ) on TN ,
we have

(u1, . . . , un, b1, . . . , bn) = Ψ ◦ F∗ ◦ Φ−1(x1, . . . , xm, a1, . . . , am),

where
(12.3.2)

uk = ψk ◦ F ◦ φ−1(x1, . . . , xm) and bk =

m∑
j=1

aj
∂ψk ◦ F ◦ φ−1

∂xj
(x1, . . . , xm).

Clearly if F is smooth then ψ ◦ F ◦ φ−1 is smooth by definition, and thus the
functions (12.3.2) are smooth. Hence F∗ is smooth by definition. �
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The reason this Proposition is important is that maps F : M → N give induced
maps F∗ : TM → TN with algebraic structure, and thus we get induced linear
maps from one algebraic-topological space to another.
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13. Bumps, partitions of unity, and the Whitney embedding

“I beg your pardon, but what do you mean, ‘naked’? My parts are showing? Oh,
my goodness!”

13.1. Motivation. We now want to solve the problem we alluded to in Remark
10.2.2 and Remark 10.3.3. Namely, we want to work with functions f : M → R
which are equal to an arbitrary germ near a point, and specifically we want to be
able to define a smooth function by any smooth formula in a coordinate chart and
know that it extends to the manifold in a C∞ way. In Chapter 12 we assumed that
our test functions were defined on some open set containing the point p: it’s easy to
find lots of smooth functions on Rn just by writing down formulas, but it’s hard to
patch together functions defined by different formulas in different coordinate charts
together, to get a function on the entire manifold. This section is where we solve
this problem.

To illustrate that this is not a trivial sort of problem with an obvious solution,
here’s an example where it doesn’t work.

Example 13.1.1. Suppose that instead of requiring all maps to be C∞ in coordi-
nates, we had required that they be real-analytic. In other words every transition
map φ ◦ ψ−1 not only had infinitely many derivatives at each point, but in fact
converged in some open neighborhood to the corresponding Taylor series. This is
a very natural thing to do in algebraic geometry when one defines the manifolds
as zero-sets of polynomials (which are of course real-analytic functions), and also
when studying complex manifolds (where the transition functions should be holo-
morphic). We already have a problem on R: the function f : (−1, 1)→ R given by
f(x) = 1/(2− x) is real-analytic on (−1, 1) since

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

xn

2n+1
=

1

2− x
= f(x) everywhere on (−1, 1),

but there is no way to extend f to a real-analytic function f̃ : R→ R. The reason
is that for any point xo with |xo| < 2 we can write

f(x) =

∞∑
n=0

1

2− xo − (x− xo)
=

∞∑
n=0

(x− xo)n

(2− xo)n+1
,

and by uniqueness of power series, this must be the power series for any extension f̃
at xo. In other words, any real-analytic function which agrees with the given f on a
small open set must actually agree with it everywhere on the common domain, and
thus is forced to blow up at x = 2. Hence it’s actually quite easy for the extension
problem to be unsolvable if we aren’t working in the right context. ,

Here’s a familiar example from physics and partial differential equations, where
we define a smooth function in a coordinate chart and then need to extend it to
the entire manifold.

Example 13.1.2. A common technique is to use separation of variables to solve
the equation

∂2u

∂x2
+
∂2u

∂y2
= 0.
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The coordinates (x, y) are fine if you’re just concerned about it in a rectangle, but
nature tends to prefer circles over rectangles, and so polar coordinates (r, θ) are
often preferable. In polar coordinates the equation becomes

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0.

To do separation of variables, you assume a solution of the form

u(r, θ) = R(r)Θ(θ).

If there is such a solution, then you must have

Θ′′(θ) = −λΘ(θ) and r
d

dr

(
r
dR

dr

)
= λR(r).

If λ ≥ 0 then25 you get the solution Θ(θ) = A sin (
√
λθ) +B cos (

√
λθ), and R(r) =

Cr
√
λ+Dr−

√
λ. These are solutions on the region (r, θ) ∈ (0,∞)×(−π, π), with no

problem. However you don’t want solutions on that nonphysical half-infinite strip,
you want solutions on the actual Euclidean plane. Recall the diagram in Figure
13.1 relating these spaces: on the left we have the nonphysical space of coordinate
curves, which fills up everything but the left half-line in the plane.

Figure 13.1. Coordinate curves in the rθ-plane on the left, and
their image under (6.2.1) in the xy-plane on the right.

The formulas above solve the equations on a coordinate chart of the manifold
(which is the plane minus the leftward ray from the origin), which imposes no
restriction, but to get a solution on the entire manifold, you need to extend your
function from the coordinate chart to the entire manifold. So first of all, if your
solution u(r, θ) is actually a smooth function on the manifold M = R2, then in
particular it will respect that u(r, θ) = u(r, θ + 2π), and this forces λ = n2 for
some nonnegative integer n. Having done this, you now have a function Θ which is
defined not just on (−π, π) but actually on the manifold S1. Remember, you want
to get a smooth function on the entire manifold, and the definition of a smooth
function is one such that, for every coordinate chart (φ,U), the map f ◦ φ−1 is
smooth. You started out by noticing that your function was smooth on the polar

25If λ < 0 you can do the same thing, but nothing at all will work when you try to extend it.
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chart coming from excluding the leftward ray from the origin. Now satisfying the
periodicity corresponds to looking at the function in another polar chart, this one
coming from excluding the rightward ray from the origin. So in forcing periodicity,
you’ve essentially shown that your function is smooth in two coordinate charts which
together cover the plane minus the origin. But you haven’t proved the function is
smooth in a coordinate chart that contains the origin.

From your differential equation solution you get that R(r) = Crn +Dr−n. Now
your solution is defined on R2 minus the origin, and if you want the origin included,
you have to again restrict the solution because r−n is not a continuous function
on the plane. Having done this you now get the solutions u(r, θ) = Arn sinnθ +
Brn cosnθ, and you’re still not done because you need to worry about this being
smooth near the origin (remember, r = 0 is a very bad coordinate singularity). So
you change into Euclidean coordinates by using z = reiθ = x+ iy and noticing that

rn cosnθ = Re(rneinθ) = Re(x+ iy)n =

bn/2c∑
k=0

(−1)k
(
n, 2k

x

)n−2k

y2k

rn sinnθ = Im(rneinθ) = Im(x+ iy)n =

b(n−1)/2c∑
k=0

(−1)k
(
n, 2k + 1

x

)n−2k−1

y2k+1,

which clearly are smooth in a neighborhood of the origin. We thus find that the
most general solution is of the form

u(x, y) =

∞∑
n=0

anRe(x+ iy)n + bnRe(x− iy)n

where the coefficients an and bn can be determined by a boundary condition on
some circle. ,

All of what was done above is necessary because you wanted to define a smooth
function on the entire manifold, and you had some idea what it was in a coordinate
chart, but the fact that a function is smooth on a coordinate chart does not at all
imply it can be extended to be a smooth function on the entire manifold. So you’ve
probably dealt with the problem of extending functions from a coordinate chart to
an entire manifold before, but probably without thinking of it in those terms.

Let’s take a look at another example on an actual nontrivial manifold.

Example 13.1.3. If I want to define a smooth function on S2, I could write
something down in spherical coordinates like f(θ, φ) = sinφ, but this won’t work.
It is clearly a continuous and in fact smooth function on an open set in R2, defined
by the coordinate range 0 < θ < π,−π < φ < π, but that only covers a portion of
the sphere. More precisely, if ϕ : U ⊂ S2 → (0, π)× (−π, π) ⊂ R2 is the coordinate
chart, then F = f ◦ ϕ defines a smooth function on U ⊂ S2 but not on all of S2.
Why not? Well the coordinate chart covers all of the sphere except for the north
and south poles, along with the great semicircle y = 0, x ≤ 0 which joins them. So
the question is whether there’s a way to define the function at those points.

The easiest way to understand this is to look at F in another coordinate chart.
Let’s pick one that includes the north pole, since that’s where we suspect there
may be a problem. For example a parametrization of the open top hemisphere V is
given by (x, y, z) = (u, v,

√
1− u2 − v2) for (u, v) in the open unit disc, so that the

coordinate chart is ψ : V → R2. In these coordinates we have u = sin θ cosφ and
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v = sin θ sinφ, so that sin θ =
√
u2 + v2 and sinφ =

v√
u2 + v2

. The intersection of

the coordinate charts is

U ∩ V = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1, z > 0, either y 6= 0 or y = 0 and x > 0.}
Now F ◦ψ−1(u, v) = v√

u2+v2
, and so if F were a smooth function on all of S2, then

lim(u,v)→0 F ◦ ψ−1(u, v) would have to exist. But it doesn’t since F (u, 0) = 0 for
any u > 0 while F (0, v) = 1 for any v > 0.

The same sort of thing happens with functions like F ◦ϕ−1(θ, φ) = sin θ, which in

the top hemisphere chart looks like F ◦ψ−1(u, v) =
√
u2 + v2, so that it’s continuous

but not differentiable at the poles.
On the other hand a function like F ◦ ϕ−1(θ, φ) = cos θ is actually C∞. The

easiest way to see this is to note that F is actually the restriction of a smooth
function F̃ : R3 → R given by F̃ (x, y, z) = z. If ι : S2 → R3 is the embedding,

then F = F̃ ◦ ι, and since F̃ is obviously C∞ and ι is C∞, we know F is C∞ as
a function on S2. In general it is easy to define smooth functions on submanifolds
of Euclidean space by restricting smooth functions on the whole space, but this is
not ideal for us. For one thing, it’s not intrinsic to the manifold (it depends on an
ambient space). But more importantly, it’s hard to guarantee we could get all the
functions we want by restricting some smooth function on the ambient space. ,

What we want then is a technique to extend a function (or vector field, or other
object) that is defined on a single coordinate chart to the entire manifold in such a
way that it agrees on some open set with our formula. This will enable us to obtain
results like the following.

Theorem 13.1.4. Let M be a smooth manifold, let p ∈ M , and let (φ,U) be
any coordinate chart on M with p ∈ U . Let F : Rn → R be an arbitrary smooth
function, so that f = F ◦ φ is a smooth function on U . Then there is a smooth
function f̃ : M → R such that for some open V 3 p we have f |V = f̃ |V .

There is an analogous result for vector fields on M , which is nice because despite
everything we did in Chapter 12, the only vector field that we know to exist on a
general manifold is the identically-zero vector field. Furthermore actually building
vector fields was a bit of a pain each time we did it. And recall that by Example
12.1.2, there cannot be any smooth vector field on S2 satisfying the rather mild-
seeming condition that it is nowhere zero. So it’s not obvious that there are lots
of vector fields on a general smooth manifold, and what we do in the future will
depend on the fact that there are. And more generally we will be able to use the
same technique to show that there are many sections of any vector bundle. The
tool for handling this is “bump functions,” which we will discuss in Section 13.2.

One problem with what the Extension Theorem 13.1.4 is that although it lets
us specify functions arbitrarily on a possibly small open set, we lose control of the
function on the rest of the manifold. For example if the function F ◦φ is positive on
the open set U , we don’t know it will be positive on the rest of M . This becomes
important when we want to define an object on a manifold, and we know what it
should be in a coordinate chart, and we know that it’s invariant when we change
the coordinate chart, but we need it to extend to the entire manifold. For example
suppose I have somehow defined a smooth function f : S2 → R, and I want to
integrate it. Integration is not an invariant thing in differential geometry (if it
were, the volume of the sphere would be a constant independent of the shape of the
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sphere, and clearly I can do lots of deformations of the sphere which preserve the
smooth-manifold structure but change the volume). However I can decide that I will
compute the area of a region of the sphere by using the vector calculus technique
(i.e., taking seriously the embedding into R3). But vector calculus only tells me
how to calculate in coordinates; how do I know that the integral over the entire
sphere is actually well-defined? The same issue arises when discussing Riemannian
metrics. The technical tool for getting around this is called a partition of unity,
which is closely related to bump functions and which we will discuss in Section 13.3.

Finally as our first real application of these tools, we will prove the Whitney
embedding theorem, that any compact smooth manifold is actually a submanifold
of some RN , in Section 13.4. We will also discuss a problem from dynamical systems,
the Takens embedding theorem, which actually has very practical application for
understanding time series. Both of these theorems are consequences of the fact that
there are many smooth functions on a smooth manifold and that generically it is
easy to make them linearly independent.

13.2. Bump functions. The starting point for piecing things together on a mani-
fold is the basic fact that there are C∞ functions from R to R which are identically
zero outside of a finite interval (say [0, 1] to be specific) and nonzero inside. This is
surprising when you first see it, especially if you think of functions as being defined
in terms of Taylor series, because it would seem that you could compute the Taylor
series at base point a = 0, and you get f (k)(0) = 0 for all k, then the Taylor series
should be T (x) ≡ 0, which converges for all x, and therefore the function must be
zero for all x.

The problem with this reasoning is that the Taylor approximation theorem
doesn’t actually say that. Recall the Taylor Remainder Formula:

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n +

1

n!

∫ x

a

f (n+1)(t)(x− t)n dt;

there’s no real reason that integral has to go to zero as n → ∞. So in general a
function doesn’t really need to be close to its Taylor series.

Example 13.2.1. Consider the function f : R→ R defined by

(13.2.1) f(x) =

{
e−1/x2

x 6= 0,

0 x = 0.

Recall that we discussed this function in Example 7.2.2. Its graph is shown in
Figure 13.2.

Clearly limx→0 f(x) = 0, so that f is continuous. In fact it’s obvious that you
could use the chain rule repeatedly to show that f is C∞ on (0,∞) and also on
(−∞, 0), so the only thing we need to do to show f is C∞ everywhere is to show
that f has derivatives of all orders at x = 0.

The first step is to compute f ′(0) directly from the definition, and observe that

f ′(0) = lim
h→0

f(h)

h
= lim
h→0

e−1/h2

h
= lim
y→∞

e−y
2

1/y
= lim
y→∞

y

ey2
= lim
y→∞

1

2yey2
= 0,

where we used the substitution y = 1
h and L’Hopital’s rule. So f ′ exists, and then

we need to show that it’s a continuous function. We have

lim
x→0

f ′(x) = lim
x→0

2e−1/x2

x3
= lim
y→∞

2y3

ey2
= 0.
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Figure 13.2. The graph of f(x) = e−1/x2

. Despite the apparent
singularity in the formula, it is smooth at x = 0, and all derivatives
are equal to zero.

So f ′ is continuous, and the next step is to use the definition to show that f ′′(0)
exists.

We can do all the other steps at once if we notice that inductively

f (n)(x) =

n∑
k=1

ak,n
x2k+n

e−1/x2

for some coefficients ak,n if x 6= 0, since assuming that leads to

f (n+1)(x) =

n∑
k=1

−(2k + n)ak,n
x2k+n+1

e−1/x2

+

n+1∑
k=2

2ak−1,n

x2k+n+1
e−1/x2

.

Clearly if we replace x with 1/y we get

lim
x→0

f (n)(x) =

n∑
k=1

ak,n lim
y→∞

y2k+n

ey2
= 0

and also

lim
h→0

f (n)(h)

h
=

n∑
k=1

ak,n lim
y→∞

y2k+n+1

ey2
= 0

so that f (n+1)(0) = 0. Inductively then, f (n) is differentiable everywhere and f (n+1)

is continuous. So f is C∞. ,

Now if we define

g(x) =

{
e−1/x2

x > 0,

0 x ≤ 0,

then we get a C∞ function which is identically zero on half the line. Furthermore
if we define

h(x) = g(x)g(1− x),

we get a C∞ function which is positive on (0, 1) and zero everywhere else. This h
is a common sort of bump function. Its graph is shown in Figure 13.3.

This is just the beginning. Clearly the function

j(x) =

∫ x
0
h(σ) dσ∫ 1

0
h(σ) dσ
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Figure 13.3. The function defined by h(x) = e−1/x2−1/(x−1)2 for
0 < x < 1 and h(x) = 0 otherwise. It is C∞ and nonzero if and
only if 0 < x < 1.

is C∞ (its denominator is a positive constant) and satisfies j(x) = 0 for x ≤ 0,
j(x) = 1 for x ≥ 1, and j(x) is strictly increasing on (0, 1). Figure 13.4 shows the
graph.
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1.0

Figure 13.4. The function j(x) defined by integrating the func-
tion h(x) from Figure 13.3, then normalizing. It is zero when x ≤ 0,
one when x ≥ 1, and strictly between zero and one on (0, 1).

Next it is easy to see how to get, for any numbers a < b < c < d, a function
k such that k(x) = 0 for x ≤ a or x ≥ d, k(x) = 1 for b ≤ x ≤ c, k is strictly
increasing on (a, b), and k is strictly decreasing on (c, d). We just take

k(x) = j

(
x− a
b− a

)
j

(
d− x
d− c

)
.

Such a function is shown in Figure 13.5, for a = 0, b = 1, c = 2, and d = 3. Such a
k is called a cutoff function.

Theorem 13.2.2. If f : R → R is any C∞ function, with p ∈ R any point and
0 < δ < ε any real numbers, then there is a C∞ function f̃ : R→ R such that

f̃(x) =

{
f(x) |x− p| < δ,

0 |x− p| > ε.
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Figure 13.5. The C∞ function k(x) = j(x)j(3 − x), which is
identically zero outside (0, 3) and identically equal to one inside
[1, 2], while strictly increasing on (0, 1) and strictly decreasing on
(2, 3).

Proof. Clearly all we do is choose a = p − ε, b = p − δ, c = p + δ, and d = p + ε,
construct the function k as above, and then set f̃ = kf . �

Then in a small neighborhood of p, f̃ is indistinguishable from f , but f̃ is
indistinguishable from the zero function outside a slightly larger neighborhood of
p. It is obvious how to extend this from open intervals in the line to open cubes in
Rn; we just take the product

f̃(x1, · · · , xn) = f(x1, · · · , xn)k(x1) · · · k(xn).

We could also do it with balls instead of cubes by taking

f̃(x1, · · · , xn) = f(x1, · · · , xn)k
(√

(x1)2 + · · ·+ (xn)2
)
.

This is an extremely common trick in differential geometry (and even moreso in
fields like functional analysis) for “localizing” a function. We have some function,
and we want to do a bunch of computations with it near some point, but we don’t
want to worry about its global behavior. Well we could just assume it’s identically
zero outside some small open set, but we can still do all the computations we want
in a smaller open set near the desired point.

This shows us how to prove Theorem 13.1.4. Suppose we have some smooth
function f defined in an open coordinate neighborhood U of a point p, where
φ : U → Rn is the coordinate chart. Typically f would be some function of the
coordinate functions. We want to think of f as defined on all of M , so we would
just take an open cube K1 ⊂ Rn and a larger open cube K2 ⊂ Rn, both of which
contain the point 0 = x(p). Define g on φ[U ] = Rn so that g = f ◦φ inside the small

cube K1 and g = 0 outside the large cube K2. Then f̃ = g ◦φ defines a function on
U which agrees with f inside V = φ−1[K1] and is zero outside Ũ = φ−1[K2]. We

might as well define f̃ to be zero everywhere else on the manifold, because then f̃
will clearly still be C∞ on the entire manifold.

Hence if we’re only interested in the behavior of a function on a small open set
near the point, we can make it equal to whatever we want on that open set and zero
outside a slightly larger open set. We almost never care what happens in between
the small open set and the large open set, although if we ever needed to know, we
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could say that it just involves multiplying the function by a positive number less
than one. (So for example if we started with a positive function on the small open
set, we’d know we’d have a nonnegative function on the entire manifold; if we had
a function bounded between −1 and 1 on the small open set, the function would
be bounded between −1 and 1 on the entire manifold, etc.)

13.3. Partition of unity. The problem with the previous construction is that you
end up with functions and other objects that are only nonzero on a small open set.
For various reasons, you may want objects that are nowhere zero or at least mostly
nonzero. One example is in proving the existence of a smooth inner product which is
positive-definite everywhere on the manifold (a Riemannian metric), which is used
to prove for example that the cotangent bundle is bundle-isomorphic to the tangent
bundle. Another example is in constructing a notion of integration of functions on
a compact manifold.

The tool to do this is to have a family of coordinate charts (ϕk, Uk), and a
positive real-valued function ξk : M → R such that the support26 of ξk is in Uk for
each k. We want to require that for every p there is a ξk such that ξk(p) > 0, and
also that for each p there are only finitely many ξk such that ξk(p) 6= 0. These
requirements ensure that for every point p, the sum

∑
k ξk(p) is positive and finite,

which means we can normalize to assume that
∑
k ξk(p) = 1 for every p. Hence

the name “partition of unity”: we divide up the number “one” into finitely many
positive weights at each point p, the weights telling you how much of each coordinate
chart you’re using to define your object.

Example 13.3.1. The circle S1 can of course be covered by two coordinate charts
(north-pole and south-pole stereographic coordinates), as in Example 7.1.7. Call
them φ : U → R and ψ : V → R as before.

Let k : R → R be a C∞ bump function such that k(u) > 0 iff |u| < 2 and
k(u) = 0 if |u| ≥ 2. Define ζi : S

1 → R by ζ1(p) = k(φ(p)) if p ∈ U and ζ1(s) = 0 at
the south pole, and similarly ζ2(p) = k(ψ(p)) if p ∈ V and ζ2(n) = 0 at the north
pole. Using the formula φ(x, y) = x/(y + 1) for the stereographic coordinates, we
see that φ maps the upper closed semicircle to [−1, 1] and thus ζ1 is strictly positive
on the upper closed semicircle. Similarly ζ2 is strictly positive on the lower closed
semicircle. Therefore ζ1 + ζ2 is positive everywhere on S1. Define ξ1 = ζ1/(ζ1 + ζ2)
and ξ2 = ζ2/(ζ1 + ζ2). Then (ξ1, U) and (ξ2, V ) give a partition of unity since at
every point either ξ1 or ξ2 is positive, and the sum of the two is always equal to
one. The two functions are graphed in Figure 13.6.

,

As one example of how to use a partition of unity, let’s suppose we want to
define a smooth positive-definite inner product on M (i.e., a Riemannian metric).
This is a function taking a point p in M to a symmetric positive-definite tensor
g(p) of type (2, 0) on TpM , such that in any coordinate chart (x, U) the function

p 7→ g(p)( ∂
∂xi

∣∣
p
, ∂
∂xj

∣∣
p
) is smooth on U . How do we know such a g exists? If we

have a partition of unity, we can define for each k an inner product gk on Uk: just
set gk(p)( ∂

∂xi

∣∣
p
, ∂
∂xj

∣∣
p

= δij , in other words use the Euclidean inner product on each

26The support of a continuous function is the closure of the set where the function is nonzero.
Supports are usually interesting only when the function is expected to be identically zero on a

large set.
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Figure 13.6. The partition of unity constructed in Example
13.3.1; the functions are shown in red and green, and adding the
values of them gives one everywhere.

coordinate chart. The gk will of course look different in another coordinate chart,
but it will still be smooth and positive-definite on the overlap. Then define

g(p) =
∑
k

ξk(p)gk(p).

Then since each ξk is positive, we know g(p)(u, u) =
∑
k ξk(p)gk(p)(u, u) > 0, so

that g is positive-definite at each point p. Since the ξk are smooth, we know g is
smooth as well. And thus every manifold that has a partition of unity has a smooth
positive-definite inner product.

It’s easy to use the same technique as in Example 13.3.1 to construct a partition
of unity on any compact manifold.

Theorem 13.3.2. If M is a compact n-dimensional manifold, then there is a C∞

partition of unity on M , such that each of the nonnegative functions ξk has support
in a coordinate chart.

Proof. Just observe that we can cover M with finitely many charts (ϕk, Uk) for
1 ≤ k ≤ N . Now we want to find some nice cubes in each Uk that are large enough
so that the cubes also cover M . This can clearly be done: for each k and m > 0
let Ckm be the inverse image of the cube (−m,m)n under ϕk; then the family Ckm
forms an open cover of M , and since M is compact we only need finitely many of
these open sets homeomorphic to cubes to cover M . Clearly by taking the union
of finitely many cubes associated to each k, we can replace them all with a single
cube Ck ≡ Ckm for each k.

For each cube ϕk[Ck], construct a C∞ function τk on Rn which is identically
one on ϕk[Ckm] and identically zero outside of the slightly larger cube ϕk[Ck,m+1].
Then ψk = τk ◦ ϕk is a smooth function on Uk which is zero outside of Ck,m+1,
and so we can extend it to a C∞ function on all of M by just defining it to be zero
outside Uk.

For each point p, there is some Ck such that p ∈ Ck since these cubes cover M ,
and by definition we have ψk(p) > 0. Also there are only finitely many ψk since we
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only needed finitely many Ck to cover M . So we can just define

ξk(p) =
ψk(p)∑
i ψi(p)

,

and we see that the functions ξk add up to one at each point. �

More generally any Hausdorff and second-countable manifold has a partition of
unity, but this requires a bit more work. (It uses local compactness and the basic
ideas of the proof in the compact case.)

13.4. Whitney embedding. The nicest application of a partition of unity is in
proving that every compact smooth n-dimensional manifold is homeomorphic to a
smooth submanifold of some Euclidean space RN . This proof is taken from Spivak’s
Comprehensive introduction to differential geometry, volume 1.

Theorem 13.4.1. If M is a compact C∞ manifold, then there is a smooth embed-
ding f : M → Rd for some positive integer d.

Proof. Choose finitely many coordinate charts, with some finite number K of cube
subsets Ck for 1 ≤ k ≤ K covering M , exactly as in the proof of Theorem 13.3.2,
with coordinate charts (ϕk, Uk). Then we have functions ψk such that ψk(p) = 1
whenever p ∈ Ck.

Now define d = nK +K and define f : M → Rd by

f = (ψ1, · · · , ψK , ψ1ϕ1, · · · , ψKϕK).

First prove that f is an immersion by showing it has rank n at each point p.
To do this, find a Ck containing p; then ψkϕk = ϕk on Ck, so f ◦ ϕ−1

k looks like
just the identity map (x1, · · · , xn) (along with a bunch of other terms in the other
rows). Hence D(f ◦ ϕ−1

k ) has an n × n submatrix which is the identity, and so in
particular Df has rank n. We have thus proved that f is an immersion.

To show that f is an embedding, we need to know that f is a homeomorphism
onto its image. But the domain of f is compact, and any one-to-one continuous
map from a compact space to a Hausdorff space is always a homeomorphism onto
its image by general topology. So we are done once we show that f is one-to-one.

To do this, suppose that f(p) = f(q). Find a cube Ck such that p ∈ Ck; then
ψk(p) = 1, and therefore ψk(q) = 1 also (using the first K coordinates of f). But
the only points where ψk equals one are points in Ck, so that q is in the same cube as
p. Now using the later coordinates of f , we see that ψk(p)ϕk(p) = ψk(q)ϕk(q), and
since ψk(p) = ψk(q) = 1, we actually have ϕk(p) = ϕk(q). But ϕk is a coordinate
chart on Ck, which means in particular that it’s one-to-one, and hence p = q. �

The dimension of the Euclidean space d is much larger than the dimension of the
actual manifold n, in this proof. Actually one doesn’t need nearly so much. Gen-
erally there is a minimal dimension d = e(n) such that any n-dimensional manifold
is homeomorphic to a submanifold of Rd. Clearly the circle embeds in R2 but not
R1, so that e(1) = 2. We know that the projective plane cannot be embedded in
R3 (because any compact two-dimensional manifold in R3 is orientable), but there
is an embedding into R4. All other two-dimensional manifolds also embed into R4

(since we know them all), so that e(2) = 4. C.T.C. Wall27 proved that e(3) = 5.

27“All 3-manifolds imbed in 5-space,” Bull. AMS vol. 71
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In general e(n) ≤ 2n − 1 unless n = 2r for some r (and as an explicit coun-

terexample, the real projective spaces P2r never embed in R2r+1−1). The optimal
dimension is not known in general, but it is related to Stiefel-Whitney classes in
algebraic topology; for much more on the subject see Osborn28.

Here I will demonstrate the “easy” version of the Whitney embedding theorem,
which states that e(n) ≤ 2n + 1. The basic idea is to first use Theorem 13.4.1 to
reduce to the case where you have a submanifold of some Euclidean space, and
then show that if d is large, you can find a direction which is not parallel to any
chord or tangent vector of M . Then the map from M to the hyperplane Rd−1 is
still a one-to-one immersion, and hence it is an embedding. The proof is based on
an exercise in Spivak’s Volume 1.

Roughly speaking, the point of the next theorem is that on an n-dimensional
space, 2n+ 1 “generic” functions will be independent. An intuitive way to see this
is looking at the ways draw a curve in R2. It’s quite easy to have the curve end up
crossing itself unless you draw it carefully. However when drawing a curve in R3

it’s very rare that the curve will cross itself, and if it does you can always perturb
it slightly to remove the crossing. (No small perturbation of a figure-eight in R2

will give you a simple closed curve, but a small perturbation of a figure-eight in R3

will.) The same idea gets used in other contexts as well.
In the proof we will need a version of Sard’s Theorem, which is the basic ex-

planation of where this dimension count comes from. It says that for any smooth
function from Rn to itself, the set of critical values is “small.” (The set of critical
points may be large.) For example if f(x, y) = (x, 0), the critical points are all
of R2, but the critical values are just the horizontal line R, which is only a small
portion of R2.

Theorem 13.4.2. Suppose M is a smooth connected n-dimensional manifold and
M is connected. If f : M → Rn is a smooth function, then the critical values of f
form a set of Lebesgue measure zero in Rn.

Proof. The basic idea is that if we have a set B where the rank of f is less than
maximal, then on that set we have that detDf(x) = 0. Now this set B may be com-
plicated, but it’s the countable intersection of the open sets Uk = {x | |detDf(x)| <
1
k}, which are fairly simple. Take a finite-volume cube C; then the volume of the
image f [Uk ∩ C] is (by the change of variables formula Theorem 5.3.2)

vol(f [Uk ∩ C]) =

∫
Uk∩C

|detDf(x)| dx ≤ 1

k
vol(Uk ∩ C).

Take the intersection over all k and we conclude that the volume of f [B ∩ C] is
zero whenever C is a cube of finite volume. But all of Rn is a countable union of
cubes of finite volume, so we get a countable union of sets of measure zero, which
still has measure zero. �

We can extend Sard’s Theorem to smooth maps from one n-dimensional manifold
M to another n-dimensional manifold N ; we say that a set E in N has measure zero
if, for every coordinate chart (ϕ,U) on N , the set ϕ[E] has Lebesgue measure zero
in Rn. This gives a consistent definition since N is second-countable, and hence
there are only countably many coordinate charts needed.

28Vector bundles: Volume 1, Foundations and Stiefel-Whitney classes
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The result is that if we have a map f : M → N , it is very easy to find a point
q ∈ N which is a regular value (that is, either f−1(q) is empty, or f−1(q) is an
(n − 1)-dimensional submanifold of M), since the set of all other q has measure
zero in any reasonable way of measuring. By the way, this is the reason that q
is still called a regular value of f even if f−1(q) is empty: because this definition
makes the set of critical values small and makes the statement of Sard’s theorem
easier.

The more general version of Sard’s theorem is that if M has dimension m and N
has dimension n, and f : M → N is a smooth function, then the image of the set of
points where the rank of Df is less than n has measure zero in N . If m < n then
every point of M has rank less than n, so it says that f [M ] has measure zero in N .
If m > n then for almost every q ∈ N where f−1(q) is nonempty, the restriction
f
∣∣
f−1(q)

is a submersion. This more general version is proved in the same sort of

way, though it’s a bit harder. We will skip it here.
Now we show how to reduce the dimension d of the ambient space Rd obtained

from Theorem 13.4.1.

Theorem 13.4.3. Suppose M is an n-dimensional smooth compact submanifold of
Rd, where d > 2n+ 1 and ι : M → Rd is the embedding. Then there is a unit vector
v in Rd such that for every pair of points p, q ∈ M , the vector ι(q) − ι(p) is not
parallel to v, and also for every point p the tangent plane ι∗[TpM ] does not contain
v. Hence if v⊥ is the hyperplane through the origin perpendicular to v and πv⊥ is
the projection of Rd onto v⊥, then πv⊥ ◦ ι : M → v⊥ ∼= Rd−1 is an embedding.

Proof. InM×M , the diagonal set is the setD = {(p, p) | p ∈M}. Let ι : M → Rd be
the embedding. We want to show there is a vector v ∈ Rd so that πv⊥◦ι : M → Rd−1

is still an embedding, which will happen if it is an immersion which is one-to-one.
So we want a vector v such that ι(p)− ι(q) is never parallel to v for p 6= q (for then
πv⊥(ι(p)) 6= πv⊥(ι(q)) for p 6= q) and such that ι∗(u) is not parallel to v for any
u ∈ TM (for then πv⊥ ◦ ι∗ has a trivial kernel).

Let U = (M ×M)\D; since D is a closed subset of M ×M , we know that U is
an open subset of M ×M and hence a manifold of dimension 2n. Also since ι is
an embedding, the map ι(p)− ι(q) is never the zero vector if (p, q) ∈ U . Hence we
can define G : U → Sd−1 by

G(p, q) =
ι(p)− ι(q)
‖ι(p)− ι(q)‖

,

and this map is smooth. So G is a smooth map from a manifold of dimension 2n
to a manifold Sd−1 of dimension d − 1. Now d − 1 > 2n by assumption, and that
implies that the image G[U ] has measure zero in Sd−1, by Sard’s Theorem.

Hence there are lots of vectors v ∈ Sd−1 which are not parallel to ι(p)− ι(q) for
any distinct p and q. So if v ∈ Sd−1\G[U ], then πv⊥ ◦ ι is one-to-one.

Now TM is also a manifold of dimension 2n. Let V ⊂ TM be

V = {u |u ∈ TpM for some p ∈M,u 6= 0}.

Then V is an open subset of TM , so it is also a 2n-dimensional smooth manifold.
Again we consider the map H : V → Sd−1 defined by

H(v) =
ι∗(u)

‖ι∗(u)‖
,
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which is smooth on V . So the image H[V ] has measure zero in Sd−1 by Sard’s
Theorem.

Now choose a vector v ∈ Sd−1 such that v /∈ G[U ] ∪H[V ]. Let π : Rd → v⊥ ∼=
Rd−1 be orthogonal projection

π(u) = u− (u · v)v.

Consider the map π ◦ ι : M → v⊥. Since ι(p) − ι(q) is never parallel to v if p 6= q,
the orthogonal projection πv⊥ never takes ι(p) and ι(q) to the same point, so that
πv⊥ ◦ ι is one-to-one. Furthermore since ι∗[TpM ] never contains a vector parallel to
v, we know πv⊥ ◦ ι∗ always has a trivial kernel, and thus πv⊥ ◦ ι is an immersion.

We conclude that π ◦ ι is an embedding, since M is compact and π ◦ ι is both an
immersion and one-to-one. �

Corollary 13.4.4. Every compact n-dimensional smooth manifold M can be em-
bedded in R2n+1.

Proof. Embed M into some high-dimensional Euclidean space Rd using Theorem
13.4.1. If d > 2n + 1 then use the technique of Theorem 13.4.3 to find a subspace
Rd−1 into which M can still be embedded. Then keep going; this process stops
working once you get down to R2n+1. �

Thus if you understand the proof of Theorem 13.4.3, you see that we only ever
used Sard’s theorem. If you wanted to do better (as Whitney originally did), you
can go beyond this to actually prove that the maps G and H cannot cover all of S2n,
but then you have to use some more delicate topological arguments (since you’re
dealing with a map from one 2n-dimensional manifold to another 2n-dimensional
manifold), rather than the brute force instrument that is Sard’s theorem.

Since we never specified anything particular about how the embedding into high-
dimensional space had to work, it really doesn’t matter what we use to get the
embedding, as long as we have something to start with. And what is an embedding,
really? It’s just a collection of 2n+ 1 real-valued functions f1, · · · , f2n+1 : M → R
whose derivatives span an n-dimensional space and don’t all agree at any point.
One can then try to think of this directly: if one just picks 2n+ 1 smooth functions
on an n-dimensional smooth manifold, do they give you an embedding? Intuitively
if you were picking functions “randomly,” with probability one you’d pick some
which led to an embedding. You can make this precise (for example, by proving
the set of functions which don’t work is of first Baire category in the right topology),
but the idea is good enough for now.

The power of this idea is that you can use it for other things as well. Tak-
ens29 proved a famous theorem in dynamical systems that basically says you can
use a generic time series to embed an attractor into a Euclidean space. The way
it works is, suppose you have a smooth map φ : M → M (which is a discrete
dynamical system; you’re interested in things like the behavior of the sequence
(p, φ(p), φ(φ(p)), φ(φ(φ(p))), . . .), and you take an observable h : M → R, then as
long as you’re not extremely unlucky, the map

p 7→ (h(p), h(φ(p)), h(φ(φ(p))), · · · , h(φ◦2n(p)))

29“Detecting strange attractors in turbulence,” Springer Lecture Notes vol. 898
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will be an embedding of the configuration space M into R2n+1; this essentially just
comes from Sard’s theorem. The sequence h(p), h(φ(p)), h(φ(φ(p))), · · · is called a
“time series.”

Why might you care about this? Well, typically you have some dynamical sys-
tem, and you don’t know everything that’s going on. Maybe you have a bunch of
data on stock prices of a company. Now the stock price of a particular company
at any given time depends on a bunch of different factors, and you have no idea
what they are. But maybe there are only a finite number of factors, and if so you
can hope that just plotting enough of these stock prices (with one dimension repre-
senting stock price at time 8:00 am, another dimension representing 8:05 am, etc.)
will give you some picture of the space of all stock prices. Of course to use this
you need the stock prices of all companies, and possibly a bunch of other data (the
volume of treasury bill sales, etc.) to really capture all of the space M . Obviously
you can’t hope to do that, so this isn’t really useful by itself.

On the other hand, frequently dynamical systems can exhibit chaos. One form
of chaos is a “strange attractor,” and a heuristic idea of a strange attractor is that
you take one point p in the set, follow the trajectory p, φ(p), φ(φ(p)), . . ., and watch
all these points fill up some set. In non-chaotic systems they may fill up a nice
curve, or all approach a point, or go out to infinity. In a chaotic system they may
fill up a surface. The first and most famous example is the Lorenz attractor, which
is what you get from solutions of the differential equation

dx
dt = 10(y − x)

dy
dt = x(28− z)− y
dz
dt = xy − 8z

3 .

Pick some initial condition (x0, y0, z0) and plot the trajectory in R3; you end up
with the image in Figure 13.7, where a curve seems to fill up some portion of a
two-dimensional surface. (Actually the Lorenz attractor is a fractal, so it’s not
smooth, and its Hausdorff dimension is slightly more than two.) The idea is that
if you picked any point p = (x0, y0, z0) that was actually in that set, its trajectory
should fill up the same space.

Now if that’s the case, then I don’t need to take a bunch of short time series with
a bunch of different starting points p. I can take a long time series with one starting
point p, and choose some N , choose some h, and plot the points that show up peri-
odically. Let’s say N = 3 for simplicity, and I had a time series (h1, h2, h3, h4, · · · )
which I assume comes from h(φ◦k(p)) for some function h, dynamical system φ,
and point p. Then I’d just plot the points

(h1, h2, h3), (h4, h5, h6), (h7, h8, h9), · · ·

until I ran out of patience. I don’t expect this to tell me what the entire space M
is, but I do expect it to show me a picture of the strange attractor if the dimension
of the strange attractor is 1. (I’d expect to see the points all clustering into a nice
curve.) If I had a 2-dimensional strange attractor, then this process might just give
me a jumble of points with no real structure, because my dimension N is too low
to get an embedding.

If I thought the dimension of the strange attractor were higher, I’d just increase
N , until I started detecting some kind of nice structure. The nice thing about this
is that I really only need one time series (e.g., the price of a stock at all times),
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Figure 13.7. A single trajectory of the Lorenz differential equa-
tions appears to fill up a fractal of dimension slightly more than
two in space.

and I can find some hidden structure in the prices that other people can’t see, then
take advantage of it and make lots of money. Of course, if it were this easy we’d
all do it, and so there are complications, but that’s another story.
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14. Vector fields and differential equations

“Calculate every possible destination along their last known trajectory.”

14.1. Vector fields as derivations. We defined vector fields in Definition 12.1.7,
but we didn’t do much with them then: our main concern was whether they existed
and whether they had zeroes. But in differential geometry they are very useful for
two purposes: as differential equations which generate a flow of diffeomorphisms,
and as operators which differentiate smooth functions.

• As we will see, the proper way to think of an ordinary differential equation
is in terms of vector fields. This is already intuitive in basic calculus: we
can visualize a first-order differential equation y′(x) = F

(
x, y(x)

)
as being

a family of arrows on the plane, whose solution is obtained by starting
at some initial value and walking in the direction of the arrows. You’ve
probably seen pictures of such slope fields in a differential equations class.
One is shown in Figure 14.1.

Figure 14.1. The vector field plot representing the differential
equation dy

dx = x+ y2, along with some solution curves.

• Tangent vectors differentiate functions at a single point; thus they take real-
valued functions to real numbers. Vector fields can differentiate the entire
function everywhere at once, and thus they take real-valued functions to



156 STEPHEN C. PRESTON

real-valued functions. Any space (in particular the space of smooth real-
valued functions on a manifold) can be understood better by looking at
operators from that space to itself.

Of course the existence of vector fields on general manifolds relies on the con-
structions of Chapter 13, using a bump function. The following proposition follows
using the same proof as that of Theorem 13.1.4 in Section 13.2.

Proposition 14.1.1. Let M be a smooth manifold and U ⊂ M a subset of M on
which TU is trivial. Let X : U → TU be a smooth section. Then for any p ∈ M
there is a neighborhood V of p and a vector field X̃ : M → TM such that X̃ agrees
with X on V .

Since TU is trivial, there are smooth vector fields E1, . . . , En : U → TU such
that {E1(p), . . . , En(p)} is a basis for TpM at each p ∈ U . Hence we obtain every
vector field on U as a linear combination of these fields:

X(p) =

n∑
k=1

fk(p)Ek(p)

for some smooth functions fk : U → R. Such a vector field gets extended to X̃ by
using a bump function which is identically one in V and identically zero outside U .

Recall that a vector field on M is smooth if it is smooth in charts on M and
TM . The following criteria are frequently more useful.

Proposition 14.1.2. Let M be an n-dimensional manifold with tangent bundle
TM , and let π : TM →M be the projection. A map X : M → TM with π ◦X = id
is smooth if and only if in any coordinate chart (φ,U) with X|U expressed as

X(p) =

n∑
k=1

ak(p)
∂

∂xk

∣∣∣
p

the functions ak : U → R are smooth.

Proof. In coordinates (φ,U) on M and (Φ, TU) on TM we have

Φ◦X◦φ−1(x1, . . . , xn) =
(
x1, . . . , xn, a1◦φ−1(x1, . . . , xn), . . . , an◦φ−1(x1, . . . , xn)

)
.

This is C∞ on Rn if and only if each ak ◦ φ−1 : Rn → R is C∞, which is precisely
the definition of smoothness for ak ◦ U → R. �

Observe that if we have a vector field X defined on the whole space M and
a smooth function f : M → R, then we get a function X(f) : M → R: we just
differentiate f at each point, so that X(f)(p) = Xp(f), using the characterization
of vectors as differential operators from definition (10.3.1). (We sometimes write
X(p) as Xp precisely because this notation would otherwise be awkward.) We
should check that the resulting X(f) is actually smooth.30

Proposition 14.1.3. Suppose X is a function from M to TM with π ◦ X = id.
Then X is a smooth vector field if and only if whenever f is a smooth function,
X(f) is also a smooth function.

30This does not follow from the Chain Rule.
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Proof. First let X be a smooth vector field and f a smooth function; we will
show that X(f) is smooth. In any coordinate chart (φ,U) we have X(p) =∑
k a

k(p) ∂
∂xk

∣∣
p

for each p ∈ U , where ak : U → R is smooth by Proposition 14.1.2.

Thus

X(f) ◦ φ−1(x1, . . . , xn) =
∑
k

ak ◦ φ−1(x1, . . . , xn)
∂(f ◦ φ−1)

∂xk
(x1, . . . , xn)

by definition of the operator ∂
∂xk

∣∣
p
. So X(f) ◦ φ−1 is a sum of products of C∞

functions on Rn and hence also C∞, which means X(f) is smooth by definition.
Conversely suppose that X is a (not necessarily smooth) function from M to

TM with π ◦ X = id, but that whenever f is smooth then X(f) is also smooth.
Then we may still write Xp =

∑
k a

k(p) ∂
∂xk

∣∣
p

for all p in a coordinate chart (φ,U).

Let f be a function which is identically zero outside U and such that f = φj on

some open neighborhood V of a particular point. Then ∂
∂xk

∣∣
p
(f) = ∂φj◦φ−1

∂xk

∣∣
p

= δjk,

which means that X(f)(p) = aj(p) everywhere on V . Since X(f) is smooth on M ,
aj is smooth on V , and since there is such a V around every point of U , we see
that aj is smooth on U . Hence by Proposition 14.1.2 we know that X is a smooth
vector field. �

Thus a smooth vector field X is a linear operator from the (infinite-dimensional)
vector space of C∞ functions to itself, f 7→ X(f). Such operators are completely
characterized by the product rule.

Proposition 14.1.4. If X is a vector field on M , then for any smooth functions
f, g : M → R, we have the product rule

(14.1.1) X(fg) = fX(g) + gX(f).

Conversely, if D is a linear operator from the space of smooth functions to itself
which satisfies the product rule (14.1.1), then there is some vector field X such that
D(f) = X(f) for all smooth f : M → R.

Proof. First let X be a smooth vector field with f and g smooth functions on M .
Let p ∈M , and let v = X(p) ∈ TpM . Then by definition (10.3.1), we have for any
representative curve γ : (−ε, ε)→M of v that

v(fg) =
d

dt

(
f(γ(t))g(γ(t))

)∣∣∣
t=0

= f(γ(0))
d

dt
g(γ(t))

∣∣∣
t=0

+ g(γ(0))
d

dt
f(γ(t))

∣∣∣
t=0

= f(p)v(g) + g(p)v(f).

We conclude that Xp(fg) = f(p)Xp(g) + g(p)Xp(f) for every p, which implies
(14.1.1).

Now suppose D is a linear operator from smooth functions to smooth functions
satisfying (14.1.1). The first thing we want to show is that for any point p, the
number D(f)(p) depends only on the values of f near p, so that we can use a bump
function to localize (and thus assume that f is supported in a coordinate chart).
To do this, suppose h is a function which is identically zero in some open set U
containing p (but possibly nonzero outside it). Choose a smooth bump function ξ
on M such that ξ = 1 on an open set W 3 p and ξ = 0 on the complement of U .
Then hξ ≡ 0 since for any point q ∈ M , either q ∈ U and thus h(q) = 0, or q /∈ U
and thus ξ(q) = 0. We thus have ξ(p)D(h)(p) + h(p)D(ξ)(p) = 0; since h(p) = 0
and ξ(p) = 1, we conclude that D(h)(p) = 0.
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Thus when trying to compute D(f)(p) for some f : M → R, we can instead

compute D(f̃)(p) where f̃ is also smooth on M , equal to f in some neighborhood
of p, and identically zero outside a coordinate chart, for the argument above shows
thatD(f−f̃)(p) = 0. Now in a coordinate chart (φ,U) around p satisfying φ(p) = 0,
we can write

(14.1.2) f(q) = a+

n∑
k=1

φk(q)gk(q)

where a = f(p) is a constant and gk : U → R are smooth functions given explicitly
by

(14.1.3) gk(q) =

∫ 1

0

∂(f ◦ φ−1)

∂xk

(
tφ1(q), . . . , tφn(q)

)
dt.

The reason is that if f̃ = f ◦ φ−1 on Rn, then

f̃(x)− f̃(0) =

∫ 1

0

d

dt
f̃(tx) dt =

n∑
k=1

xk
∫ 1

0

∂f̃

∂xk
(tx) dt,

and translating back to the manifold gives (14.1.2).
Now using (14.1.2) we get

D(f) = D(a) +

n∑
k=1

gkD(φk) + φkD(gk).

Notice that D(a) = 0 by the following trick: D(a) = aD(1), but

D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1) = 2D(1)

so that D(1) = 0. Evaluating D(f) at p and using φk(p) = 0, we thus get

D(f)(p) =

n∑
k=1

gk(p)D(φk)(p).

But notice that by formula (14.1.3) we have

gk(p) =
∂(f ◦ φ−1)

∂xk
(0) =

∂

∂xk

∣∣∣
p
(f).

Letting ak = D(φk)(p) and Xp =
∑n
k=1 a

k ∂
∂xk

∣∣
p
, we see that D(f)(p) = Xp(f) for

every smooth function f .
Doing the same thing for every point p ∈M , we obtain a function p 7→ Xp ∈ TpM

such that D(f)(p) = Xp(f) for all p ∈ M . Hence p 7→ Xp is a vector field on M
if and only if it is smooth. However by assumption we know that whenever f is
smooth then D(f) is smooth, and since D(f) = X(f) for every function f , we
conclude by Proposition 14.1.3 that X is a vector field on M . �

Any linear operator on the vector space of C∞ functions satisfying the product
rule is called a derivation. What’s nice about having done all the work to classify
vector fields as derivations is that it makes it easy to decide what can or can’t
be a vector field. Classically a vector field was a map from Rn to Rn which gave
the components in any coordinate chart, but any such map could only be valid
if the components transformed in the right way under a change of coordinates.
The present approach makes clear exactly which objects will end up satisfying this
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coordinate-invariance without ever having to actually do it. In the next Section we
will discuss some constructions that are much easier to understand as derivations.

14.2. Constructions using vector fields. The space of vector fields is of course
a vector space over R: given a number a ∈ R and a smooth vector field X on M ,
we can certainly multiply aX (by doing so in each tangent space) and get another
smooth vector field. Similarly we can add vector fields together by adding their
values in each tangent space. In this Section we discuss constructions that make
sense on vector fields but which do not make sense on a general vector space. The
characterization using derivations turns out to be extremely useful.

Proposition 14.2.1. Suppose M is a smooth manifold and that X and Y are
vector fields on M . Then Z = [X,Y ] defined by Z(f) = X

(
Y (f)

)
− Y

(
X(f)

)
is

also a vector field. This operator is called the Lie bracket of the vector fields, and
it satisfies the identities

[Y,X] + [X,Y ] = 0 (antisymmetry), and(14.2.1)

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0 (Jacobi identity).(14.2.2)

Proof. Clearly the operator f 7→ Z(f) is linear, and if f is smooth then Z(f) is
also smooth. So to prove that Z is a smooth vector field, we just have to check the
Leibniz rule (14.1.1). The computation is easy:

Z(fg) = X
(
Y (fg)

)
− Y

(
X(fg)

)
= X

(
gY (f) + fY (g)

)
− Y

(
gX(f) + fX(g)

)
= X(g)Y (f) + gX

(
Y (f)

)
+X(f)Y (g) + fX

(
Y (g)

)
− Y (g)X(f)

− gY
(
X(f)

)
− Y (f)X(g)− fY

(
X(g)

)
= g[X,Y ](f) + f [X,Y ](g)

= gZ(f) + fZ(g).

The antisymmetry (14.2.1) is trivial, and the Jacobi identity comes from expand-
ing and canceling: for any smooth f we have(

[[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X]
)

(f) =
(

(XY Z − Y XZ − ZXY + ZY X)

+ (ZXY −XZY − Y ZX + Y XZ) + (Y ZX − ZY X −XY Z +XZY )
)

(f) = 0.

Hence the combination of these brackets is the zero operator on smooth functions,
which means it must be the zero vector field. �

The space of all vector fields on M is a linear space, and under the Lie bracket
it becomes a Lie algebra: in general a Lie algebra is a vector space with a bi-
linear operation (x, y) 7→ [x, y] satisfying the properties (14.2.1)–(14.2.2). These
objects have very interesting properties that are widely studied on their own inde-
pendently of differential geometry or manifolds, although the original motivation
for them was in the study of vector fields and differential equations, as we will
discuss in the next section. The space of all vector fields on a smooth manifold is
an infinite-dimensional Lie algebra, but imposing extra conditions on it (such as
only working with vector fields that respect a group symmetry of M) leads to the
finite-dimensional Lie algebras which are more familiar. This will come up again
later.
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It may seem mysterious that the operation [·, ·] should be anything special on
vector fields, but the significance of the characterization Proposition 14.1.4 is that
there are very few ways of combining vector fields to get another one. Let’s get a
better sense of this operation by looking at it in coordinates. It’s already nontrivial
in one dimension, so to keep things simple we will work on a one-dimensional
manifold (either R or S1).

Example 14.2.2. Suppose for the moment that we are working on R (the case
of S1 is similar; we just delete a point). Any two vector fields can be written in
coordinates as Xp = a(x) ∂∂

∣∣
p

and Yp = b(x) ∂
∂x

∣∣
p
, where x is the coordinate of p.

(Actually on R, both p and x are the same thing, but we should keep consistency
with our more general notation.) Let Z be the Lie bracket Z = [X,Y ]: then for
any function f : R→ R we have

Zp(f) = Xp

(
Y (f)

)
− Yp

(
X(f)

)
= a(x)

d

dx

(
b(x)f ′(x)

)
− b(x)

d

dx

(
a(x)f ′(x)

)
= a(x)

(
b′(x)f ′(x) + b(x)f ′′(x)

)
− b(x)

(
a′(x)f ′(x) + a(x)f ′′(x)

)
=
[
a(x)b′(x)− b(x)a′(x)

]
f ′(x).

Since this is true for every f we must have

(14.2.3) Zp =
[
a(x)b′(x)− b(x)a′(x)

] ∂
∂x

∣∣∣
p
.

There are obviously other ways to combine two vector fields in one dimension:
we can multiply a(x) and b(x) and obtain Rp = a(x)b(x) ∂

∂x

∣∣
p
. The reason the

product (14.2.3) is useful and this product is not is that the Lie bracket makes sense
independent of coordinates, while the product P depends very much on coordinates.
To see this, suppose we have a coordinate transformation given by y = φ(x) with
inverse x = ψ(y). Now in the y-coordinate we have

Xp = a(x)
∂

∂x

∣∣∣
p

= a(x)
dy

dx

∣∣∣
x(p)

∂

∂y

∣∣∣
p

= φ′(x)a(x)
∂

∂y

∣∣∣
p

= φ′
(
ψ(y)

)
a
(
ψ(y)

) ∂
∂y

∣∣∣
p
.

Thus ã(y) = φ′(ψ(y))a(ψ(y)) is the coefficient for X in the y-coordinate. Similarly

we can express Yp = b̃(y) ∂
∂y

∣∣
p

where b̃(y) = φ′(ψ(y))b(ψ(y)). You can write this

more simply as ã(y) = φ′(x)a(x) and b̃(y) = φ′(x)b(x) as long as you keep in mind
that this only makes sense if you remember that y is a function of x and vice versa.

If we were trying to express the näıve product R in y-coordinates, we’d just
multiply the coefficients ã(y) and b̃(y) to get

R̃p = ã(y)b̃(y)
∂

∂y

∣∣∣
p
.

So for the product to mean anything, we need Rp = R̃p. However

R̃p = φ′(ψ(y))2a(ψ(y))b(ψ(y))
∂

∂y

∣∣∣
p

while

Rp = φ′(ψ(y))a(ψ(y))b(ψ(y))
∂

∂y

∣∣∣
p

and these are not the same unless φ′ ≡ 1. Vectors exist on the manifold indepen-
dently of coordinates, and so everything that you do to vectors must be independent
of coordinates.
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Although it’s kind of a pain to go through, you can’t really understand this
unless you actually see how the Lie bracket given by (14.2.3) really is the same
regardless of which coordinate system we use. That is, if I wrote X = ã(y) ∂

∂y and

Y = b̃(y) ∂
∂y and computed the Lie bracket using (14.2.3) in y-coordinates as

Z̃p =
[
ã(y)b̃′(y)− b̃(y)ã′(y)

] ∂
∂y

∣∣∣
p
,

then I can convert to x coordinates using the transition formulas ∂
∂y

∣∣
p

= ψ′(y) ∂
∂x

∣∣
p

and ã(y) = φ′(ψ(y))a(ψ(y)) and b̃(y) = φ′(ψ(y))b(ψ(y)). I get

b̃′(y) = φ′′(ψ(y))b(ψ(y))ψ′(y)+φ′(ψ(y))b′(ψ(y))ψ′(y) = ψ′(y)
[
φ′′(x)b(x)+φ′(x)b′(x)

]
and a similar formula for ã′(y), so that

Z̃p = ψ′(y)
[
φ′(x)a(x)φ′′(x)b(x) + φ′(x)a(x)φ′(x)b′(x)

− φ′(x)b(x)φ′′(x)a(x)− φ′(x)b(x)φ′(x)a′(x)
]
ψ′(y)

∂

∂x

∣∣∣
p

= ψ′(y)2φ′(x)2
[
a(x)b′(x)− b(x)a′(x)

] ∂
∂x

∣∣∣
p

=
[
a(x)b′(x)− b(x)a′(x)

] ∂
∂x

∣∣∣
p

= Zp,

using the fact that φ′(x)ψ′(y) = 1 by the Inverse Function Theorem. ,

Classically we would have defined the Lie bracket in coordinates as (14.2.3) and
done the computation above to show that it did not actually depend on choice
of coordinates. Using the derivation approach means we get coordinate-invariance
for free, and so the change-of-coordinates formula is automatic. The philosophy
is essentially that since coordinates are just particular functions on the manifold,
understanding what an operation does to smooth functions is equivalent to un-
derstanding what it does to arbitrary coordinate charts, and studying things on
overlaps of charts gets replaced with patching together things defined locally by
using bump functions or partitions of unity. The more abstract approach avoids
index computations and thus coordinate changes, at the price of having all the ob-
jects actually being operators that are defined indirectly, by what they do to other
objects.

We have seen that if a linear operator on the space of smooth functions satisfies
the Leibniz rule (14.1.1), then it must come from a vector field and must be a first-
order differential operator. Let’s see what a zero-order differential operator looks
like. Such an operator L would satisfy the equation

(14.2.4) L(fg) = fL(g) for all smooth f, g : M → R.

All operators allow us to pull out constants, but few operators allow us to pull out
entire functions like (14.2.4). Operators which do are called tensorial in differential
geometry. We can also characterize such operators.

Proposition 14.2.3. Suppose L is a linear operator from the space of smooth
functions f : M → R, such that L(fg) = fL(g) for all smooth functions f and g.
Then there is a smooth function h : M → R such that L(g) = hg for all smooth
functions g.
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Proof. Let 1 be the smooth function which takes the value 1 everywhere on M ,
and define h = L(1). Then h is smooth, and for any smooth g we have

L(g) = L(g · 1) = gL(1) = gh.

�

It will be interesting to do the same sort of thing on other spaces: for example
the operators from the space of vector fields to the space of smooth functions which
are tensorial will end up being exactly the covector fields in the covector bundle,
and checking tensoriality gives us a way of defining such covector fields without
using coordinates.

We can do one other thing at the moment with vector fields as differential op-
erators. Suppose we have a smooth map F : M → N from one smooth manifold
to another. We get an operation from smooth functions on N to smooth functions
on M : given any g : N → R, the function f = g ◦ F : M → R is also smooth. We
sometimes write F ∗g = g◦F for reasons that will become clear later. Given a vector
field X on M and a function g on N , we get a smooth function X(f) = X(g ◦ F )
on M . We might hope that X(f) is equal to g̃ ◦ F for some function g̃ : N → R,
for then we could consider g 7→ g̃ as a linear first-order differential operator on N ,
and that would give us a vector field on N associated to X. Unfortunately this
doesn’t work: if F is not surjective, the candidate function g̃ is only determined on
the subset F [M ] ⊂ N , not on all of N .

Example 14.2.4. Consider M = R and N = R2, with F the immersion F (t) =
(cos t, sin t) so that F [M ] = S1 ⊂ R2. Let X on M be the vector field X = ∂

∂t .

Given a function g : R2 → R, we have

X(g ◦ F ) =
∂

∂t

(
g(cos t, sin t)

)
= − sin t gx(cos t, sin t) + cos t gy(cos t, sin t).

Of course this is a function on R, but we can ask whether it is equal to g̃ ◦ F for
some function g̃ : R2 → R. And it is: for example g̃(x, y) = −y gx(x, y) + x gy(x, y)
would work. But also g(x, y) = (x2 + y2)g̃(x, y) would work: any other function
which agrees with g̃ on the circle would give g̃ ◦ F = X(g) on M .

A vector field Y on N such that Y (g) = g̃ (or in other words, such that Y (g)◦F =
X(g ◦ F )) is given by

Y(x,y) = −y ∂

∂x

∣∣∣
(x,y)

+ x
∂

∂y

∣∣∣
(x,y)

.

Again another vector field Ỹ on N such that Ỹ (g) ◦ F = g is given by Ỹ = QY
where Q is a smooth function which is equal to one everywhere on the unit circle.
The lesson is that a vector field on M and a map F : M → N gives us part of a
vector field on N ; it’s defined on the subset F [M ] of N . ,

So clearly what we are trying to do doesn’t work unless F [M ] is surjective. Here’s
another example to show what fails if F is not injective.

Example 14.2.5. Suppose M = R2 and N = R with F : M → N given by
F (x, y) = x. Given a vector field X on M , we try to define a vector field Y on N
which is related in some natural way. We can assume that

X(x,y) = a(x, y)
∂

∂x

∣∣∣
(x,y)

+ b(x, y)
∂

∂y

∣∣∣
(x,y)
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for smooth functions a and b on R2. To figure out what an associated Y should be
on R, we start with a function g : N → R and try to differentiate it.

Given a g on N which we may express as g(t) for t ∈ R, define f : M → R by
f = g ◦ F . Then f(x, y) = g(x), so that X(f) is given by

X(x,y)(f) = a(x, y)
∂

∂x
g(x) + b(x, y)

∂

∂y
g(x) = a(x, y)g′(x).

For this to come from a function on N , it should only depend on the x variable,
which of course it does not for a general vector field X (corresponding to a general
function a of two variables). ,

Suppose we tried to go the other way around: consider a smooth map F : M → N
and take a vector field Y on N . How could we get a related vector field X on M?
Well X would need to differentiate real-valued functions f : M → R, and I know
how to differentiate real-valued functions g : N → R, so I want to generate a g given
an f . Given f , I can define g(q) by f(p) if q = F (p), but this only makes sense if F
is one-to-one: if F (p1) = F (p2) = q with p1 6= p2, then there is a smooth function
on M with f(p1) = 1 and f(p2) = 0, so g(q) can’t be defined.

Hence there’s nothing natural you can do in general to move vector fields from
one manifold M to another manifold N unless your map between them is actually
invertible. And if it is, you might as well assume it’s a diffeomorphism. However
in special cases it may happen that you can push a vector field from one manifold
to another.

Definition 14.2.6. Suppose M and N are smooth manifolds, with X a vector field
on M and Y a vector field on N . If F : M → N is a smooth map, we say that Y
is F -related to X if

(14.2.5) F∗(Xp) = YF (p) for every p ∈M .

If F is a diffeomorphism, then every Y on N is F -related to a unique vector field
X on M and vice versa, and we write Y = F#X, the push-forward of X. In other
words,

(14.2.6) (F#X)p = F∗(XF−1(p)).

Here are some applications of this concept.

• If ι : M → N is an immersion and we have a vector field Y on N , we
can try to find a vector field X on M such that Y is ι-related to X. We
will need ι∗(Xp) = Yι(p) for every p ∈ M , and thus it is necessary that
Yι(p) ∈ ι∗[TpM ] for every p ∈ M . If this happens, then there is a unique
smooth X such that Y is ι-related to X. (Exercise.)
• If τ : M → N is a surjective submersion (that is, τ∗ : TpM → Tτ(p)N is

surjective for every p ∈ M), and we are given a vector field X on M ,
we can try to find a vector field Y on N that is τ -related to X. We need
τ∗(Xp) = Yτ(p) for every p ∈M , and thus it is necessary that for p1, p2 ∈M
with τ(p1) = τ(p2) we have τ∗(Xp1) = τ∗(Xp2). We can then show that
there is a unique smooth Y on N which is τ -related to X. (Exercise.)
• Suppose F : M → N is a quotient map, where N is the quotient by a

discrete group action {φg | g ∈ G} which is free and proper. Then the
condition that τ∗(Xp1) = τ∗(Xp2) whenever τ(p1) = τ(p2) is that for every
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g ∈ G, we have (φg)∗(Xp) = Xφg(p). In other words, X is φg-related to
itself for every g ∈ G. (Exercise.)
• Suppose G is a Lie group and that X is a left-invariant vector field; that

is, for some v ∈ TeG we have Xg = (Lg)∗v for every g ∈ G. Then for every
h ∈ G, the vector field X is (Lh)-related to itself since

(Lh)∗(Xg) = (Lh)∗(Lg)∗(v) = (Lh·g)∗(v) = Xh·g = XLh(g).

Conversely if X is (Lh)-related to itself for every h ∈ G then X must be a
left-invariant vector field. (Exercise.)

In Example 14.2.4, the vector field Y = −y ∂
∂x + y ∂

∂y on R2 is F -related to

X = ∂
∂t on R (along with many other fields Y ). In Example 14.2.5, the vector field

Y = g(x) ∂
∂x on R is F -related to X = a(x) ∂

∂x + b(x, y) ∂
∂y on R2 for any function

b : R2 → R.
Let’s work out the push-forward in an explicit example.

Example 14.2.7. Consider the diffeomorphism η : R2 → R2 given in Cartesian
coordinates by η(x, y) = (y− x2, x), and the vector field X = 2xy ∂

∂x + 3y2 ∂
∂y . Let

us compute η#X at a point (x, y).
To do this, we think of the domain as being given in (u, v) coordinates and the

range as being given in (x, y) coordinates. (We do this in spite of the fact that we
are really working with the exact same coordinate system. Otherwise it’s far too
easy to get confused.) So given the point (x, y), we need to work at the inverse
image (u, v) = η−1(x, y). Since (x, y) = η(u, v) = (v − u2, u), we can easily solve
for u and v to see that the inverse is (u, v) = η−1(x, y) = (y, x+ y2). Then in (u, v)
coordinates, the vector field X is given by (just changing all x’s to u’s and all y’s
to v’s, because we’re just renaming coordinates):

X(u,v) = 2uv
∂

∂u

∣∣∣
(u,v)

+ 3v2 ∂

∂v

∣∣∣
(u,v)

.

Now writing (x, y) = η(u, v) = (v − u2, u), we have

(η#X)(x,y) = η∗(Xη−1(x,y)) = η∗(X(u,v))

= η∗

(
2uv

∂

∂u

∣∣∣
(u,v)

+ 3v2 ∂

∂v

∣∣∣
(u,v)

)
= 2uv η∗

(
∂

∂u

∣∣∣
(u,v)

)
+ 3v2 η∗

(
∂

∂v

∣∣∣
(u,v)

)
= 2uv

(
∂x

∂u

∣∣∣
(u,v)

∂

∂x

∣∣∣
(x,y)

+
∂y

∂u

∣∣∣
(u,v)

∂

∂y

∣∣∣
(x,y)

)
+ 3v2

(
∂x

∂v

∣∣∣
(u,v)

∂

∂x

∣∣∣
(x,y)

+
∂y

∂v

∣∣∣
(u,v)

∂

∂y

∣∣∣
(x,y)

)
= 2uv

(
−2u

∂

∂x

∣∣∣
(x,y)

+
∂

∂y

∣∣∣
(x,y)

)
+ 3v2

(
∂

∂x

∣∣∣
(x,y)

)
= (3v2 − 4u2v)

∂

∂x

∣∣∣
(x,y)

+ 2uv
∂

∂y

∣∣∣
(x,y)

.
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Having obtained this formula, all we need to do is substitute (u, v) = η−1(x, y) =
(y, x+ y2) to get (η#X)(x,y):

(η#X)(x,y) = (x+ y2)(3x− y2)
∂

∂x

∣∣∣
(x,y)

+ 2y(x+ y2)
∂

∂y

∣∣∣
(x,y)

.

,

The following proposition shows us how to understand the notion of “F -related”
in terms of the basic operation of vector fields on smooth functions.

Lemma 14.2.8. Suppose F : M → N is smooth. Let X be a vector field on M and
Y a vector field on N such that Y is F -related to X. Then for any smooth function
g : N → R, we have Y (g) ◦ F = X(g ◦ F ). Conversely if X(g ◦ F ) = Y (g) ◦ F for
every smooth g : N → R, then Y is F -related to X.

Proof. The functions X(g ◦ F ) and Y (g) ◦ F are both functions from M to R, and
we can check the condition by checking at each point p ∈ M : that is, we need to
show Xp(g ◦ F ) = YF (p)(g) for every p ∈ M and every smooth g : N → R if and
only if YF (p) = F∗(Xp). But this just follows from the definition of F∗ via equation
(11.1.1). �

Since we defined the Lie bracket in terms of the derivation operator on smooth
functions, we can best understand the Lie bracket of F -related vector fields in terms
of the operation on smooth functions given by Lemma 14.2.8.

Proposition 14.2.9. Suppose F : M → N is smooth. Let X1 and X2 be vector
fields on M , and let Y1 and Y2 be vector fields on N , and suppose that Yi is F -related
to Xi for i = 1, 2. Then [Y1, Y2] is F -related to [X1, X2].

Proof. We use Lemma 14.2.8: given a smooth function g : N → R, we have Xi(g ◦
F ) = Yi(g) ◦ F . Therefore we have

[X1, X2](g ◦ F ) = X1

(
X2(g ◦ F )

)
−X2

(
X1(g ◦ F )

)
= X1

(
Y2(g) ◦ F

)
−X2

(
Y1(g) ◦ F

)
= Y1

(
Y2(g)

)
◦ F − Y2

(
Y1(g)

)
◦ F

= [Y1, Y2](g) ◦ F.
�

One application of Proposition 14.2.9 is to compute Lie brackets of vector fields
on a submanifold of Euclidean space. For example if ι : M → RN is the embedding,
and we have vector fields Y1 and Y2 on RN , then it is easy to compute [Y1, Y2] in the
global Cartesian coordinate system. If each Yi is F -related to Xi for some vector
field Xi on M (as can always be arranged locally), then [Y1, Y2] is F -related to
[X1, X2], and this tells us what [X1, X2] is without having to resort to coordinates
on M .

Another application is to left-invariant vector fields on a Lie group. Recall from
above that if X on G is left-invariant iff X is (Lh)-related to itself for every h ∈ G.
Hence if X and Y are both left-invariant, then [X,Y ] is Lh-related to itself for
every h ∈ G, and thus [X,Y ] is also a left-invariant vector field. Now the space
of left-invariant vector fields is isomorphic to the tangent space TeG (since every
vector in TeG generates a left-invariant field by left-translations). Hence the Lie
bracket gives us an operation on the finite-dimensional vector space TeG. Every
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finite-dimensional Lie algebra (vector space equipped with a Lie bracket satisfying
(14.2.1)–(14.2.2)) is the tangent space of some Lie group, with the bracket operation
generated by the Lie bracket of the left-invariant vector fields. (This is rather
involved to prove, however.)

We now want to consider another thing that’s usually done with vector fields in
calculus: using them to define differential equations. In fact the motivation for Lie
brackets of vector fields came originally from Lie’s work in trying to understand
symmetries of differential equations.

14.3. Vector fields as differential equations. Suppose we have a vector field X
on M , which we will mostly denote by p 7→ Xp instead of p 7→ X(p) from now on,
to avoid confusion with X(f) for a smooth function f . We can consider solution
curves satisfying

(14.3.1)
dγ

dt
= Xγ(t), γ(0) = p,

which makes sense since both sides are in Tγ(t)M for every t. In a coordinate chart

(φ,U) with Xp =
∑n
i=1 a

i(p) ∂
∂xi

∣∣
p
, we can write this as

n∑
i=1

d

dt
(φi ◦ γ)

∂

∂xi

∣∣∣
γ(t)

=

n∑
i=1

(ai ◦ φ−1) ◦ (φ ◦ γ)
∂

∂xi

∣∣∣
γ(t)

,

so that the solution curves satisfy the first-order system

(14.3.2)
d(xi ◦ γ)

dt
= (ai ◦ φ−1)

(
(x1 ◦ γ)(t), · · · , (xn ◦ γ)(t)

)
for each i.

Writing ãi = ai ◦ φ−1 so that each ãi : Rn → R is C∞, and forgetting about the
curve γ in the manifold, this becomes the first-order system

dxi

dt
= ãi(x1, . . . , xn), xi(0) = xi0,

where xi0 = φi(p).
(Recall that such a system is called “autonomous” or “time-independent” since

the right-hand sides do not depend explicitly on t. This feature will be very impor-
tant.) The advantage of (14.3.1) over (14.3.2) is that, while we can solve (14.3.2)
using ODE techniques, the solution might only be valid in some small open set (cor-
responding to the coordinate chart); on the other hand, we can use the coordinate-
invariant expression (14.3.1) to patch together solutions in different charts.

Example 14.3.1. As an example, consider the vector field X on R2 defined in
Cartesian coordinates by Xp = −y ∂

∂x

∣∣
p

+ x ∂
∂y

∣∣
p
. Then in Cartesian coordinates,

the solution curves
(
x(t), y(t)

)
satisfy

dx

dt
= −y, dy

dt
= x, x(0) = xo, y(0) = yo.

We can solve this by differentiating the first equation:

d2x

dt2
= −dy

dt
= −x.

This implies x(t) = A cos t + B sin t. Now we must have x(0) = A = xo and
x′(0) = B = −y(0) = −yo, so that the unique solution is

(14.3.3) x(t) = xo cos t− yo sin t, y(t) = xo sin t+ yo cos t.
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On the other hand, we can also write the vector field X in polar coordinates as
Xp = ∂

∂θ

∣∣
p

since

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
= −y ∂

∂x
+ x

∂

∂y
.

Then the differential equation is

dr

dt
= 0,

dθ

dt
= 1, r(0) = ro, θ(0) = θo.

This is even easier to solve: we have

(14.3.4) r(t) = ro and θ(t) = θo + t.

Of course this only works when ro 6= 0 (otherwise polar coordinates aren’t defined);
but we already know the solution when (xo, yo) = (0, 0) is x(t) = 0, y(t) = 0. Hence
we have patched together the polar solution with the Cartesian solution. Explicitly,
using the transformation formulas x = r cos θ and y = r sin θ, we see that the two
solutions are the same: starting with (14.3.4), we get equation (14.3.3).

x(t) = r(t) cos
(
θ(t)

)
= ro cos (θo + t)

= ro cos θo cos t− ro sin θo sin t = xo cos t− yo sin t,

y(t) = r(t) sin
(
θ(t)

)
= ro sin (θo + t)

= ro sin θo cos t+ ro cos θo sin t = yo cos t+ xo sin t.

,

We can check that this is true in general: if we change coordinates, we still
have the same solution. In fact this must be true based on our original definition
γ′(t) = Xγ(t): a solution in one coordinate system must also be a solution in any
other. Here we will do a direct coordinate-transformation argument.

Proposition 14.3.2. If x and y are two overlapping C∞-compatible coordinate
systems with X =

∑n
k=1 a

k(x1, · · · , xn) ∂
∂xk

=
∑n
j=1 b

j(y1, · · · , yn) ∂
∂yj , then solu-

tions of
dxk

dt
= ak

(
x(t)

)
and

dyj

dt
= bj

(
y(t)

)
are the same, in the sense that whenever xo = ψ(yo), we have

x(t) = ψ
(
y(t)

)
,

where ψ = x ◦ y−1 is the coordinate transition function.

Proof. By the existence and uniqueness theorem for ordinary differential equations,
Theorem 5.2.6, we know that two curves x1(t) and x2(t) defined on (−ε, ε) with the
same initial condition x1(0) = x2(0) and satisfying the same differential equation on
(−ε, ε) must actually be identical. So we just have to check that x(t) and ψ ◦ y(t)
satisfy the same differential equation. This follows from the transition formula

Proposition 10.4.3, giving ak
(
x
)

=
∑n
j=1

∂xk

∂yj

∣∣
y
bj
(
y
)
. Thus we have

d

dt
ψk
(
y(t)

)
=

n∑
j=1

∂xk

∂yj
dyj

dt
=

n∑
j=1

∂xk

∂yj
bj
(
y(t)

)
= ak

(
x(t)

)
= ak

(
ψ(y(t))

)
.

So ψ ◦ y(t) satisfies the same equation as x(t), and has the same initial condition,
and hence must actually be the same. �
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The main thing we used in the proof above is that the components of vectors
change in the same way as derivatives of curves. So when we change the coordinates
of the curve on the left side and change the coordinates of the vector on the right
side, they cancel each other out. This is not at all surprising, since we defined
vectors originally as derivatives of curves. So the only reason we want Proposition
14.3.2 is that we are actually constructing solutions in a particular set of coordinates
using Theorem 5.2.6, and we need to know that what we get is actually coordinate-
independent.

By Theorem 5.2.6 (the Fundamental Theorem of ODEs), we know that in a
neighborhood U of any point po ∈M , we have some time interval (−ε, ε) such that
for any p ∈ U , there is a unique solution γp : (−ε, ε) → M of (14.3.1) satisfying
γp(0) = p. Furthermore, for any fixed t, the function p 7→ γp(t) is smooth (in the
sense that its coordinate functions are smooth). As a result, we can define the flow
map Φt, although perhaps not on the entire space. The only really new thing here
is that, instead of looking at this as the solution in coordinates, we are looking at it
as the solution on the manifold (which happens to have coordinate representations).

Definition 14.3.3. If X is a vector field on M , then for every po ∈M , there is an
ε > 0 and an open set U 3 po such that for every t ∈ (−ε, ε), we have a smooth flow
map Φ: (−ε, ε)× U →M defined by Φ(t, p) = γp(t), where γp(t) is the solution of
(14.3.1). In other words, we have

(14.3.5)
∂Φ

∂t
(t, p) = XΦ(t,p), Φ(0, p) = p.

It is common to write the flow map as Φt : U → M , i.e., Φt(p) = Φ(t, p) if we
want to hold t fixed.

Example 14.3.4. If X is the vector field X = −y ∂
∂x + x ∂

∂y defined before, then

(from our explicit solution) we know

Φt(x, y) = (x cos t− y sin t, y cos t+ x sin t),

and Φt happens to be defined, for every t ∈ R, on all of R2. ,

This example is not typical: usually the flow is not defined for all time.

Example 14.3.5. For a more typical example, consider the vector field X(x) =
x2 ∂

∂x on R, for which the differential equation is x′(t) = x(t)2. The solution is
x(t) = xo/(1− xot), so that the flow map is

Φt(x) = x/(1− xt),
which is only defined as long as xt < 1. (Of course, the formula makes sense for
xt > 1 as well, but once the solution blows up there’s no reason to consider anything
beyond that time; hence we only consider the interval containing t = 0 on which
the solution is smooth.) If x > 0, then Φt(x) is defined for all t < 1/x, while if
x < 0, then Φt(x) is defined for all t > −1/x. As x → ±∞, the time interval on
which Φt(x) can be defined symmetrically shrinks to zero, so that in this case, our
ε from Definition 14.3.3 is ε = 1/|x|. (When x = 0 the solution is Φt(0) = 0, which
is defined for all t ∈ R.) ,

Thus in general, ε depends on the location po ∈M . In particular, we can’t even
say that there is a universal ε so that Φt : M →M is defined for all t ∈ (−ε, ε). In
fact if there were such an ε, then we would have the flow map defined globally, i.e.,
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Φt : M →M would exist for all t ∈ R; see Corollary 14.4.2 later on. This obviously
makes things harder, and most of our computations involving flows will have to
take place localized near a particular point and also localized in time, just to have
the flow maps defined.

We now obtain a very useful alternative view of a vector field as a differential
operator. Recall that every vector is the derivative of some curve γ, and that we
differentiate functions at a particular point p ∈ M in the direction of a particular
v ∈ TpM by writing

v(f) =
d

dt
f
(
γ(t)

)∣∣∣
t=0

, where γ(0) = p and γ′(0) = v.

From a certain point of view, therefore, every “partial derivative operator” is really
just an ordinary derivative. Flows allow us to view the function X(f) (which takes
the partial derivative of f at each p in direction Xp ) as an ordinary derivative as
well.

Proposition 14.3.6. Let X be a vector field and let Φt be the local flow. Then for
any smooth function f : M → R, we have

X(f)(p) = Xp(f) =
∂

∂t
f
(
Φt(p)

)∣∣∣
t=0

.

Proof. Fix p ∈ M . This is literally nothing but the definition (10.3.1) applied to
the function f using the curve t 7→ Φt(p) since the derivative of this curve at time
t = 0 is precisely the vector Xp. �

As we have seen again and again, there is no calculus but Calculus I, and Dif-
ferential Geometry is its prophet. Every function we ever need to differentiate is
really a function of a real variable if we think about it in the right way.

Now I want to remind you how we actually solve differential equations. The
techniques you’ve learned have basically been ad hoc; pick an equation and hope
you’re lucky enough to have a technique in the textbook which solves it. One of the
things we’re eventually aiming for is finding a way to systematize these techniques,
which was actually Lie’s original motivation for inventing Lie groups. But first I
want to make clear that every ordinary differential equation (in standard form, i.e.,
solved for the highest derivatives) actually represents the flow of a vector field.

• First, suppose the coefficients in a system of differential equations depend
explicitly on time, as in

dx1

dt
= F 1

(
x1(t), · · · , xm(t), t

)
,

...

dxm

dt
= Fm

(
x1(t), · · · , xm(t), t

)
.

We want to transform this into an autonomous system, and we use the
following trick. Define a new function xm+1(t) = t. Then we can write
the original nonautonomous differential equation (for m functions) as the
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autonomous differential equation (for (m+ 1) functions) as:

dx1

dt
= F 1

(
x1(t), · · · , xm(t), xm+1(t)

)
...

dxm

dt
= Fm

(
x1(t), · · · , xm(t), xm+1(t)

)
dxm+1

dt
= 1,

corresponding to the vector field

X = F 1(x1, · · · , xm, xm+1)
∂

∂x1
+ · · ·+ Fm(x1, · · · , xm, xm+1)

∂

∂xm
+

∂

∂xm+1
.

• Second, any high-order ordinary differential equation can be written as a
system of first-order differential equations by introducing the derivatives as
new variables. For example, for the differential equation

d4x

dt4
+ 3

dx

dt

d2x

dt2
− 2x(t) = 0,

we can introduce the functions x1(t) = x(t), x2(t) = dx
dt , x3(t) = d2x

dt2 , and

x4(t) = d3x
dt3 ; then the differential equation becomes

dx1

dt
= x2(t)

dx2

dt
= x3(t)

dx3

dt
= x4(t)

dx4

dt
= −3x2(t)x3(t) + 2x1(t),

corresponding to the vector field

X = x2 ∂

∂x1
+ x3 ∂

∂x2
+ x4 ∂

∂x3
+ (−3x2x3 + 2x1)

∂

∂x4
.

In general, any kth-order differential equation for one variable becomes a
vector field on Rk, and a system of j equations, each of order k, becomes a
vector field on Rjk.

Using both tricks, we can write the general standard-form system of differential
equations (consisting of m equations, each of order at most k, and possibly nonau-
tonomous), as a first-order system of up tomk+1 autonomous differential equations;
in other words, a vector field on Rmk+1.

So here are the standard techniques for solving ODEs.

• The differential equation corresponding to a one-dimensional vector field
can always be solved explicitly: we have dx

dt = f(x) ∂
∂x , and we can separate

the variables to get
∫

dx
f(x) =

∫
dt. Thus if g is an antiderivative of 1/f , we

obtain g(x) = t + g(xo), with solution x(t) = g−1
(
t + g(xo)

)
. Hence the

flow is Φt(xo) = g−1
(
t+ g(xo)

)
. The time of existence will depend on the
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interval on which g is invertible. (We know g is invertible near xo by the
inverse function theorem, since g′(xo) = 1/f(xo) 6= 0.)

For example, if dx
dt = 1 + x2, then integrating gives arctanx = t +

arctanxo, so that the flow is Φt(xo) = tan (t+ arctanxo) =
xo + tan t

1− xo tan t
.

Again, this will only be defined for t sufficiently small (and how small
depends on xo).

From a different point of view, we can think of the function g as giving
a coordinate change on R to a new coordinate y = g(x). In the coordinate
y, the differential equation becomes

dy

dt
= g′

(
x(t)

) dx
dt

=
1

f
(
x(t)

) f(x(t)
)

= 1,

with solution y(t) = yo + t. This is valid only where the coordinate change
is valid (which will not be on all of R in general). The notion of solving
a differential equation by changing coordinates is extremely important, as
we will see.

In terms of vector fields, we have rewritten the field X = f(x) ∂
∂x in the

form X = ∂
∂y by solving the equation dy/dx = 1/f(x).

• Linear systems, given by x′(t) = Ax(t). The solution with x(0) = xo is
x(t) = etAxo, where

etA =

∞∑
k=0

tn

n!
An.

As an example, consider the system dx
dt = x + y, dydt = y. This is a linear

system with A = ( 1 1
0 1 ). We can compute the powers of A inductively:

Ak = ( 1 k
0 1 ), so that

etA =

(∑∞
k=0

tk

k!

∑∞
k=0

ktk

k!

0
∑∞
k=0

tk

k!

)
=

(
et

∑∞
k=1 t

tk−1

(k−1)!

0 et

)
=

(
et tet

0 et

)
.

As a result, the solution of the equation with x(0) = xo and y(0) = yo
is x(t) = xoe

t + yote
t and y(t) = yoe

t; in flow form, we get Φt(xo, yo) =
(xoe

t + yote
t, yoe

t).
The method of undetermined coefficients (guessing the form of a solution

and plugging in to find the actual coefficients) also works to solve this partic-
ular differential equation. However understanding the matrix exponential
makes remembering the rules for undetermined coefficients unnecessary. In
addition it allows us to write the solution quite simply as x(t) = etAxo,
even if the explicit formula for etA is complicated.

In general one computes the matrix exponential as follows: write A in
Jordan form as A = PJP−1; then exp (tA) = P exp (tJ)P−1, and the
exponential of a matrix in Jordan form is built from the exponentials of
Jordan blocks, which are fairly easy to compute directly.

We can also think of this example in terms of new coordinates. We
have computed that Φ(t, x, y) = (xet + ytet, yet) where t is time and the
initial condition is (x, y). Now consider the new coordinates (u, v) given
by (x, y) = Φ(u, 0, v). Explicitly we have x = vueu and y = veu, and
solving for (u, v) gives u = x/y and v = ye−x/y. Hence the vector field
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X = (x + y) ∂
∂x + y ∂

∂y which generated our differential equation takes the

form

X = (x+ y)
∂

∂x
+ y

∂

∂y

= (vueu + veu)

(
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v

)
+ veu

(
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v

)
= (vueu + veu)

(
1

y

∂

∂u
− e−x/y ∂

∂v

)
+ veu

(
− x

y2

∂

∂u
+ (e−x/y + x

y e
−x/y)

∂

∂v

)
=

∂

∂u
.

In these coordinates the differential equation is u′(t) = 1 and v′(t) = 0,
which we view as the simplest possible system. This coordinate change is
not unique: more generally we could take a generic curve v 7→ γ(v) ∈ R2

and build coordinates using (u, v) 7→ Φ(u, γ(v)), and again we will have
X = ∂

∂u .
• For higher-dimensional nonlinear equations, things can be more compli-

cated. However, in the right coordinates, they simplify. For example, con-
sider the differential equation dx

dt = x(x2 + y2), dy
dt = y(x2 + y2). You

can probably guess that this equation would look simpler in polar coor-
dinates, based on seeing the term (x2 + y2). Indeed, writing the vector
field as X = x(x2 + y2) ∂

∂x + y(x2 + y2) ∂
∂y and using the polar coordinate

transformation formula, we get

X = x(x2 + y2)

(
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ

)
+ y(x2 + y2)

(
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ

)
= r3 cos θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
+ r3 sin θ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
= r3 ∂

∂r
.

As a result, the differential equations in polar coordinates are dr
dt = r3 and

dθ
dt = 0, with solution r(t) =

ro√
1− 2r2

ot
, θ(t) = θo. The flow in rectangular

coordinates is then Φt(xo, yo) =

(
xo√

1− 2(x2
o + y2

o)t
,

yo√
1− 2(x2

o + y2
o)t

)
.

The fact that the equation simplifies in polar coordinates comes from the
fact that the solutions commute with rotations: if Ψs represents the family
of rotations by angle s, i.e., Ψs(xo, yo) = (xo cos s + yo sin s,−xo sin s +
yo cos s), then we will have

Φt ◦Ψs(xo, yo) = Ψs ◦ Φt(xo, yo)

for every s and t. It’s worth checking this explicitly. It tells us that if we
first rotate the initial condition, then solve the differential equation, it’s
the same as solving the equation first with unrotated initial condition, then
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rotating. Later in this section we’ll be able to figure out how we might have
detected this sort of thing without already knowing what the flow Φt is.

Finally, we notice that in this example, we reduced a two-dimensional
system to a one-dimensional system; we could use the technique for one-
dimensional systems (another coordinate change) to obtain new coordinates
(ρ, ψ) = (−1/(2r2), θ) in which the differential equations are ρ′(t) = 1 and
ψ′(t) = 0.

14.4. Flows and one-parameter groups. The most important thing about the
(locally-defined) flow operators Φt from Definition 14.3.3 is that they form a group,
in the sense that Φ0 is the identity and (Φt1 ◦ Φt2)(p) = Φt1+t2(p) (as long as t1
and t2 are small enough that this is actually defined). The inverse of each Φt is
obviously Φ−t, which is defined as long as t is close enough to 0. Hence the map
t 7→ Φt is a group homomorphism. We can check that this is true for some of the
flows defined above:

• If Φt(xo) = tan (t+ arctanxo), then

Φt1 ◦ Φt2(xo) = tan
(
t1 + arctan

[
Φt2(xo)

])
= tan

(
t1 + arctan

[
tan (t2 + arctanxo)

])
= tan (t1 + t2 + arctanxo)

= Φt1+t2(xo),

although this formula is only valid if −π2 < t2 + arctanxo <
π
2 and also

−π2 < t1 + t2 + arctanxo <
π
2 .

• If Φt = etA for a matrix A, then the composition of functions is simply
matrix multiplication: Φt1 ◦ Φt2 = et1Aet2A = e(t1+t2)A = Φt1+t2 .

• If Φt(xo, yo) =
(xo, yo)√

1− 2(x2
o + y2

o)t
, then

(Φt1 ◦ Φt2)(xo, yo) =
(xo, yo)√

1− 2(x2
o + y2

o)t2

√
1− 2

(
x2
o+y2o

1−2(x2
o+y2o)t2

)
t1

=
(xo, yo)√

1− 2(x2
o + y2

o)(t1 + t2)

= Φt1+t2(xo, yo).

Again this only makes sense if t1 and t2 are small enough.

Now we prove this in general.

Proposition 14.4.1. Let X is a vector field on M and Φt the local flows as in
Definition 14.3.3, then for every p ∈ M there is a real number ε > 0 such that,
whenever t1, t2, t1 + t2 ∈ (−ε, ε), we have

Φt1+t2(p) = (Φt1 ◦ Φt2)(p).

In particular if Φt is defined on all of M for all t ∈ R, we have Φt1+t2 = Φt1 ◦Φt2 .

Proof. By definition of Φt, we know that for every p ∈ M , the curve t 7→ Φt(p) is
the unique solution of the equation γ′(t) = Xγ(t) with initial condition γ(0) = p.
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Fix τ ∈ R small enough that q = Φτ (p) exists, and consider the two curves γ1(t) =
Φt+τ (p) and γ2(t) = Φt(q). Both of these curves satisfy the differential equation

γ′i(t) = Xγ(t), γ(0) = q,

and therefore they must be the same for all t for which both are defined; in other
words we have Φt+τ (p) = Φt(Φτ (p)) for all values of t where both sides are de-
fined. Since τ was an arbitrary time close to zero, this equation holds for any two
sufficiently small times. �

We would like to view this algebraically as a homomorphism into the group of
diffeomorphisms of M , but the problem is that we have only defined the maps Φt
locally on subsets of M , and we don’t know that there is any time for which Φt is
actually globally defined on M . There is a good reason for this.

Corollary 14.4.2. Suppose that there is an ε > 0 such that the local flows Φ from
Definition 14.3.3 are defined on Φ: (−ε, ε)×M → M . Then in fact the flow map
can be extended to Φ: R×M →M , and the maps t 7→ Φt are global homomorphisms
from the additive group R to the diffeomorphism group of M (under composition).

Proof. Suppose Φt is defined for t ∈ (−ε, ε) on all of M . We can extend Φt to
be defined for t ∈ (−2ε, 2ε) by setting Φt(p) = Φt/2(Φt/2(p)); the group property
implies that Φt(p) is still the unique solution of (14.3.5) on this larger interval.
Repeating this process, we can clearly extend the interval indefinitely to all of
R. �

We can also prove the converse of this theorem: any one-parameter group of
diffeomorphisms must arise as the flow of a vector field. The statement is a bit
complicated since we have to worry about the flows being only local: the simpler
version of the hypothesis is that Φ: R ×M → R is smooth and satisfies Φt1+t2 =
Φt1 ◦ Φt2 for all t1, t2 ∈ R.

Proposition 14.4.3. Suppose that Φt is a family of maps defined on some open
domains Ut ⊂ M for t > 0, with (t, p) 7→ Φt(p) smooth on its domain, and such
that U0 = M and Φ0 is the identity on M . Suppose that the union of all Ut is M ,
and that Φt1+t2 = Φt1 ◦ Φt2 at all points where both sides are defined. Then there
is a C∞ vector field X defined on M such that Φt is the flow of X.

Proof. In order for a vector field X to generate the flow Φt, we must have by
Definition 14.3.3 for all t ∈ (−ε, ε) and for all p ∈M . In particular when t = 0, we
must have

Xp =
∂Φ(t, p)

∂t

∣∣∣
t=0

for all p ∈M .

Let us define a vector field X by this formula for all p; then we just have to check
that (14.3.5) is valid.

So as in Proposition 14.4.1, we take any fixed τ , and observe that by the group
equation we have for any p ∈M that

∂

∂t

∣∣∣
t=τ

Φt(p) =
∂

∂t

∣∣∣
t=0

Φt+τ (p) =
∂

∂t

∣∣∣
t=0

Φt
(
Φτ (p)

)
= XΦτ (p)

by definition of X. �



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 175

It is quite common to study non-autonomous differential equations in terms of
time-dependent vector fields: then we have

∂Φt(p)

∂t
= X

(
t,Φt(p)

)
, Φ0(p) = p,

and as before this will have a solution for any fixed p defined in some time interval.
However we will no longer have the group structure: in general, Φt1+t2 6= Φt1 ◦Φt2 .
For our purposes, it will be preferable to just work with time-independent vector
fields by using the extra-variable trick.

So far everything we have discussed is perfectly valid for any manifold. Unfortu-
nately, it can frequently happen that the flow Φt of a vector field X is only defined
for a small time interval (−ε, ε) in a small neighborhood of each point, with the
ε depending on the point, as for example when M = R and X = x2 ∂

∂x . However
if M is a compact manifold, then the flow must be defined for all time. This is
a very convenient property. So far we’ve always been talking about manifolds as
more complicated than Euclidean space, but from the point of view of differential
equations, compact manifolds are much simpler than Euclidean space. Thus for ex-
ample people who work in differential equations even on Euclidean space frequently
prefer working with periodic equations (which make sense on the torus Tn), so that
various global things can be guaranteed.

Theorem 14.4.4. If M is a compact n-dimensional manifold, and X is a smooth
vector field on M , then there is a global flow, i.e., maps Φt : M →M for all t ∈ R
such that ∂Φt(p)

∂t = X(Φt(p)) for all t.

Proof. By the local existence theorem, for every point p there is an open set U and
a positive number ε such that whenever q ∈ U , the solution Φt(q) is defined on
(−ε, ε). Cover M by finitely many of these open sets U1, · · · , UN , and set ε to be
the minimum of ε1, · · · , εN . Then we know that for any point q on M whatsoever,
the flow map Φt(q) is defined for the same (−ε, ε). So Φt : M → M is defined for
t ∈ (−ε, ε). By Corollary 14.4.2, the map Φt is thus defined for every t ∈ R. �

Compactness is useful to ensure global existence of flows, but sometimes other
tools are useful. For example, if the vector field is uniformly bounded or Lipschitz
in some norm we can prove global existence directly.

14.5. Straightening vector fields. At the end of Section 14.3, we discussed ex-
plicit solutions of some typical differential equations which all have in common the
fact that the equations become simpler in better coordinates.

• For the one-variable autonomous differential equation dx
dt = f(x), we are

dealing with the vector field X = f(x) ∂
∂x . The coordinate change y =∫

dx/f(x) yields X = ∂
∂y .

• For the n-dimensional linear system dx
dt = x + y, dy

dt = y, the coordinate

change u = x/y and v = ye−x/y changes the vector field’s components from
X = (x+ y) ∂

∂x + y ∂
∂y to X = ∂

∂u .

• For the two-variable differential equation dx
dt = x(x2 +y2), dydt = y(x2 +y2),

the coordinate change ρ = −1/[2(x2 + y2)], ψ = arctan (y/x) changes the
vector field’s components from X = (x2 + y2)

(
x ∂
∂x + y ∂

∂y

)
to X = ∂

∂ρ .

In all of these cases, we have “straightened” the vector field out, so that in the
new coordinate system, we are just dealing with a particular coordinate vector.
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If we can do this, we can always solve the differential equation. In some sense,
therefore, solving differential equations explicitly is just a matter of finding the
right coordinates. Abstractly, we can always do this (since a differential equation
always has a solution). Practically this may or may not be effective. The following
makes this notion precise. It will also give us a very convenient tool to use when
working with vector fields abstractly. Although the proof seems fairly complicated,
you should observe that it’s just a generalization of the exact same technique we
used to straighten the vector field X = (x+ y) ∂

∂x + y ∂
∂y at the end of Section 14.3.

Theorem 14.5.1. Let X be any vector field on an n-dimensional manifold M . For
every p ∈M such that X(p) 6= 0, there is a coordinate chart (y = ψ, V ) with V 3 p,
such that X = ∂

∂y1 on V .

Thus the flow in ψ-coordinates is given by

ψ ◦ Φt ◦ ψ−1(y1
o , y

2
o , · · · , yno ) = (y1

o + t, y2
o , · · · , y2

o),

as long as t is sufficiently small that Φt(ψ
−1(y1

o , · · · , yno )) ∈ V .

Proof. The technique to prove this is to essentially start with the flow (which we
know to exist by Theorem 5.2.6) and construct the coordinates from that, using
the Inverse Function Theorem 5.2.4.

Given a vector field X and a local flow Φt defined for (−ε, ε) in some neighbor-
hood of p, let (φ = x, U) be a coordinate chart around p. (We can assume φ(p) = 0
and that φ[U ] = Rn with Φt defined on all of U , by shrinking around p if necessary.)
Let Ξt = φ ◦ Φt ◦ φ−1 be the flow as a map in coordinates, with Ξt : Rn → Rn. If
in these coordinates we have

X ◦ φ−1(x1, . . . , xn) =

n∑
k=1

ak(x1, . . . , xn)
∂

∂xk

∣∣∣
q
, where φ(q) = (x1, . . . , xn),

then the coordinate flow Ξt satisfies
(14.5.1)

∂

∂t
Ξkt (x1, . . . , xn) = ak

(
Ξ1
t (x

1, . . . , xn), . . . ,Ξnt (x1, . . . , xn)
)

for 1 ≤ k ≤ n.

By assumption Xp 6= 0, and so in coordinate components we have ak(0) 6= 0 for
at least one k (since φ(p) = 0 and ak are the components of X in a basis). We
can assume without loss of generality that a1(0) 6= 0. We will use this fact in a bit
when we apply the Inverse Function Theorem.

Recall from Definition 14.3.3 that we can write Ξt(p) = Ξ(t, p), where Ξ is smooth
jointly; i.e., the flow map Ξ: (−ε, ε) × Rn → Rn is smooth. Define F : (−ε, ε) ×
Rn−1 → Rn by

(14.5.2) (x1, . . . , xn) = F (y1, y2, . . . , yn) = Ξ(y1, 0, y2, . . . , yn).

I want to show that F is invertible near the origin, for then I will know that
y = ψ = F−1 ◦ φ is a new coordinate chart on M . Before I do this, however,
let’s check that this chart actually solves the problem. In other words, the flow in
y-coordinates should be very simple. Now since x = F (y), and since Ξt was the
flow in x-coordinates, the flow Σt in y-coordinates will be

Σt(y
1, . . . , yn) = F−1 ◦ Ξt ◦ F (y1, . . . , yn) = F−1 ◦ Ξt ◦ Ξy1(0, y2, . . . , yn)

= F−1 ◦ Ξt+y1(0, y2, . . . , yn) = (t+ y1, y2, . . . , yn).

(14.5.3)
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This is a very simple formula for the flow Σt in y-coordinates. Furthermore as
in the proof of Proposition 14.4.3, the vector field can be recovered from the flow
simply by taking the time-derivative of the flow at time t = 0. Hence if the flow
looks like (14.5.3), then the vector field must look like

Xq = X ◦ ψ−1(y1, . . . , yn) =
∂

∂y1

∣∣∣
q
, where ψ(q) = F−1(φ(q)) = (y1, . . . , yn),

for any q in the coordinate neighborhood. This is the straightening we want.
So we just have to prove that F is invertible near the origin, and by the Inverse

Function Theorem 5.2.4, it is of course sufficient to show that DF (0) is an invertible

matrix. We have by the definition (14.5.2) that the components ofDF (0) are
∂xj

∂yi

∣∣∣
0
,

where
∂xj

∂y1
(0, . . . , 0) =

∂Ξj

∂y1
(y1, 0, y2, . . . , yn)

∣∣∣
y=0

= aj(0, . . . , 0)

using (14.5.1) (since the y1-direction is the time direction). All other partial deriva-
tives can be computed by first setting y1 = 0 to simplify: since Ξ0 is the identity,
we have Ξj(0, 0, y2, . . . , yn) = yj if j > 1 and Ξ1(0, 0, y2, . . . , yn) = 0. Thus we get

∂xj

∂yi
(0) =

∂Ξj

∂yi
(0) =

∂yj

∂yi
= δji if i > 1 and j > 1

while
∂x1

∂yi
= 0 if i > 1.

We thus see that DF (0) is the matrix

DF (0) =


a1(0) 0 · · · 0
a2(0) 1 · · · 0

...
...

. . .
...

an(0) 0 · · · 1

 ,

where the lower right corner is the (n−1)× (n−1) identity matrix. Obviously this
is invertible if a1(0) 6= 0, which is why we assumed this earlier. (If it had not been,
we could have used another hyperplane instead of (0, y2, . . . , yn) ∈ Rn.) Thus F is
invertible in some neighborhood of the origin, and ψ = F−1 ◦ φ defines a genuine
coordinate chart on M in a neighborhood of p such that X = ∂

∂y1 everywhere on

that neighborhood. �

Theorem 14.5.1 tells us that every vector field can be straightened in a neigh-
borhood of a point where it is nonzero, and hence in the right coordinate system
every differential equation can be solved explicitly. Of course the construction of
the right coordinates relies on having a formula for the flow map already, and so
this is certainly a circular argument: it definitely does not give any explicit formula
for the solution of a general differential equation. It’s primarily useful if you are
given a particular vector field and want to do something else with it: you can always
assume it is of this simple form rather than something complicated. (We will use
this at the end of this Chapter.)

Practically we almost never solve differential equations by guessing a coordinate
chart in which X = ∂

∂y1 , although in principle if we were very lucky we always

could. Practically we find symmetries of the vector field and then use coordinate
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transformations to peel off one direction at a time, until in the end the vector
field does become trivial. We did this at the end of Section 14.3 for the vector
field X = (x2 + y2) (x ∂

∂x + y ∂
∂y ) on R2. Changing into polar coordinates, we saw

that X = r3 ∂
∂r , for which the flow can be found explicitly since the differential

equation doesn’t depend on the θ coordinate. The fact that this worked depended
on knowing the definition of polar coordinates already. We could compute the flow
of the vector field explicitly, and we knew the rotations of the plane explicitly, and
so we could check that the flow commuted with rotations. In general this doesn’t
work since we don’t know the flow and we may not even know the symmetries. We
want to understand, as Lie did, how to determine whether the flow of a vector field
commutes with some symmetries without having to actually find the flow.

Example 14.5.2. Now what you may have already noticed is that the rotational
symmetries in the plane (in our third differential equations example) are also a
group: if

Ψs(xo, yo) =
(
xo cos s− yo sin s, xo sin s+ yo cos s

)
,

then we have Ψs1+s2 = Ψs1 ◦Ψs2 for every s1, s2 ∈ R by the sum rule for sine and
cosine. Thus by Proposition 14.4.3, Ψs must actually come from a vector field. It’s
not hard to see what this field must be; in fact, since in matrix form we have

Ψs =

(
cos s − sin s
sin s cos s

)
= exp

[
s

(
0 −1
1 0

)]
,

we expect to have the vector field generated by the matrix
(

0 −1
1 0

)
, which means

U =

(
0 −1
1 0

)(
x
y

)
, or in differential geometric notation, U = −y ∂

∂x
+ x

∂

∂y
.

Thus by our first example, the differential equation is dx
dt = −y, dy

dt = x, corre-

sponding to the vector field U = −y ∂
∂x + x ∂

∂y . Since this vector field is the basic

rotation field, it should not surprise you at all that in polar coordinates we have
U = ∂

∂θ . ,

What we are aiming for now is Lie’s basic discovery: the fact that the flow Φt of
a vector field X and a group of symmetries Ψs commutes (i.e., Φt ◦ Ψs = Ψs ◦ Φt
for all t and s) can be expressed directly in terms of a condition on the vector fields
X and the generating field U of Ψs. First, observe that for any fixed s and any
flows Φt and Φs forming a group, the conjugations Ξt = Ψs ◦ Φt ◦Ψ−s also form a
group: letting F = Ψs for a fixed s, we have

Ξt1 ◦ Ξt2 = F ◦ Φt1 ◦ F−1 ◦ F ◦ Φt2 ◦ F−1

= F ◦ Φt1 ◦ Φt2 ◦ F−1 = F ◦ Φt1+t2 ◦ F−1 = Ξt1+t2 ,

for every t1 and t2. As a result, there must be some vector field that generates Ξt.
The next Proposition shows what it is.

Proposition 14.5.3. Suppose F : M → M is a diffeomorphism. Let X be a
smooth vector field on M , and let Y = F#X be the push-forward defined by formula
(14.2.6). If the local flow of X is Φt, then the local flow of Y is Ξt = F ◦Φt ◦F−1.

Proof. Let g : M → R be a smooth function. Then we understand Y if we under-
stand Y (g) by Lemma 14.2.8, and we understand Y (g) if we understand the flow
of Y by Proposition 14.3.6. So let us begin with the flow Ξt = F ◦Φt ◦F−1, which
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satisfies the homomorphism property as we just computed, and thus is the flow of
some vector field Y by Proposition 14.4.3. We want to show that Y = F#X. By
Proposition 14.3.6 we have

Yq(g) =
∂

∂t
(g ◦Ξt(q))

∣∣∣
t=0

=
∂

∂t

(
g ◦F ◦Φt ◦F−1(q)

)
= XF−1(q)(g ◦F ) = (F#X)q(g),

where we use Lemma 14.2.8 in the last step. Since this is true for every g and q,
we conclude that Y = F#X. �

There are a few things worth noticing about this Proposition.

• Despite the symmetry of the flow compositions Ξt = F ◦ Φt ◦ F−1, the
compositions of the corresponding vector field are not symmetric: F#X =
F∗(X ◦ F−1). We take the derivative of F on the outside but not on the
inside. The reason is because the vector field comes from differentiating
the flow with respect to t; to do this, we do not have to differentiate the
inner composition at all (since it doesn’t depend on t), but we do have to
differentiate the outer composition using the Chain Rule (since it depends
on t implicitly).
• Also, by our definition of vector field, we are forced to use the formula

(14.2.6): if we want to transform a vector using a map F , we need to use
the derivative F∗ of the map; however, the derivative doesn’t go into the
correct tangent space to get a vector field. Thus if we want a vector at
p, we need to go backwards and start with the vector at F−1(p); then we
push forward with the only possible F -derivative F∗ (the one that starts
at F−1(p) and must therefore end up at p). So the seemingly complicated
formula (14.2.6) is the only one that even makes sense, given our definitions.
• Although the definition of F#X looks most natural when we write it in

terms of the corresponding flows, recall that the flow of a vector field is
generally not defined globally, even for short times. Thus it is better
to use the formula (14.2.6) as a definition since it is computed directly in
terms of the field, not the flow.

Using this tool, we now can say that if Ψs is a group of symmetries (for conve-
nience, we can assume they are defined for all s ∈ R), then for each s we have a
vector field (Ψs)#X which measures how much Ψs changes X. If the flow of X
commutes with the symmetries, then we have Φt = Ψs ◦ Φt ◦ Ψ−s for every t and
s, and hence (Ψs)#X = X for all s. In general, then, we can measure the degree
to which Ψs commutes with Φ by taking the derivative of (Ψs)#X with respect to
s. This makes sense because, for each fixed p, the vector

(
(Ψs)#X

)
p

lies in TpM

for every s. So we can take derivatives without worrying about curves: we’re just
differentiating a curve that lives in a single tangent space, so there’s no concern
about the base points of the vectors moving.

Proposition 14.5.4. Suppose X is a vector field, and suppose that Ψs is a one-
parameter group of diffeomorphisms of M with generating vector field U . Then we
can define the Lie derivative of X with respect to U as a vector field LUX satisfying

(14.5.4) (LUX)p = − ∂

∂s

∣∣∣
s=0

(
(Ψs)#X

)
p
.

In particular, this quantity only depends on U , not on the flow Ψs.
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Furthermore, we can compute LUX explicitly using the operator formula

(14.5.5) LUX = [U,X]

where [U,X] is the Lie bracket defined by Proposition 14.2.1.

Proof. This is surprisingly difficult to prove in a general coordinate chart, but if we
use correctly adapted coordinates y = ψ where U = ∂

∂y1 , it becomes much easier.31

In such a chart, write

X ◦ ψ−1(y1, . . . , yn) =

n∑
k=1

ak(y1, . . . , yn)
∂

∂yk

∣∣∣
ψ−1(y1,...,yn)

.

Since in adapted coordinates the flow Ψs takes the form

ψ ◦Ψs ◦ ψ−1(y1, y2, . . . , yn) = (y1 + s, y2, . . . , yn),

we have

(Ψs)∗

(
∂

∂yi

∣∣∣
q

)
=

∂

∂yi

∣∣∣
Ψs(q)

for every i and every q. Hence in particular we know that

(
(Ψs)#X

)
q

= (Ψs)∗
(
XΨ−s(q)

)
= (Ψs)∗

(
n∑
k=1

ak(ψ(Ψ−s(q)))
∂

∂yk

∣∣∣
Ψ−s(q)

)

=

n∑
k=1

ak
(
ψ(Ψ−s(q))

) ∂

∂yk

∣∣∣
q

=

n∑
k=1

ak(y1 − s, y2, . . . , yn)
∂

∂yk

∣∣∣
q
.

Differentiate this with respect to s, then set s = 0, to obtain

∂

∂s

(
Ψs)#X

)
q

∣∣∣
s=0

=
∂

∂s

n∑
k=1

ak(y1−s, y2, . . . , yn)
∂

∂yk

∣∣∣
q

= −
n∑
k=1

∂ak

∂y1
(y1, . . . , yn)

∂

∂yk

∣∣∣
q
.

Hence by definition we have

(LUX)q =

n∑
k=1

∂ak

∂y1
(y1, . . . , yn)

∂

∂yk

∣∣∣
q
, where ψ(q) = (y1, . . . , yn).

On the other hand, computing [U,X] we obtain

[U,X]q(f) =
∂

∂y1

( n∑
k=1

ak(y1, . . . , yn)
∂(f ◦ ψ−1)

∂yk

)
−

n∑
k=1

ak(y1, . . . , yn)
∂2(f ◦ ψ−1)

∂y1∂yk

=

n∑
k=1

∂ak

∂y1
(y1, . . . , yn)

∂(f ◦ ψ−1)

∂yk

∣∣∣
y(q)

,

which implies that

[U,X]q =

n∑
k=1

∂ak

∂y1
(y1, . . . , yn)

∂

∂yk

∣∣∣
q

where ψ(q) = (y1, . . . , yn).

We thus conclude that [U,X] = LUX. �

31This is one of the best reasons to use the Straightening Theorem 14.5.1.
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It ends up being a nice surprising coincidence that two different invariant for-
mulas (14.5.4) and (14.5.5) end up being the same, especially since we proved it
using a very special coordinate system. Of course, since both objects are defined
invariantly, the fact that they are equal in one coordinate chart means that they
are equal in all coordinate charts. The important thing was to establish that both
objects were actually vector fields (in the sense that they could differentiate func-
tions on the manifold), and once we know they exist as vector fields, it does not
matter what coordinates we use to compute them.

We now return to the original situation of determining whether flows commute
based on whether the corresponding vector fields commute.

Proposition 14.5.5. Suppose X and U are vector fields on M with local flows Φt
and Ψs respectively. Then we have Φt ◦ Ψs = Ψs ◦ Φt for all t and s where this
makes sense if and only if we have [U,X] = 0.

Proof. Suppose Φt ◦ Ψs = Ψs ◦ Φt for all values of t and s where it makes sense.
Then if Ξt = Ψs ◦ Φt ◦ Ψ−s, we know that Ξt = Φt. This implies by Proposition
14.5.3 that (Ψs)#X = X for all s. Differentiate with respect to s and set s = 0 to
obtain LUX = 0, which implies that [U,X] = 0.

Conversely assume [U,X] = 0. Then we conclude that LUX = 0, which means
that ∂

∂s (Ψs)#X = 0
∣∣
s=0

= 0. However since Ψs is a group, we can conclude that
∂
∂s (Ψs)#X = 0 for every s. Thus (Ψs)#X = X since this is true at s = 0. Hence
the flow of each side is the same, but we know that the flow of the left side is
Ψs ◦ Φt ◦Ψ−s if the flow of the right side is Φt by Proposition 14.5.3. �

Example 14.5.6. If X = (x2 + y2) (x ∂
∂x + y ∂

∂y ) and U = −y ∂
∂x + x ∂

∂y , then we

can compute directly that [U,X] = 0 without even knowing the flows of U or X.
This tells us that if we choose coordinates such that U = ∂

∂y1 , and if X is expressed

in those coordinates by X = f(y1, y2) ∂
∂y1 + g(y1, y2) ∂

∂y2 , then ∂f
∂y1 = ∂g

∂y1 = 0. We

conclude that the components of X actually depend only on y2, so we can write
the differential equation generating its flow as

dy1

dt
= f(y2)

dy2

dt
= g(y2).

The second equation can generically be solved explicitly for y2, which leads to a
solution of the first equation for y1. ,

The lesson is that if X is some arbitrary vector field such that [U,X] = 0 for some
vector field U , and if the flow of U can be computed explicitly, then X simplifies
greatly in the coordinates generated by the flow of U . So the general strategy for
finding the flow of X explicitly is to find symmetries generated by vector fields U
with [U,X] = 0, and if X is preserved by these symmetries, then we can reduce
X to an effectively-lower-dimensional vector field. The technique of Lie works in
greater generality, but this is the basic idea.

Now the proofs above are correct, but the drawback is that it’s hard to see
how it might actually occur to anyone that Lie brackets are related to commuting
vector fields. Let’s work this out in the general one-dimensional case (without any
intelligent choice of coordinates) to get a sense of it.
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Example 14.5.7. Suppose M = R with vector fields X = f(x) ∂
∂x and U =

g(x) ∂
∂x . Then the flow of X satisfies

∂Φ

∂t
(t, x) = f

(
Φ(t, x)

)
, Φ(0, x) = x.

We can solve this differential equation in a power series since the conditions give
Φ(0, x) = x and ∂Φ

∂t (0, x) = f(x). We thus obtain the solution

Φ(t, x) = x+ tf(x) +O(t2).

Similarly for the flow Ψ of U we get

Ψ(s, x) = x+ sg(x) +O(s2).

Now expand the functions Φ
(
t,Ψ(s, x)

)
and Ψ

(
s,Φ(t, x)

)
in power series in both

s and t. We get

Φ
(
t,Ψ(s, x)

)
= Ψ(s, x) + tf

(
Ψ(s, x)

)
+O(t2)

= x+ sg(x) +O(s2) + tf(x+ sg(x) +O(s2)) +O(t2)

= x+ sg(x) + tf(x) + tsf ′(x)g(x) +O(s2 + t2).

Similarly we get

Ψ
(
s,Φ(t, x)

)
= x+ sg(x) + tf(x) + tsg′(x)f(x) +O(s2 + t2),

and thus in coordinates we have

Φ
(
t,Ψ(s, x)

)
−Ψ

(
s,Φ(t, x)

)
= st

[
g(x)f ′(x)− f(x)g′(x)

]
.

Hence if the flows commute, we must have gf ′ − fg′ = 0, which is the coordinate
expression of [U,X] from Example 14.2.2. It thus becomes obvious that the flows
can only commute if the Lie bracket is zero; it is less obvious that the Lie bracket
being zero implies the flows commute, but this eventually comes from the fact that
flows are a one-parameter group. ,

We conclude with the following application, showing how to straighten multiple
commuting vector fields simultaneously.

Theorem 14.5.8. Suppose X and Y are vector fields on M such that [X,Y ] = 0.
Then in a neighborhood of any point p, there is a coordinate chart such that X = ∂

∂y1

and Y = ∂
∂y2 everywhere on the coordinate domain.

Proof. There are two ways to prove this. One is to apply the Straightening Theorem
14.5.1 to obtain a chart x such that X = ∂

∂x1 . Then if Y is expressed in coordinates

as Yq =
∑
k b

k(x1, . . . , xn) ∂
∂xk

for φ(q) = (x1, . . . , xn), we can check that

[X,Y ] =
∑
k

∂bk

∂x1
(x1, . . . , xn)

∂

∂xk
.

So the condition [X,Y ] = 0 means that each component bk of Y is independent of
x1, and thus we can view Y as actually defined on an (n − 1)-dimensional mani-
fold. Then applying the straightening trick again, we can rearrange the coordinates
(x2, . . . , xn) to straighten out Y without changing X.

The other way to proceed is to consider a parametrized (n − 2)-dimensional
surface in M given by F : Ω ⊂ Rn−2 → M such that neither X nor Y are ever
contained in any tangent space to F [Ω]. Then for any coordinate chart φ, the map
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φ◦Φy1(Ψy2
(
F (y3, . . . , yn)

))
is locally an invertible map from an open subset of Rn

to itself and thus generates a coordinate chart. The vector field X is ∂
∂y1 in these

coordinates obviously, and since Φ commutes with Ψ, we can also conclude that Y
is ∂

∂y2 . �

Clearly we can apply the same sort of procedure given any number of commuting
vector fields. We thus obtain the following useful characterization: if there are k
vector fields Xi such that near every point there is a coordinate chart with Xi = ∂

∂xi

for 1 ≤ i ≤ k, then [Xi, Xj ] = 0 for all i and j; conversely if these fields commute

then there is a chart near every point such that X = ∂
∂xi .
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15. Differential forms

“You will find that many of the truths we cling to depend greatly on our own
point of view.”

15.1. The cotangent space T ∗pM and 1-forms. Denote by F(M) the space of
smooth functions f : M → R and by χ(M) the space of smooth vector fields on
M . In Sections 14.1–14.2, we saw how to characterize functions as linear operators
L : F(M)→ F(M) satisfying L(fg) = fL(g) for all f, g ∈ F(M) (that is, tensorial
operators). We also saw how to characterize vector fields as derivations, that is,
linear operators D : F(M) → F(M) such that D(fg) = fD(g) + gD(f) for all
f, g ∈ F(M). We thus characterized F(M) as certain operators on F(M), and
χ(M) as certain other operators on F(M). It is natural to look at linear operators
from χ(M) to F(M). Operators L : χ(M) → F(M) that satisfy tensoriality, that
is L(fX) = fL(X) for all X ∈ χ(M) and f ∈ F(M), must arise from pointwise-
defined linear operators from each TpM to R, and hence correspond to covector
spaces; putting these together leads to a cotangent bundle, and sections are covector
fields. And as we saw in Chapter 4, once we can build a covector space out of a
vector space, we can build spaces of tensors as well. Having the tangent bundle
and cotangent bundle will then give us tensor bundles in a very natural way.

Let g : M → R be a smooth function. Consider the operator L : χ(M)→ F(M)
given by L(X) = X(g). Certainly L is tensorial in the sense of (14.2.4), since for
any smooth f : M → R, we have L(fX) = (fX)(g) = fX(g) = fL(X). In previous
cases, once we found a large class of operators which satisfied some nice algebraic
property, it was easy to prove that all operators with that algebraic property must
be of the form we found. In this case it will not be true that all tensorial operators
from χ(M) to F(M) are given by this simple form, and that failure is one of the
deepest results of Differential Geometry.

To understand this, let’s first try to understand what should be happening point
by point, in order to understand how to build a bundle structure.

Definition 15.1.1. Suppose p ∈M is any point, and let f be a germ of a function
at p. That is, there is some open set U 3 p and a smooth function f : U → R. We
define dfp : TpM → R to be the operator df |p(v) = v(f). The operator df |p is linear,
and hence df |p ∈ T ∗pM , the dual space of TpM . It is called the differential of f at
p. In general, elements of T ∗pM are usually called cotangent vectors or 1-forms.

All we’d have to check is that df |p is linear, but that actually follows exactly
from the definition of the vector space structure on TpM given by Definition 10.3.6.
The only strange thing about this is that we write T ∗pM instead of (TpM)∗, but the
former notation is more convenient since we will soon want to put them together.

Example 15.1.2. Suppose f : C → R is given by f(z) = Im(ez). Then in coordi-
nates we have f(x, y) = ex sin y. Writing v = a ∂

∂x |0 + b ∂
∂y |0, we have

df |0(v) = v(f) = a
∂(ex sin y)

∂x
(0, 0) + b

∂(ex sin y)

∂y
(0, 0) = b.
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Hence the cotangent vector satisfies

df |0
(
∂

∂x

∣∣∣
0

)
= 0, df |0

(
∂

∂y

∣∣∣
0

)
= 1,

or in other words it is the dual covector to ∂
∂y |0. ,

Suppose g is a smooth function. Then there is a map dg given by p 7→ dg|p ∈
T ∗pM . If we put all the cotangent spaces T ∗pM into a bundle T ∗M , then dg would
be a section of this bundle, and we would have globally that for any vector field
X on M , there would be a function dg(X) which at p ∈ M is given by dgp(Xp).
To understand what this bundle needs to be, we first want to construct an explicit
basis at each point, which allows us to build the local trivializations.

Proposition 15.1.3. Suppose (x = φ,U) is a coordinate chart on a manifold
M , and let dxk|p denote the differentials of the coordinate functions xk at p as in

Definition 15.1.1. Then {dxk|p} is the dual basis for T ∗pM of the basis { ∂
∂xj

∣∣
p
} of

TpM . In other words, we have

(15.1.1) dxk|p
(

∂

∂xj

∣∣∣
p

)
= δkj .

Furthermore, for any germ f of a function at p, we have

(15.1.2) df |p =

n∑
k=1

∂(f ◦ φ−1)

∂xk

∣∣∣
φ(p)

dxk|p.

We often write just

df =

n∑
k=1

∂f

∂xk
dxk

if no confusion can result.

Proof. By definition we have

dxk|p
(

∂

∂xj

∣∣∣
p

)
=

∂

∂xj
(
φk ◦ φ−1(x1, . . . , xn)

) ∣∣∣
φ(p)

=
∂xk

∂xj

∣∣∣
φ(p)

= δkj |φ(p) = δkj .

This is what we wanted to show; since we already know abstractly that T ∗pM is

n-dimensional, it follows that dxk|p must be its basis.
Now let us compute df |p in terms of this basis for an arbitrary f . By definition

we have

df |p
(

∂

∂xj

∣∣∣
p

)
=

∂

∂xj

∣∣∣
p
(f) =

∂(f ◦ φ−1)

∂xj

∣∣∣
φ(p)

.

Therefore both sides of

df |p =

n∑
k=1

∂(f ◦ φ−1)

∂xk

∣∣∣
φ(p)

dxk|p,

give the same result when applied to the vector ∂
∂xj

∣∣
p
, for any j, and thus they

must actually represent the same covector. �

Having the general formula (15.1.2) then implies that if f happens to be a com-
ponent yj of a coordinate chart, then we can express dyj |p in terms of the basis
{dxk|p}. This formula is the dual of the formula from Corollary 10.4.5; in fact
once we know how basis vectors in TpM change under a change of coordinates, we
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clearly must know exactly how the dual vectors change as in Chapter 4. Hence the
following corollary is not only obvious but has two different obvious proofs.

Corollary 15.1.4. If (x, U) and y, V ) are two coordinate charts with p ∈ U ∩ V ,
then the covectors in the respective dual bases of T ∗pM , written as {dx1|p, . . . , dxn|p}
and {dy1|p, . . . , dyn|p}, satisfy the transition formula

(15.1.3) dxj
∣∣
p

=

n∑
k=1

∂xj

∂yk

∣∣∣
y(p)

dyk
∣∣
p
.

Observe how natural this notation looks; in fact in calculus the same formula
appears, although the notation “dx” is never really defined. This is the proper
way to think of differentials: as operators on vectors. The only price we pay is the
rather awkward-looking formula (15.1.1), which you should get used to.

There is one more thing that is easy to check while we are still working with
cotangent vectors at a single point. In Definition 15.1.1, we started with a function
f defined in a neighborhood of p and obtained an element df |p of the cotangent
vector space T ∗pM . Having obtained the basis for the cotangent space in Proposition
15.1.3, we can now establish the converse of this: every cotangent vector in TpM is
df |p for some smooth f : M → R. Since the function is globally-defined, we don’t
need to work with germs anymore.

Proposition 15.1.5. Let M be a smooth n-dimensional manifold, and let p ∈ M
be any point. Then every element α ∈ T ∗pM is given by df |p for some (non-unique)
smooth function f : M → R.

Proof. Let (φ,U) be a coordinate chart in a neighborhood of p. By Proposition
15.1.3, every element α ∈ T ∗pM is given by

α =

n∑
k=1

ak dx
k|p

for some numbers a1, . . . , an. Let ζ : M → R be a smooth bump function which is
identically equal to one in some neighborhood V of p with V ⊂ U . Define

f(q) = ζ(q)

n∑
k=1

akφ
k(q) if q ∈ U and zero otherwise.

Then f is smooth, and f |V (q) =
∑n
k=1 akφ

k(q), so that

df |p =

n∑
k=1

n∑
j=1

ak
∂φk ◦ φ−1

∂xj

∣∣∣
x=φ(p)

dxj |p =

n∑
k=1

n∑
j=1

akδ
k
j dx

j |p =

n∑
k=1

akdx
k|p = α.

�

Given a smooth function f defined in a neighborhood of p for which p is not a
critical point (i.e., df |p 6= 0), we can use the Inverse Function Theorem to construct
a coordinate chart (x1, . . . , xn) on some neighborhood V of p such that f = x1

on V . Hence every cotangent vector at p can always be assumed to be dx1|p in
the right coordinates. Of course we could do the same thing with tangent vectors:
every v ∈ TpM can be written in the correct coordinate chart as v = ∂

∂x1

∣∣
p
.

But we can actually do much more with vectors: recall from the Straightening
Theorem 14.5.1 that for any vector field V with Vp 6= 0, we can choose a coordinate
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chart around p such that Vq = ∂
∂x1

∣∣
q

for every q ∈ V . We might hope that the same

sort of thing works for fields of covectors: that is, given a smooth map of covectors,
there is locally a coordinate chart such that ωq = dx1|q for every q in some open
set. This is not at all true, and in fact this failure is why so many of the interesting
things one can do in Differential Geometry involve cotangent vectors rather than
tangent vectors. We will see this in the next few Chapters.

15.2. The cotangent bundle T ∗M and 1-form fields. We have obtained the
derivative of a function f at a point p, as a covector (1-form) in T ∗pM , which is a
linear function on TpM . This is analogous to starting with a function f : R → R
and defining the derivative at a particular point, f ′(a). In calculus, once we do this,
we quickly move to thinking of f ′ as another function f ′ : R → R, just by letting
the number a vary. We’d like to perform the same generalization here: to have a
derivative operator d which takes a function f to a field of 1-forms defined on all
of M , by letting the base point p vary.

What exactly is such an object? Well, first, we want to patch together all of the
cotangent spaces T ∗pM to get a single cotangent bundle T ∗M , in exactly the same
way as we did in Definition 12.1.4 to get the tangent bundle TM . It will end up
being just another vector bundle, with different trivializations. Our definition is
inspired in the same way as it was for TM : we begin with coordinate charts (φ,U)

on M and obtain charts (Φ̃, T ∗U) on T ∗M by just copying the components in the
coordinate basis.

Definition 15.2.1. If M is a smooth n-dimensional manifold, the cotangent bundle
T ∗M is defined to be the disjoint union of all the cotangent spaces T ∗pM . For every

coordinate chart (φ,U) on M , we define a coordinate chart (Φ̃, T ∗U) by the formula

(15.2.1) Φ̃

(
n∑
k=1

ak dx
k|p

)
= (φ(p), a1, . . . , an) ∈ R2n.

The topology is generated by declaring a set Ω ⊂ TM to be open if and only
if Φ̃[Ω ∩ T ∗U ] is open for every chart (Φ̃, T ∗U), and this topology makes all the

functions Φ̃ continuous and smooth and gives T ∗M the structure of a smooth
manifold.

The related local trivializations ζ : T ∗U → U × Rn given by

ζ(

(
n∑
k=1

ak dx
k|p

)
= (p, a1, . . . , an) ∈ R2n

make T ∗M into an n-dimensional vector bundle over M as in Definition 12.1.5.

As in the Definition 12.1.4 of the tangent bundle, the main thing to check is
that the transition maps are smooth on R2n. Using the transition formula from
Corollary 15.1.4, we see that if the same covector α is expressed in two different
charts

α =

n∑
k=1

ak dx
k|p =

n∑
j=1

bj dy
j |p,

then the coefficients are related by

α =

n∑
k=1

n∑
j=1

ak
∂xk

∂yj

∣∣∣
y(p)

dyj
∣∣
p

=

n∑
j=1

bj dy
j
∣∣
p
,
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so that we have

bj =

n∑
k=1

ak
∂xk

∂yj

∣∣∣
y(p)

.

Hence we can write the transition map as

(y1, . . . , yn, b1, . . . , bn) = Φ̃ ◦Ψ−1(x1, . . . , xn, a1, . . . , an)

=

(
φ ◦ ψ−1(x1, . . . , xn),

n∑
k=1

ak
∂xk

∂y1
, . . . ,

n∑
k=1

ak
∂xk

∂yn

)
.

Note that from this perspective the functions ∂xk

∂yj are actually being viewed as

functions of x; hence we are really viewing them as the inverse matrix of ∂yj

∂xk
(x),

which exists and is smooth by the Inverse Function Theorem. Hence the transition
maps are smooth and in particular continuous, so that they preserve the topological
structure.

Now let’s discuss the spaces of vector fields and 1-forms. These will all have a
vector-space structure which is infinite-dimensional. The topology is a bit involved
(there are many inequivalent choices, and no reason to prefer one over another),
and it is not really necessary for anything we do, so we will ignore it.

Definition 15.2.2. Suppose M is an n-dimensional manifold.

• The space of smooth functions on M with values in R is denoted by F(M);
the vector space operation is (af + bg)(p) = af(p) + bg(p).
• The space of vector fields on M is denoted by χ(M) and consists of all

smooth vector fields defined on all of M . The vector space operation is
(aX + bY )p = aXp + bYp.
• The space of 1-forms on M is denoted by Ω1(M) and consists of all smooth

sections of the cotangent bundle T ∗M . The vector space operation is (aαp+
bβp)(Xp) = aαp(Xp)+bβp(Xp) for all Xp ∈ TpM . Since “1-form” can mean
either a single covector in T ∗pM or a section of the cotangent bundle, we
will sometimes use “covector field” or “1-form field” in case it’s ambiguous.

Given a 1-form ω and a vector field X, we can apply ωp to Xp at each point
to get a real number ωp(Xp). Hence globally we can apply ω to X to get a
function on M . Obviously the resulting function does not depend on the choice
of coordinates used to describe it, but that’s because we went to so much trou-
ble to define vector fields and 1-forms in a coordinate-invariant way. Classically
one would have written (in two different coordinate charts x and y) the formulas
ω =

∑
j αj dx

j =
∑
k βk dy

k and X =
∑
j v

j ∂
∂xj =

∑
k w

k ∂
∂yk

, using the transition

formulas (10.4.6) and (15.1.3) to relate β to α and w to v. Then using the awkward
formula (15.1.1), we can check that

∑
j αjv

j =
∑
k βkw

k and hence the common

value gives a well-defined notion of ω(X). Let’s see how this actually works in
practice.

Example 15.2.3. Consider as an example the vector field X on R2 given in Carte-
sian coordinates by X = x ∂

∂x −y
∂
∂y , and the 1-form ω = xy dx+y2 dy. Then ω(X)

is a function on R2, given in Cartesian coordinates by

ω(X)(x, y) = (xy dx+ y2 dy)

(
x
∂

∂x
− y ∂

∂y

)
= x2y − y3.
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Let’s check that we get the same function in polar coordinates. By the transition
formulas (15.1.3) and (10.4.6), the 1-form and vector field become

ω = r2 cos θ sin θ (cos θ dr − r sin θ dθ) + r2 sin2 θ (sin θ dr + r cos θ dθ) = r2 sin θ dr

and

X = r cos θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
− r sin θ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
= r cos 2θ

∂

∂r
− sin 2θ

∂

∂θ
.

Thus we have in polar coordinates that

ω(X) = r2 sin θ dr

(
r cos 2θ

∂

∂r
− sin 2θ

∂

∂θ

)
= r3 sin θ cos 2θ.

This agrees with our previous computation ω(X) = x2y − y3 = y(x2 − y2) =
r3 sin θ cos 2θ, as expected. ,

Just as we did in Propositions 14.1.2–14.1.3, we can characterize smoothness
of 1-forms in terms of smoothness of their components in a chart or in terms of
whether they give a smooth function when applied to a smooth vector field. These
characterizations are both more elegant and easier to use.

Proposition 15.2.4. Let M be an n-dimensional manifold with cotangent bundle
T ∗M . Suppose ω : M → T ∗M is a (not necessarily smooth) function such that
ωp ∈ T ∗pM for every p ∈M . Then ω is a smooth 1-form if and only if around every
point of M there is a coordinate chart (φ,U) such that

ωp =

n∑
k=1

αk(p) dxk|p

with the functions αk : U → R all smooth.
Furthermore, ω is a smooth 1-form if and only if for every smooth vector field

X on M , the function ω(X) defined by p 7→ ωp(Xp) is smooth.

Proof. The first part follows exactly as in the proof of Proposition 14.1.2: to check
smoothness, we take a chart (φ,U) on M and the corresponding chart (Φ̃, T ∗U) on
T ∗M , where

Φ̃◦ω◦φ−1(x1, . . . , xn) =
(
x1, . . . , xn, α1◦φ−1(x1, . . . , xn), . . . , αn◦φ−1(x1, . . . , xn)

)
.

We must therefore have αk ◦ φ−1 : Rn → R smooth, which means αk : U → R is
smooth.

To prove the second part, note that if ω and X are smooth then the coefficients
αk of ω and the coefficients ak of X are smooth, and in a coordinate neighborhood
we have

(15.2.2) ω(X)(p) = ωp(Xp) =

n∑
k=1

αk(p)ak(p),

which is a sum of products of smooth functions and hence smooth on U . Since ω(X)
is smooth on each coordinate chart, it is smooth on M . Conversely suppose ω(X)
is smooth for every smooth X. Then in a neighborhood of any point p contained
in a chart (φ,U), there is a smooth vector field Xj such that (Xj)q = ∂

∂xj

∣∣
q

for all

q in some neighborhood V of p. Then on V we have ω(Xj)(q) = αj(q), so that αj
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is smooth on V . Since we can do this around every point of U , it follows that αj is
smooth on U , and since this is true for every j and every chart, we conclude that
ω is smooth by the first part of the proposition. �

The proof shows us that every smooth 1-form ω generates a linear operator from
the space of vector fields to the space of functions by X 7→ ω(X). This action is
often known as “contraction” because in coordinates it is given by (15.2.2), which
eliminates the components as a dot product. We can characterize such operators
completely using tensoriality. First we need a Lemma which gives us a Taylor
expansion locally; we already used this to prove Proposition 14.1.4.

Lemma 15.2.5. Let p ∈ M , and let X be a smooth vector field defined in a
coordinate neighborhood (φ,U) of M such that Xp = 0 and φ(p) = 0. Then there
are smooth vector fields Yk defined on U such that

(15.2.3) Xq =

n∑
k=1

φk(q)(Yk)q for all q ∈ U .

Proof. Just write Xq =
∑n
j=1 v

j(q) ∂
∂xj , and expand each aj by the formula (14.1.2)

to get

vj(q) =

n∑
k=1

φk(q)gjk(q),

since vj(p) = 0. Then define Yj =
∑n
j=1 g

j
k

∂
∂xj . �

Theorem 15.2.6. If ω is a 1-form then the linear operator Lω : χ(M) → F(M)
given by Lω(X) = ω(X) is tensorial, i.e., it satisfies

(15.2.4) Lω(fX) = fω(X)

for every f ∈ F(M). Conversely every linear operator L : χ(M)→ F(M) which is
tensorial is Lω for some smooth 1-form.

Proof. Tensoriality of ω is immediate from the definition: we have

ω(fX)(p) = ωp(f(p)Xp) = f(p)ωp(Xp)

since ω is just acting in each tangent space.
To prove the converse, we first want to show the essential property that if X is a

smooth vector field such that for some p ∈M we have Xp = 0, then ω(X)(p) = 0.
(In fact this can be used as the definition of tensoriality.) First note that given
X defined on M , we can multiply by a bump function ζ and obtain L(ζX)(p) =
ζ(p)L(X)(p) = L(x)(p), so that we can assume X is supported in a coordinate
neighborhood (φ,U) of p in order to compute L(X)(p). Without loss of generality
we can assume that φ(p) = 0. Then we can use Lemma 15.2.5 to write X =∑
k ϕ

kYk in this coordinate neighborhood, and obtain

L(X)(p) =
∑
k

L(ϕkYk)(p) =
∑
k

ϕk(p)L(Yk)(p) = 0

since each ϕk(p) = 0.
The implication is that if X and Y are two vector fields such that at some point

p we have Xp = Yp, then we must also have L(X)(p) = L(Y )(p). So the value
of L(X) at p depends only on Xp. Now for each p define ωp : TpM → R by the
formula ωp(v) = L(X)(p) where X is any vector field on M such that Xp = v; as
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we have just checked, this does not depend on choice of X. We can also check that
ωp is linear on vectors since L is linear on vector fields, and thus ωp ∈ T ∗pM .

We thus obtain a function ω : M → T ∗M such that ωp ∈ T ∗pM for each p. Now
for every smooth vector field X, we have ω(X) = L(X) for every vector field X by
construction of ω, and since L(X) is a smooth function for every X, we conclude
by Proposition 15.2.4 that ω is a smooth 1-form. �

The simplest type of 1-form is our original motivating example: the derivative
of a function. The following proposition just rephrases what we already know.

Proposition 15.2.7. Suppose f : M → R is a smooth function. Let df : M → T ∗M
denote the map p 7→ df |p where each df |p is as defined in Definition 15.1.1. Then
df is a smooth 1-form.

Proof. We know that df |p ∈ T ∗pM for each p, so all we need to know by Proposition
15.2.4 is that df(X) is a smooth function whenever X is a smooth vector field. But
since df(X) = X(f), we know this is true by Proposition 14.1.3: every smooth
vector field differentiates smooth functions to give another smooth function. �

After all that, let’s work out some 1-forms explicitly.

Example 15.2.8. First let’s compute df for an explicit function f . Again we will
work on M = C; consider the coordinate-free function f(z) = Re(z3). In Cartesian
coordinates x = (x, y), we have f ◦ x−1(x, y) = Re(x + iy)3 = x3 − 3xy2. By
Proposition 15.1.3, we have

df =
∂f

∂x
dx+

∂f

∂y
dy = (3x2 − 3y2) dx− 6xy dy.

On the other hand, if we work in polar coordinates u = (r, θ), then f ◦u−1(r, θ) =
Re(reiθ)3 = r3 cos 3θ, so that

df =
∂f

∂r
dr +

∂f

∂y
dθ = 3r2 cos 3θ dr − 3r3 sin 3θ dθ.

This must be the same as df in Cartesian coordinates; in fact the transition formula
is (15.1.3), which gives

df = (3x2 − 3y2) dx− 6xy dy

= (3x2 − 3y2)

(
∂x

∂r
dr +

∂x

∂θ
dθ

)
− 6xy

(
∂y

∂r
dr +

∂y

∂θ
dθ

)
= 3r2(cos2 θ − sin2 θ)(cos θ dr − r sin θ dθ)− 6r2 cos θ sin θ(sin θ dr + r cos θ dθ)

=
[
3r2 cos 2θ cos θ − 3r2 sin 2θ sin θ

]
dr +

[
− 3r3 cos 2θ sin θ − 3r3 sin 2θ cos θ

]
dθ

= 3r2 cos 3θ dr − 3r3 sin 3θ dθ,

as expected. ,

Of course, not every 1-form is df for some function f , just as not every vector
field is the gradient of a function.

Example 15.2.9. Consider the 1-form ω on R2 written in rectangular coordinates
as

(15.2.5) ω = h(x, y) dx+ j(x, y) dy



192 STEPHEN C. PRESTON

for some functions h and j. If ω = df for some function f , then since df =
∂f

∂x
dx+

∂f

∂y
dy, we must have

h(x, y) =
∂f

∂x
(x, y) and j(x, y) =

∂f

∂y
(x, y).

Since mixed partials commute by Theorem 5.1.9, we have

(15.2.6)
∂h

∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y) =

∂j

∂x
(x, y).

Obviously this is not true for an arbitrary ω.
For example, if ω1 = 2xy dx+x2 dy then ω1 satisfies condition (15.2.6), and in fact

we have ω1 = df1 where f1(x, y) = x2y. On the other hand if ω2 = −x2 dx+2xy dy,
then we have hy(x, y) = 0 and jx(x, y) = 2y, so ω2 cannot be df2 for any function
f2 : R2 → R. ,

In fact we can prove that on R2, any 1-form satisfying (15.2.6) must be the
differential of a function on R2, as follows. This is a special case of the Poincaré
Lemma.

Proposition 15.2.10. Suppose ω is a 1-form on R2 with ω(x,y) = h(x, y) dx +

j(x, y) dy such that
∂h

∂y
(x, y) =

∂j

∂x
(x, y) everywhere on R2. Then there is a smooth

function f : R2 → R such that ω = df ; in other words we have h =
∂f

∂x
and j =

∂f

∂y
everywhere on R2.

Proof. We are expecting h = fx, so just define the function to be the integral of
h. That is, set f̃(x, y) =

∫ x
0
h(u, y) du and see what happens. Obviously we have

f̃x = h, and by Theorem 5.3.4, we have

∂f̃

∂y
(x, y) =

∫ x

0

∂h

∂y
(u, y) du =

∫ x

0

∂j

∂u
(u, y) du = j(x, y)− j(0, y).

This isn’t quite what we want, so we correct by this function of y: set

f(x, y) = f̃(x, y) +

∫ y

0

j(0, v) dv

to obtain

∂f

∂x
=
∂f̃

∂x
= h(x, y) and

∂f

∂y
=
∂f̃

∂y
+ j(0, y) = j(x, y),

as desired. �

Remark 15.2.11. You may actually recognize this as a technique from a Differential
Equations class: given a differential equation on R2 of the form

dx

dt
= −N(x, y)

dy

dt
= M(x, y),

we can “cross-multiply” and write ω = M(x, y) dx+N(x, y) dy, where the integral
curves γ(t) all satisfy ω(γ′(t)) = 0.

If the components satisfy ∂M
∂y = ∂N

∂x everywhere, then the differential equation

is called “exact,” and by the Poincaré Lemma Proposition 15.2.10, we have ω = df
for some function f(x, y). Since ω(γ′(t)) = 0 for all t on an integral curve γ, we
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have df(γ′(t)) = 0 which means d
dtf(γ(t)) = 0. Hence f is constant on integral

curves, so that if γ(t) = (x(t), y(t)) then f(x(t), y(t)) = C for some constant C
(determined by the initial conditions).

We then try to solve f(x, y) = C for y in terms of x (which can typically be
done, by the Implicit Function Theorem 5.2.2) as y = g(x), and then the differential
equation becomes dx

dt = −N(x, g(x)). From here we can separate to get

dx

N(x, g(x))
= −dt,

integrate both sides, and obtain t as a function of x, which can hopefully be inverted
to get x(t) explicitly, from which we get y(t) = g(x(t)) and an explicit formula for
the integral curve γ(t).

This is one of the most common ways to solve an autonomous system of two
differential equations explicitly.

15.3. Tensoriality and tensor fields. Recall that we classified 1-forms in Theo-
rem 15.2.6 as tensorial linear operators from the space χ(M) to the space F(M).
The notion of tensoriality enables us to easily generalize 1-forms to multilinear op-
erators on vector fields, and using duality, to operators on 1-forms. This essentially
enables us to automatically deal with sections of tensor bundles without defining
them directly.

Definition 15.3.1. A tensor field T on M of order (r, s) is a linear operator

T : χ(M)⊕ · · · ⊕ χ(M)⊕ Ω1(M)⊕ · · · ⊕ Ω1(M)→ F(M),

where there are r factors of vector fields and s factors of 1-forms, such that T is
tensorial (linear over C∞ functions) in each term.

A 1-form is a tensor field of order (1, 0), while a vector field is a tensor field
of order (0, 1) (since we can think of vector fields as operating on 1-forms just by
switching perspective).

Example 15.3.2. Here are some common examples of tensor fields.

• An inner product is a (2, 0) tensor field g which is symmetric: that is,
g(X,Y ) = g(Y,X) for all vector fields X and Y . If g(Xp, Xp) > 0 for every
vector field X and every point p, then g is called a Riemannian metric. If
g(Xp, Yp) = 0 for every Yp implies Xp = 0, then g is called a nondegenerate
metric.
• A 2-form is a (2, 0) tensor field ω which is antisymmetric: ω(X,Y ) =
−ω(Y,X) for all vector fields X and Y . This is the same as saying that ωp
is a 2-form on TpM for every p ∈M , as in Definition 4.3.1. If ω(Xp, Yp) = 0
for every Yp implies Xp = 0, then ω is called a symplectic form.
• More generally we can do this for any k-form by imposing antisymmetry.

In particular an n-form is an (n, 0) tensor field which is completely anti-
symmetric.
• A tensor field L of order (1, 1) can be identified with a smoothly varying

family of linear operators from each TpM to itself: if we know what L(v, α)
is for each v ∈ TpM and α ∈ T ∗pM , then we can identify the operator
α 7→ L(v, α) with an element of (T ∗pM)∗, which by Proposition 4.1.9 is
naturally isomorphic to TpM . So we have a map from each TpM to TpM .
The smoothness condition says that whenever X and ω are smooth, so is
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L(X,ω). Given a vector field X we can define a vector field Y by L(X,ω) =

ω(Y ), and thus we can identify L with an operator L̃ for which Y = L̃(X).
• As an example the evaluation tensor E defined by E(X,ω) = ω(X) is

tensorial as is easily checked, and is thus a smooth tensor field of order
(1, 1), which is identified with the identity operator Ẽ from χ(M) to χ(M).
• Similarly using the identification Proposition 4.1.9 between (T ∗pM)∗ and
TpM , any tensor field of order (k, 1) can be viewed as a linear operator from
k smooth vector fields to a single smooth vector field; thus our definition
of tensor fields is more general than it may seem at first.

,

Given any type of tensor field with any given antisymmetry or antisymmetry,
we can construct a corresponding bundle. The point is that the bundle is built
exactly as we built the bundles TM and T ∗M : we use coordinate charts on M to
get coordinate basis elements of our tensor spaces exactly as in Section 4.2, and
we obtain local trivializations just by retaining the base point in the manifold but
writing the tensor at that base point in components. For example, in a coordinate
chart on M every symmetric (2, 0) tensor can be written

gp =

n∑
i=1

gii dx
i|p ⊗ dxi|p +

∑
1≤i<j≤n

gij (dxi|p ⊗ dxj |p + dxj |p ⊗ dxi|p),

and the numbers gij for 1 ≤ i ≤ j ≤ n form a coordinate chart of the bundle
Sym(TM) of symmetric (2, 0) tensors on M . Transition maps can be computed by
writing dxi ⊗ dxj in terms of dyk ⊗ dy` to prove smoothness, and we thus obtain a
smooth bundle structure. Similarly we can construct the bundle of 2-forms over M
using the basis elements dxi|p ∧ dxj |p for i < j, or the bundle of (1, 1) tensors over

M using the basis dxi|p⊗ ∂
∂xj

∣∣
p

for 1 ≤ i, j ≤ n. Sections of these bundles will then

be tensor fields as we have been describing in terms of tensorial linear operators,
so at this stage we don’t really get any new information by discussing the bundles
directly.

You may have noticed that we’ve been switching back and forth between coordi-
nate descriptions of objects and invariant descriptions. For the most part, one can
get by just using invariant descriptions: for example, we’ve defined functions and
vectors without using coordinates, and most other objects are defined in terms of
those coordinate-independent objects. However, we always need to be able to com-
pute things in coordinates, and that’s why the transition formulas are important.
But they’re important for another reason: we’d like to actually define new objects,
and sometimes the coordinate definition is more convenient. Once we know that
a formula is independent of coordinates, we can expect that there is an invariant
definition. But first we need to know what we’re looking for.

A prime example of this is our next definition. So far we’ve seen that we can
generalize the gradient of a function f by thinking of the 1-form df . (We will make
the analogy between grad f and df explicit in Chapter 19, when we discuss inner
products.) We’re now interested in taking the derivative of a vector field. In vector
calculus in R3, we have two possibilities: the curl or the divergence. Since we have
already seen that the derivative of a function is most naturally thought of as a 1-
form (not a vector field), it’s natural to expect to take derivatives of 1-forms rather
than vector fields.



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 195

Thinking about what such a derivative should look like, we observe that when
we want to take a derivative of a function, we need to specify a direction (and thus
a vector) in which to take the derivative. So when we want to take a derivative of
a 1-form, it makes sense we’ll have to specify a direction in which to do it: thus the
derivative of a 1-form should be a linear map from vectors to 1-forms, or in other
words, a map from a pair of vectors to real numbers. So we should get a tensor of
type (2, 0). What does such a thing look like?

Example 15.3.3. A tensor of type (2, 0) is determined by its operation on two
vector fields; since it must be linear over functions, it is determined by its operation
on basis vectors. Specifically, take a coordinate system (x, U) and write vector fields
X and Y as X =

∑n
j=1X

j ∂
∂xj and Y =

∑n
k=1 Y

k ∂
∂xk

. Then if α is a tensor field

of type (2, 0), we have

α(X,Y )(p) = α

 n∑
j=1

Xj(p)
∂

∂xj

∣∣∣
p
,

n∑
k=1

Y k(p)
∂

∂xk

∣∣∣
p


=

n∑
j=1

n∑
k=1

Xj(p)Y k(p)α

(
∂

∂xj

∣∣∣
p
,
∂

∂xk

∣∣∣
p

)
,

and if we define

αjk(p) = α

(
∂

∂xj

∣∣∣
p
,
∂

∂xk

∣∣∣
p

)
,

we can write

α =

n∑
j=1

n∑
k=1

αjk(p) dxj |p ⊗ dxk|p,

where the direct product of 1-forms is defined as

dxj |p ⊗ dxk|p(Xp, Yp) = dxj |p(Xp) · dxk|p(Yp).
This direct product provides a basis for the tensors at each point just as in Chapter
4, and this works in any coordinate chart.

Now suppose we have a different coordinate chart (y, V ) overlapping U . Then

we can write X =
∑n
j=1 X̃

j ∂
∂yj and Y =

∑n
k=1 Ỹ

k ∂
∂xk

, where the basis vectors

transform according to (10.4.6), and we must have

α(X,Y ) =

n∑
j,k=1

X̃j Ỹ k α
(
∂
∂yj ,

∂
∂yk

)
=

n∑
j,k=1

α̃jkX̃
j Ỹ k.

We thus end up with
(15.3.1)

α̃jk = α

(
∂

∂yj
,
∂

∂yk

)
=

n∑
i=1

n∑
`=1

∂xi

∂yj
∂x`

∂yk
α

(
∂

∂xi
,
∂

∂x`

)
=

n∑
i,`=1

∂xi

∂yj
∂x`

∂yk
αi`.

,

Suppose instead of starting with a tensor field of order (2, 0), we started with
the coefficients αjk in coordinate charts (x, U), such that whenever two charts
overlapped, the coefficients in the charts were related by (15.3.1). We could then
build the tensor field by setting αI = ξIα(X,Y ) on each coordinate chart (xI , UI),
where {ξI} is a partition of unity with supp ξI ⊂ UI . It makes sense to compute
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α(X,Y ) in each coordinate chart since we have the coefficients αjk, and since we
are multiplying by ξI , we only ever need to compute in the chart UI . Then we
could define α by α =

∑
I αI , obtaining a globally-defined smooth operator from

χ(M)⊗ χ(M)→ F(M). Of course, if we could do this, then there would probably
be an invariant way to define the tensor field as a tensorial operator, although it
may be less obvious.

15.4. The differential of a 1-form (in coordinates). Now let’s return to our
motivating problem: differentiating a tensor field of type (1, 0) to obtain a tensor
field of type (2, 0). What we have in mind, for a 1-form ω =

∑n
j=1 ωj(x) dxj , is

something like a (2, 0) tensor

Dω =

n∑
i=1

n∑
j=1

∂ωj
∂xi

dxi ⊗ dxj .

The question is whether this is coordinate-independent or not. (Notice that, unlike
every other object we have defined so far, we are trying to define the operation by
its coordinate components. The reason is that the invariant definition is far less
obvious. Because we want to start in coordinates, we need to check explicitly that
the object so obtained does not depend on coordinates. If so, then it represents
something genuine.) Unfortunately this definition of Dω doesn’t quite work. This
will be our first negative result, but hey, if every result were positive, anyone could
do mathematics. Fortunately, the proof will suggest the right definition.

Proposition 15.4.1. Suppose Dω is defined for 1-forms ω in terms of coordinates
by

Dω =

n∑
i=1

n∑
j=1

∂ωj
∂xi

dxi ⊗ dxj .

Then Dω cannot be a tensor of type (2, 0); in other words, it is not true that
given two coordinate charts (x, U) and (y, V ) for which ω =

∑n
j=1 ωj(x) dxj =∑n

l=1 ω̃`(y) dy`, we have

n∑
i=1

n∑
j=1

∂ωj
∂xi

dxi ⊗ dxj =

n∑
k=1

n∑
`=1

∂ω̃`
∂yk

dyk ⊗ dy`.
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Proof. We first use the transition formula (15.1.3) to get ωj(x) =
∑n
`=1 ω̃`◦(y) ∂y

l

∂xj .
Then we simply plug in and compute.

Dω =

n∑
i=1

n∑
j=1

∂

∂xi
(ωj(x)) dxi ⊗ dxj

=

n∑
i=1

n∑
j=1

n∑
`=1

∂

∂xi

(
ω̃` ◦ (y)

∂y`

∂xj

)
dxi ⊗ dxj

=

n∑
i=1

n∑
j=1

n∑
`=1

(
∂y`

∂xj
∂

∂xi
(
ω̃`(y)

)
+ ω̃`(y)

∂2y`

∂xi∂xj

)
dxi ⊗ dxj

=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

∂y`

∂xj
∂yk

∂xi
∂ω̃`
∂yk

dxi ⊗ dxj +

n∑
i=1

n∑
j=1

n∑
`=1

ω̃`(y)
∂2y`

∂xi∂xj
dxi ⊗ dxj

=

n∑
k=1

n∑
`=1

∂ω̃`
∂yk

dyk ⊗ dy` +

n∑
i=1

n∑
j=1

n∑
l=1

ω̃`(y)
∂2y`

∂xi∂xj
dxi ⊗ dxj ,

so that we finally obtain the transition formula

(15.4.1) Dω = D̃ω̃ +

n∑
i=1

n∑
j=1

n∑
`=1

ω̃`(y)
∂2y`

∂xi∂xj
dxi ⊗ dxj .

The first term in (15.4.1) is what we’d want, but the second term is generally
not zero. Thus Dω is coordinate-dependent. �

You should notice that we do almost get something invariant from this. The
error term is a matrix like

Rij =

n∑
`=1

ω̃`(y)
∂2y`

∂xi∂xj
,

and what’s interesting is that this is a symmetric matrix. If we switch i and j, the
only effect is to switch the order of a partial differentiation of a smooth function,
and by Theorem 5.1.9 on mixed partials, this does not change the quantity.

We will find this happening fairly often: if we try to make a tensor out of some-
thing that is not a tensor, we end up with second partial derivatives, and these are
always symmetric. Thus our error terms generally end up being symmetric. If we
therefore take the antisymmetric part of such quantities, the error term disappears.
It is for this reason that almost every tensor in differential geometry is defined in
terms of antisymmetric operators. Let’s see how this works.

Definition 15.4.2. If ω is a 1-form on M ∼= Rn, then we define an object dω by
the formula

dω =

n∑
i=1

n∑
j=1

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ⊗ dxj

=

n∑
i=1

n∑
j=1

∂ωj
∂xi

(dxi ⊗ dxj − dxj ⊗ dxi)

=

n∑
i=1

∂ωj
∂xi

dxi ∧ dxj .

(15.4.2)
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(Recall the definition of wedge product on forms from Definition 4.3.3.) The two
formulas are equivalent since the second is obtained from the first by interchanging
dummy indices in the second summand.

More generally if M is a smooth n-manifold, then we define dω in each coordinate
chart and use a partition of unity on M to assemble dω globally, as discussed after
Example 15.3.3.

Now we need to check that this actually is a tensor of type (2, 0), i.e., that it
does not depend on the choice of coordinates.

Proposition 15.4.3. If ω is a 1-form and dω is defined in any coordinate system
as in (15.4.2), then dω is independent of coordinates: if (x, U) and (y, V ) are two
coordinate charts with ω =

∑n
j=1 ωj dx

j =
∑n
`=1 ω̃` dy

`, then we have

n∑
i=1

n∑
j=1

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ⊗ dxj =

n∑
k=1

n∑
`=1

(
∂ω̃`
∂yk
− ∂ω̃k
∂y`

)
dyk ⊗ dy`.

Proof. The proof is exactly the same as that of Proposition 15.4.1, except the
antisymmetry cancels out the error term this time. �

Let’s work out something explicit.

Example 15.4.4. ConsiderM ∼= R3, with a 1-form ω = u(x, y, z) dx+v(x, y, z) dy+
w(x, y, z) dz. Then

dω =

3∑
i=1

3∑
j=1

∂ωj
∂xi

dxi ∧ dxj

=
∂u

∂x
dx ∧ dx+

∂u

∂y
dy ∧ dx+

∂u

∂z
dz ∧ dx+

∂v

∂x
dx ∧ dy +

∂v

∂y
dy ∧ dy

+
∂v

∂z
dz ∧ dy +

∂w

∂x
dx ∧ dz +

∂w

∂y
dy ∧ dz +

∂w

∂z
dz ∧ dz,

which simplifies using antisymmetry to

(15.4.3) dω =

(
∂w

∂y
− ∂v

∂z

)
dy∧dz+

(
∂u

∂z
− ∂w

∂x

)
dz∧dx+

(
∂v

∂x
− ∂u

∂y

)
dx∧dy.

Note the similarity to the formula for the curl of a vector field. We will make this
more explicit in Chapter 19.

Also observe that if M ∼= R2, with a 1-form ω = u(x, y) dx+ v(x, y) dy, then

dω =

2∑
i=1

2∑
j=1

∂ωj
∂xi

dxi ∧ dxj =

(
∂v

∂x
− ∂u

∂y

)
dx ∧ dy.

Again this is similar to the curl of a two-dimensional vector field (which can be
thought of as a function).

,

The fact that the derivative of a tensor field of order (1, 0) ends up being an anti-
symmetric tensor field of order (2, 0) motivates us to consider antisymmetric tensor
fields of any order and their derivatives, which we will do in the next Chapter. We
will also obtain an invariant definition of the d operator without using coordinates.
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16. The d operator

“This is where the fun begins.”

16.1. The differential of a 1-form (invariant). We saw in the last section that
if α =

∑n
i=1 αi dx

i is a 1-form, we can define a 2-form dα by the coordinate formula

dα =

n∑
i,j=1

∂αj
∂xi

dxi ∧ dxj .

It happens that, by Proposition 15.4.3, this formula gives the same 2-form regardless
of choice of coordinates. Our goal now is to find some genuinely invariant definition
of dα, without using coordinates.

Our first clue is obtained by computing

dα

(
∂

∂xk
,
∂

∂x`

)
=

n∑
i=1

n∑
j=1

∂αj
∂xi

(dxi ∧ dxj)
(

∂

∂xk
,
∂

∂x`

)

=

n∑
i=1

n∑
j=1

∂αj
∂xi

(δikδ
j
` − δ

i
`δ
j
k)

=
∂α`
∂xk
− ∂αk
∂x`

.

Now this formula tells us32

(16.1.1) dα(X,Y ) = X
(
α(Y )

)
− Y

(
α(X)

)
if X =

∂

∂xk
and Y =

∂

∂x`
,

since α
(
∂
∂xk

)
= αk. We might be tempted to use formula (16.1.1) to define dα in

an invariant way, but this formula can’t possibly be right. The left side should be
tensorial in both X and Y separately (i.e., we can pull out C∞ functions), while
the right-hand side is not:

dα(fX, Y ) = fX
(
α(Y )

)
− Y

(
α(fX)

)
= fX

(
α(Y )

)
− Y

(
fα(X)

)
= fX

(
α(Y )

)
− α(X)Y (f)− fY

(
α(X)

)
= fdα(X,Y )− Y (f)α(X)

6= fdα(X,Y ), which can’t be correct.

As a result, equation (16.1.1) is wrong in general. There is a missing term which
happens to be zero when X and Y are both coordinate fields.

The clue is that we already know that if X and Y are vector fields on M , then so
is the Lie bracket [X,Y ], by Proposition 14.2.1. However if X and Y are coordinate
basis vector fields, with X = ∂

∂xk
and Y = ∂

∂x`
, then for any function f we have

[X,Y ](f) =
∂

∂xk
∂f

∂x`
− ∂

∂x`
∂f

∂xk
= 0

32In this formula and in the future, we will always use X(f) to denote df(X), i.e., this never
means multiplication of the function f by the vector field X, but rather means the new function

obtained by applying X to f as a differential operator.
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since mixed partials commute by Theorem 5.1.9. This suggests that the missing
term involves a Lie bracket of vector fields. Now at last we can define the coordinate-
free version of dω for a 1-form ω.

Definition 16.1.1. If ω is a 1-form on an n-manifold M , then we define the 2-form
dω on M by the formula33

(16.1.2) dω(X,Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X,Y ]),

for any two vector fields X and Y on M .

We need to check that this does actually define a 2-form, i.e., that it’s antisym-
metric and tensorial.

Proposition 16.1.2. The 2-form dω defined by (16.1.2) is an antisymmetric tensor
of type (2, 0), i.e., we have

dω(X,Y ) = −dω(Y,X)

dω(fX, Y ) = fdω(X,Y ),

dω(X, fY ) = fdω(X,Y )

for any vector fields X and Y , and any smooth function f .

Proof. Antisymmetry is obvious, since [X,Y ] = −[Y,X].
For tensoriality, we need to simplify dω(fX, Y ) for any function f . First, for any

function h, we have by Definition 14.2.1 of the Lie bracket that

[fX, Y ](h) = fX
(
Y (h)

)
− Y

(
fX(h)

)
= fX

(
Y (h)

)
− Y (f)X(h)− fY

(
fX(h)

)
= f [X,Y ](h)− Y (f)X(h),

so that

(16.1.3) [fX, Y ] = f [X,Y ]− Y (f)X.

As a result, then, we get

dω(fX, Y ) = fX
(
ω(Y )

)
− Y

(
ω(fX)

)
− ω([fX, Y ])

= fX
(
ω(Y )

)
− Y

(
fω(X)

)
− ω

(
f [X,Y ]− Y (f)X

)
= fX

(
ω(Y )

)
− Y (f)ω(X)− fY

(
ω(X)

)
− fω([X,Y ]) + Y (f)ω(X)

= fX
(
ω(Y )

)
− fY

(
ω(X)

)
− fω([X,Y ])

= fdω(X,Y ).

For the last equation, we have dω(X, fY ) = −dω(fY,X) = −fdω(Y,X) =
fdω(X,Y ). �

Observe what happened in the proof above: the incorrect formula (16.1.1) is not
tensorial in X, and the Lie bracket is also not tensorial in X by formula (16.1.3).
However, when we combine them in the right way as in (16.1.2), we get something
that is tensorial in X. This happens quite often, usually in the same way. We need
antisymmetric combinations of differential operators (because of difficulties like in
Proposition 15.4.1), and then we need antisymmetric derivatives (Lie brackets) to
cancel out terms, so that we end up with something tensorial.

33Again note that we are using X to differentiate the function ω(Y ) and using Y to differentiate
the function ω(X).
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Example 16.1.3. Suppose ω = h(x, y) dx+ j(x, y) dy on R2. Then dω is a 2-form
on R2, which means it is completely determined by what it does to any basis of
vector fields.

So let X = ∂
∂x and Y = ∂

∂y . Then [X,Y ] = 0 since mixed partials commute, and

furthermore we have

dω(X,Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X,Y ])

= X
(
j(x, y)

)
− Y

(
h(x, y)

)
=
∂j

∂x
(x, y)− ∂h

∂y
(x, y).

By tensoriality, this completely determines dω, and we have

dωp =

(
∂j

∂x
(x, y)− ∂h

∂y
(x, y)

)
(dx|p ∧ dy|p)

where (x, y) are the coordinates of p.
Note that dω = 0 implies that ω = df for some function f by Proposition 15.2.10,

and conversely that if ω = df then dω = 0. ,

16.2. The differential of a k-form. It’s pretty easy to generalize the d opera-
tor, which we’ve now defined for 0-forms (functions) by Proposition 15.2.7 and for
1-forms by Definition 16.1.1, to any k-form. We just have to differentiate antisym-
metrically, then subtract off Lie brackets to get tensoriality.

Example 16.2.1. Suppose ω is a 2-form. Then dω is a 3-form, and the first term
in dω(X,Y, Z) should be X

(
ω(Y, Z)

)
. Once we know this, all the rest of the terms

are determined. For example, this expression is already antisymmetric in Y and Z
(since ω is), but to get antisymmetry between X and Y , and between X and Z, we
need to have the cyclically permuted terms

(16.2.1) X
(
ω(Y,Z)

)
+ Y

(
ω(Z,X)

)
+ Z

(
ω(X,Y )

)
.

Actually if you want, you can interpret this as the antisymmetrization of the (3, 0)
tensor D⊗ω as in Proposition 4.3.5, where we write D⊗ω(X,Y, Z) = X

(
ω(Y, Z)

)
.

This makes it look somewhat more like the curl operation in vector calculus, where
we define the cross product U×V and then use the same formula ∇×V to define
the curl as though the differential operator ∇ were another vector field. The terms
(16.2.1) are then exactly what you’d get when you take the alternation of the tensor
product of a 1-form with a 2-form, as we did just before Example 4.3.4. I’m not
sure it’s worth taking this too seriously, but it might help with intuition.

Of course although (16.2.1) is antisymmetric, it is not tensorial. This didn’t
matter when we were working with forms in a single tangent space as in Chapter
4, but now it has to be imposed. If we define Dω(X,Y, Z) to be (16.2.1), then we
have

Dω(fX, Y, Z)− fDω(X,Y, Z) = Y (f)ω(Z,X) + Z(f)ω(X,Y ).

To obtain tensoriality, we recall the formula (16.1.3), which shows that if

(16.2.2) dω(X,Y, Z) = X
(
ω(Y,Z)

)
+ Y

(
ω(Z,X)

)
+ Z

(
ω(X,Y )

)
− ω([X,Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ),
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then

dω(fX, Y, Z)− fdω(X,Y, Z) = Y (f)ω(Z,X) + Z(f)ω(X,Y )

+ Y (f)ω(X,Z)− Z(f)ω(X,Y ) = 0,

as desired. And by antisymmetry, since dω is tensorial in the first component, it is
also tensorial in the second and third components. ,

Let’s now do the general case.

Definition 16.2.2. Suppose M is an n-dimensional manifold and ω is a k-form
on M (with k ≤ n). Then we define the (k + 1)-form dω to be the tensor of type
(k + 1, 0) satisfying, for any k + 1 vector fields X1, X2, · · · , Xk+1, the formula

(16.2.3) dω(X1, · · · , Xk+1) =

k+1∑
j=1

(−1)j+1Xj

(
ω(X1, · · · , Xj−1, Xj+1, · · · , Xk+1)

)
+

∑
1≤i<j≤k+1

(−1)i+jω
(
[Xi, Xj ], X1, · · · , Xi−1, Xi+1, · · · , Xj−1, Xj+1, · · · , Xk+1

)
.

This somewhat strange formula is the way it is in order to actually get a (k+ 1)-
form: the powers of (−1) ensure antisymmetry, while the second summand’s Lie
brackets ensure that dω is a tensor. Let’s verify these things.

Proposition 16.2.3. If ω is a k-form, then dω is a (k+ 1)-form. Specifically, for
any k + 1 vector fields X1 through Xk+1, we have

dω(X1, · · · , Xp, · · · , Xq, · · · , Xk+1) = −dω(X1, · · · , Xq, · · · , Xp, · · · , Xk+1)

for every pair of indices p and q; furthermore, for any function f , we have

dω(X1, · · · , fXp, · · · , Xk+1) = fdω(X1, · · · , Xp, · · · , Xk+1)

for any index p.

Proof. This is one of those things where the basic ideas are pretty clear, but the
details are a nightmare. Thus most authors write, “The proof is left to the reader.”
But you have to do something like this at least once, so we might as well do it here.

First let us verify antisymmetry. To make this a little easier and avoid getting lost
in the indices, let’s assume the two vector fields being interchanged are adjacent.
This is no restriction, since any transposition permutation can be decomposed
into transpositions of adjacent elements.34 Furthermore, every transposition is
composed of an odd number of adjacent transpositions. (Hence if one adjacent
transposition reverses the sign, then so will every transposition.) So let us then
prove that

dω(X1, · · · , Xp, Xp+1, · · · , Xk+1) = −dω(X1, · · · , Xp+1, Xp, · · · , Xk+1).

A nice trick for doing this is to show that dω(X1, · · · , Xp, Xp, · · · , Xk+1) = 0
for any k vector fields; then we automatically have antisymmetry since if we knew

34For example, the transposition (123) 7→ (321) is composed of the elements (123) 7→ (213) 7→
(231) 7→ (321). The general result is one of the first theorems of discrete group theory.
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this, we would also know that

0 = dω(· · · , Xp +Xq, Xp +Xq, · · · )
= dω(· · · , Xp, Xp, · · · ) + dω(· · · , Xp, Xq, · · · )

+ dω(· · · , Xq, Xp, · · · ) + dω(· · · , Xq, Xq, · · · )
= dω(· · · , Xp, Xq, · · · ) + dω(· · · , Xq, Xp, · · · ).

Thus we write

(16.2.4) dω(X1, · · · , Xk+1) =
∑

1≤j≤k+1

Aj +
∑

1≤i<j≤k+1

Bij

where

Aj = (−1)j+1Xj

(
ω(X1, · · · , Xj−1, Xj+1, · · · , Xk+1)

)(16.2.5)

Bij = (−1)i+jω
(
[Xi, Xj ], X1, · · · , Xi−1, Xi+1, · · · , Xj−1, Xj+1, · · · , Xk+1

)
,

(16.2.6)

and analyze each of the terms Aj and Bij supposing that Xp = Xp+1. There
are several possibilities. For Aj , all terms except for when j = p and j = p + 1
must automatically vanish by antisymmetry of ω, since Xp = Xp+1 appears in two
different arguments. Thus in the first sum of (16.2.4) we are left with only∑k+1

j=1 Aj = Ap +Ap+1

= (−1)p+1Xp

(
ω(· · · , Xp−1, Xp+1, Xp+2, · · · )

)
+ (−1)p+2Xp+1

(
ω(· · · , Xp−1, Xp, Xp+2, · · · )

)
= 0

since Xp = Xp+1 and the signs (−1)p+1 and (−1)p+2 are always opposite.
Now we have to do the same thing with the second sum

∑
i<j Bij in (16.2.4).

Again, if Xp and Xp+1 both show up in any particular summand, then since ω is
antisymmetric, that summand must be zero. So the only terms to worry about are
those with i = p, i = p+ 1, j = p, or j = p+ 1. We have∑

1≤i<j≤n

Bij =

n∑
j>p

Bpj +
∑
j>p+1

Bp+1,j +
∑
i<p

Bip +
∑
i<p+1

Bi,p+1

=
∑
j>p+1

(Bpj +Bp+1,j) +
∑
i<p

(Bip +Bi,p+1) + 2Bp,p+1.

(16.2.7)

Now it’s easy to see that Bpj +Bp+1,j = 0 if j > p+ 1 since

Bpj +Bp+1,j = (−1)p+jω([Xp, Xj ], · · · , Xp−1, Xp+1, Xp+2, · · · , Xj−1, Xj+1, · · · )
+ (−1)p+j+1ω([Xp+1, Xj ], · · · , Xp−1, Xp, Xp+2, · · · , Xj−1, Xj+1, · · · ),

and this vanishes since Xp = Xp+1 and the terms have opposite signs. Similarly
we see that Bip +Bi,p+1 = 0 if i < p. Finally we have

Bp,p+1 = (−1)2p+1ω([Xp, Xp+1], X1, · · · , Xp−1, Xp+2, · · · , Xk) = 0

by antisymmetry of the Lie bracket. Hence all terms of the sum (16.2.7) are zero,
and thus we conclude by formula (16.2.4) that dω(· · · , Xp, Xp+1, · · · ) = 0 if Xp =
Xp+1. Antisymmetry of dω is a consequence.



204 STEPHEN C. PRESTON

The next step is to prove linearity over the functions, so we want to com-
pute dω(X1, · · · , fXp, · · · , Xk+1). Since we have already proved antisymmetry,
it’s enough to prove tensoriality in the first component: that is, we want to show

(16.2.8) dω(fX1, X2, · · · , Xk+1) = f dω(X1, X2, · · · , Xk+1).

Write Ω = dω(fX1, X2, · · · , Xk+1) − f dω(X1, X2, · · · , Xk+1). Set Ãj and B̃ij to
be the terms in (16.2.5) and (16.2.6) with X1 replaced by fX1; then we have

Ω =

k+1∑
j=1

Ãj − fAj +
∑

1≤i<j≤k+1

B̃ij − fBij .

Now many of the terms in (16.2.4) are already tensorial. For example the only
nontensorial part of Bij is the Lie bracket, and so if i 6= 1 and j > i, then we

immediately have B̃ij = fBij . On the other hand, Aj is tensorial only in Xj

component, which means we have Ã1 − fA1 = 0 automatically.
We have thus simplified to

Ω =
∑
j>1

Ãj − fAj +
∑
j>1

B̃1j − fB1j ,

and we need to show that this is zero. Using the definition of Aj from (16.2.5) and
tensoriality of ω, we have

Ãj − fAj = (−1)j+1
[
Xj

(
ω(fX1, · · · , Xj−1, Xj+1, · · · )

)
− fXj

(
ω(X1, · · · , Xj−1, Xj+1, · · · )

)]
= (−1)j+1Xj(f)ω(X1, · · · , Xj−1, Xj+1, · · · ).

Furthermore using the formula (16.1.3), we have

B̃1j − fB1j = (−1)1+j
[
ω([fX1, Xj ], X2, · · · , Xj−1, Xj+1, · · · )

− f ω([X1, Xj ], X2, · · · , Xj−1, Xj+1, · · · )
]

= −(−1)1+jXj(f)ω(X1, X2, · · · , Xj−1, Xj+1, · · · ).

Hence we conclude Ãj − fAj + B̃1j − fB1j = 0 for all j > 1, which implies Ω = 0
and thus the tensoriality (16.2.8) as desired. �

16.3. The differential in coordinates and its properties. Despite the awk-
ward definition and proof above of tensoriality, d is actually a very simple operator
in terms of its properties. If we compute it in a coordinate basis, the formula is
quite easy, and all the messy powers of (−1) disappear. In addition, if the vector
fields Xj are coordinate vector fields, so that Xj = ∂

∂xmj
for some mj ∈ {1, · · · , n},

then we will have [Xi, Xj ] = 0 for all i and j. We have already seen what happens
in simple cases: when ω is a 0-form (a function), we have by Proposition 15.1.3
that

dω =

n∑
j=1

∂ω

∂xj
dxj .

When ω =
∑n
i=1 ωi dx

i is a 1-form, we have by Definition 15.4.2 that

dω =

n∑
j=1

∂ωi
∂xj

dxj ∧ dxi.

Using the formula from Example 16.2.1, we can check that the same pattern holds.
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Example 16.3.1. Consider for concreteness the 2-form ω on R4 given by

ω = f(x1, x2, x3, x4) dx2 ∧ dx4.

Then dω is a 3-form on R4, which means it is completely determined if we know

ω123 = dω( ∂
∂x1 ,

∂
∂x2 ,

∂
∂x3 ), ω124 = dω( ∂

∂x1 ,
∂
∂x2 ,

∂
∂x4 ),

ω134 = dω( ∂
∂x1 ,

∂
∂x3 ,

∂
∂x4 ), ω234 = dω( ∂

∂x2 ,
∂
∂x3 ,

∂
∂x4 ).

We thus need to use (16.2.2) four times, with our vector fields X, Y , and Z all
equal to coordinate basis vector fields. Hence since mixed partials commute, we
know [X,Y ] = [Y,Z] = [Z,X] = 0.

We compute:

ω123 = ∂
∂x1

(
ω( ∂

∂x2 ,
∂
∂x3 )

)
+ ∂

∂x2

(
ω( ∂

∂x3 ,
∂
∂x1 )

)
+ ∂

∂x3

(
ω( ∂

∂x1 ,
∂
∂x2 )

)
= ∂

∂x1 (0) = 0

ω124 = ∂
∂x1

(
ω( ∂

∂x2 ,
∂
∂x4 )

)
+ ∂

∂x2

(
ω( ∂

∂x4 ,
∂
∂x1 )

)
+ ∂

∂x4

(
ω( ∂

∂x1 ,
∂
∂x2 )

)
= ∂

∂x1 f(x1, x2, x3, x4)

ω134 = ∂
∂x1

(
ω( ∂

∂x3 ,
∂
∂x4 )

)
+ ∂

∂x3

(
ω( ∂

∂x4 ,
∂
∂x1 )

)
+ ∂

∂x4

(
ω( ∂

∂x1 ,
∂
∂x3 )

)
= ∂

∂x1 (0) = 0

ω234 = ∂
∂x2

(
ω( ∂

∂x3 ,
∂
∂x4 )

)
+ ∂

∂x3

(
ω( ∂

∂x4 ,
∂
∂x2 )

)
+ ∂

∂x4

(
ω( ∂

∂x2 ,
∂
∂x3 )

)
= − ∂

∂x3 f(x1, x2, x3, x4).

We therefore conclude that

dω = ω123 dx
1 ∧ dx2 ∧ dx3 + ω124 dx

1 ∧ dx2 ∧ dx4

+ ω134 dx
1 ∧ dx3 ∧ dx4 + ω234 dx

2 ∧ dx3 ∧ dx4

=
∂f

∂x1
dx1 ∧ dx2 ∧ dx4 − ∂f

∂x3
dx2 ∧ dx3 ∧ dx4

=

(
∂f

∂x1
dx1 +

∂f

∂x3
dx3

)
∧ dx2 ∧ dx4

=

(
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 +

∂f

∂x4
dx4

)
∧ dx2 ∧ dx4

= df ∧ dx2 ∧ dx3.

Here of course we used antisymmetry of the wedge product in order to insert the
terms ∂f

∂x2 dx
2 and ∂f

∂x4 dx
4 without changing the 3-form.

We have thus demonstrated the formula

d
(
f dx2 ∧ dx4

)
= df ∧ dx2 ∧ dx4,

and this formula generalizes to any k-form in any number of dimensions. ,

Proposition 16.3.2. Suppose (x, U) is a coordinate chart on M , and suppose ω
is a k-form written in coordinates as

ω =
∑

1≤i1<···<ik≤n

ωi1···ik dx
i1 ∧ · · · ∧ dxik .

Then dω, computed from (16.2.3), is

(16.3.1) dω =
∑

1≤i1<···<ik≤n

n∑
j=1

∂ωi1···ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

Proof. By linearity of the d operator, it is enough to prove this in the case where

(16.3.2) ω = f dxi1 ∧ · · · ∧ dxik
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for some function f (which allows us to avoid rewriting the sum over all possible
indices repeatedly). We can of course assume that 1 ≤ i1 < · · · < ik ≤ n. Then we
want to prove that

(16.3.3) d
(
f dxi1 ∧ · · · ∧ dxik

)
= df ∧ dxi1 ∧ · · · ∧ dxik .

We just need to compute both sides of (16.3.3) when applied to k+ 1 coordinate
vector fields. So suppose we have indices m1 through mk+1 and vector fields Xi =
∂

∂xmi for 1 ≤ i ≤ k+ 1. Then we have [Xi, Xj ] = 0 for every i and j, so the second
sum in (16.2.3) is zero. Let’s assume the indices are ordered so that m1 < m2 <
· · · < mk+1 to keep things simple.

The rest of (16.2.3) becomes

dω(X1, · · · , Xk+1) =

k+1∑
j=1

(−1)j+1Xj

(
ω(X1, · · · , Xj−1, Xj+1, · · · , Xk+1)

)
=

k+1∑
j=1

(−1)j+1 ∂

∂xmj

[
ω

(
∂

∂xm1
, · · · , ∂

∂xmj−1
,

∂

∂xmj+1
, · · · , ∂

∂xmk+1

)]

To compute the term inside square brackets, we notice that since ω = f dxi1 ∧ · · · ∧
dxik , and since the indices i and m are both sorted from smallest to largest, the
only way it can possibly be nonzero is if m1 = i1, . . . , mj−1 = ij−1, mj+1 = ij ,
. . . , mk+1 = ik. We thus obtain

(16.3.4) dω(X1, · · · , Xk+1) =

k+1∑
j=1

(−1)j+1δi1m1
· · · δij−1

mj−1
δijmj+1

· · · δikmk+1

∂f

∂xmj
.

Now let’s try computing the right side of (16.3.3) applied to the same vector
fields. We get

n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

(
∂

∂xm1
, · · · , ∂

∂xmk+1

)
.

The only way this is nonzero is if {j, i1, · · · , ik} and {m1, · · · ,mk+1} are equal as
sets. Now the i’s and m’s are both ordered, but j can be any number. Thus we
must have j = mp for some p, and the rest of them must be i1 = m1, i2 = m2, . . . ,
ip−1 = mp−1, ip = mp+1, . . . , ik = mk+1. We thus have

dxj∧dxi1∧· · ·∧dxik
(

∂

∂xm1
, · · · , ∂

∂xmk+1

)
= (−1)p−1 δi1m1

· · · δip−1
mp−1

δipmp+1
· · · δikmk+1

,

since we have to perform p− 1 adjacent transpositions to put dxj in the pth spot.
There are (k + 1) ways for this to happen, depending on which mp happens to be
equal to j. Thus the right side of (16.3.3) applied to (X1, . . . , Xk+1) becomes

(
df∧dxi1∧· · ·∧dxik

)
(X1, . . . , Xk+1) =

k+1∑
p=1

(−1)p−1 ∂f

∂xmp
δi1m1
· · · δip−1

mp−1
δipmp+1

· · · δikmk+1
,

and this agrees with (16.3.4). Since the choice of vector field basis elements was
arbitrary, the two (k + 1)-forms must be equal. �
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Example 16.3.3 (Forms on R3). Suppose M = R3. We have already seen how to
compute d on 0-forms using Proposition 15.1.3: if ω = f , then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

which looks like the gradient. And we computed d on 1-forms in (15.4.3): if ω =
u dx+ v dy + w dz, then

dω =

(
∂w

∂y
− ∂v

∂z

)
dy ∧ dz +

(
∂u

∂z
− ∂w

∂x

)
dz ∧ dx+

(
∂v

∂x
− ∂u

∂y

)
dx ∧ dy,

which looks like the curl.
Let’s see how to do this on 2-forms. First, the dimension of Ω2(R3) is

(
3
2

)
= 3

at each tangent space, and it is spanned by dy ∧ dz, dz ∧ dx, and dx ∧ dy. So we
can write an arbitrary 2-form ω as

ω = p(x, y, z) dy ∧ dz + q(x, y, z) dz ∧ dx+ r(x, y, z) dx ∧ dy,
and the coordinate formula (16.3.1) gives

dω =
∂p

∂x
dx ∧ dy ∧ dz +

∂q

∂y
dy ∧ dz ∧ dx+

∂r

∂z
dz ∧ dx ∧ dy.

Now by the antisymmetry of 1-dimensional wedge products, we have

dy ∧ dz ∧ dx = −dz ∧ dy ∧ dx = dz ∧ dx ∧ dy = −dx ∧ dz ∧ dy = dx ∧ dy ∧ dz.
Similarly dz ∧ dx ∧ dy = dx ∧ dy ∧ dz, so that

(16.3.5) dω =

(
∂p

∂x
+
∂q

∂y
+
∂r

∂z

)
dx ∧ dy ∧ dz.

Note the similarity to the divergence operator (which also maps from a three-
dimensional space into a one-dimensional space). ,

We have seen that effectively, the “gradient” is d of a function, the “curl” is d
of a 1-form, and the “divergence” is d of a 2-form in R3. (These analogies work
best in Euclidean coordinates; in more general coordinate systems, the k-forms are
much easier to work with than the vector fields of vector calculus.) Observe that
d of any 3-form must be zero, since there are no 4-forms in R3. In vector calculus,
we have the well-known formulas

curl grad f = 0 and div curlX = 0,

for any function f and any vector field X. Both these formulas are contained in
the more general formula

d2 = 0,

which we will prove in a moment. Applying d2 = 0 to a 0-form we get curl grad = 0,
and applying d2 = 0 to a 1-form we get div curl = 0. (When we apply it to a 2-form,
it doesn’t say anything nontrivial, since as mentioned all 4-forms are automatically
zero in R3.)

Example 16.3.4. We can easily check this in the cases computed above: for
example if u = ∂f

∂x , v = ∂f
∂y , and w = ∂f

∂z , then d(u dx+ v dy + w dz) = 0. Similarly

if p = ∂w
∂y −

∂v
∂z , q = ∂u

∂z −
∂w
∂x , and r = ∂v

∂x −
∂u
∂y , then we can check that d(p dy ∧

dz + q dz ∧ dx + r dx ∧ dy) = 0. Note that all of these formulas work because of
the commuting of mixed partial derivatives, Theorem 5.1.9. Note also that these
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computations are basically the same in any coordinate chart; this is not the case
if you try for example to prove that the curl of the gradient is zero in spherical
coordinates: it’s true, but not so trivial. ,

Example 16.3.4 tells us that k-forms and the d operator are really the correct
way to think of these differential operators, since they make the important fact
d2 = 0 easy to prove in all coordinate charts.

Proposition 16.3.5. For any k-form ω, d(dω) = 0.

Proof. We could prove this by using the Definition 16.2.2, but that would involve
lots of sign-checking and such. It’s easier to use Proposition 16.3.2 to do this in
coordinates. By linearity of d, it is enough to do the computation in the special
case where

ω = f dxi1 ∧ · · · ∧ dxik

for some smooth function f .
Then we have

dω =

n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik ,

and

d(dω) =

 n∑
`=1

n∑
j=1

∂2f

∂x`∂xj
dx` ∧ dxj

 ∧ (dxi1 ∧ · · · ∧ dxik),

using associativity of the wedge product, Proposition 4.3.5.
Now we already have

n∑
`=1

n∑
j=1

∂2f

∂x`∂xj
dx` ∧ dxj = 0,

since the first term is symmetric (by Theorem 5.1.9) while the second term is
antisymmetric (by definition of the wedge product). You can see this explicitly by
interchanging the dummy indices j and ` everywhere and getting the negative of
what you started with.

Thus the whole expression d(dω) must be zero. �

We also have a product rule for the differential of forms.

Proposition 16.3.6. If α is a k-form and β is an `-form, then

(16.3.6) d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ).

Proof. Again it’s easiest to prove this using the coordinate formula (16.3.1). Also,
by linearity of both sides, it’s enough to prove this for basic forms α = f dxi1 ∧
· · · ∧ dxik and β = g dxj1 ∧ · · · ∧ dxj` . In this case, we have

α ∧ β = fg dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj`
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so that

d(α ∧ β) =

n∑
m=1

∂(fg)

∂xm
dxm ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj`

=

(
n∑

m=1

∂f

∂xm
dxm ∧ dxi1 ∧ · · · ∧ dxik

)
∧
(
g dxj1 ∧ · · · ∧ dxj`

)
+

(
n∑

m=1

fdxm ∧ (dxi1 ∧ · · · ∧ dxik
)
∧
(
∂g

∂xm
dxj1 ∧ · · · ∧ dxj`

)
= (dα) ∧ β

+ (−1)k(f dxi1 ∧ · · · ∧ dxik) ∧

(
n∑

m=1

∂g

∂xm
dxm ∧ dxj1 ∧ · · · ∧ dxj`

)
= (dα) ∧ β + (−1)kα ∧ (dβ).

�

16.4. The pull-back on forms. Suppose M is an m-dimensional manifold and
N is an n-dimensional manifold, and suppose we have a smooth map η : M → N .
We constructed in Definition 11.1.1 the push-forward operation, which gives for
any p ∈ M , an operator η∗ : TpM → Tη(p)N which pushes vectors from the do-
main to the range of η. Using this operation, we get an operation going back-
wards on the cotangent spaces, naturally called the pull-back operation, denoted by
η∗ : T ∗η(p)N → T ∗pM and defined exactly as in Definition 4.1.4: for any β ∈ T ∗η(p)N ,

the cotangent vector is η∗β ∈ T ∗pM which acts on any tangent vector v ∈ TpM by
(η∗β)(v) = β(η∗v).

In the discussion before Definition 14.2.6, we tried to extend the push-forward
from a map defined on spaces of vectors at a point to a map defined on the space
of vector fields, but we saw that this generally doesn’t work unless η is a diffeomor-
phism. However the pull-back operation does extend from an operation on each
cotangent space to an operation on 1-forms (cotangent vector fields), regardless of
what η is.

Definition 16.4.1. If M and N are manifolds and η : M → N , then for any k-form
ω defined on N , there is a k-form η#ω defined on M and called the pull-back35 of
ω.

We define it by the following operation on vectors at each TpM :

(16.4.1) η#ω
(
(X1)p, · · · , (Xk)p

)
≡ ω

(
η∗[(X1)p], · · · , η∗[(Xk)p]

)
.

For 0-forms (i.e., functions f : N → R), we define the pull-back by

η#(p) = f
(
η(p)

)
.

Notice that, point by point, this is exactly the same operation η∗ we get from
Definition 4.3.9, when we think of η∗ : TpM → Tη(p)N as being the linear transfor-

mation. Then for any ω ∈ Ωk(N), (η#ω)p ∈ Ωk(TpM) is precisely the operation

35Many authors use η∗ to denote both the pull-back map in each cotangent space as well as
the pull-back map on the space of k-forms. I have found this can be confusing initially, so I am

using η# instead of η∗ for the operation on fields.
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defined by (4.3.9). In case you were wondering, this is why we went to all that
trouble of working out the linear algebra of Ωk(V ) for general vector spaces. Now
everything is easy.

Observe that η#ω is defined at every point p ∈ M , since all we have to do is
push forward vectors in TpM to Tη(p)N , operate on them using ωη(p), and obtain a
real number. So a map η from M to N automatically gives a k-form on M for every
k-form on N , and this is true whether η has maximal rank at some or all points,
and indeed whether M and N have the same dimension or not. In particular we
don’t need η to be a diffeomorphism. So k-forms can easily be pulled back from
one manifold to another, unlike vector fields which are hard to push forward: recall
that the push-forward η#X of a vector field X defined in Definition 14.2.6 only
works when η is a diffeomorphism.

Now let’s work out something explicit.

Example 16.4.2 (The pull-back of a 2-form). Consider the map η : R3 → R2 given
in Cartesian coordinates by (u, v) = η(x, y, z) = (z2 − x2, xy). (We will suppose
(x, y, z) are the Cartesian coordinates on the domain and (u, v) are the Cartesian
coordinates on the range.) Let β = (3u + v) du ∧ dv be a 2-form on R2. What is
the 2-form η#β on R3? First we are going to compute it directly, but see Example
16.4.4 for a simpler computation.

To find it, first we compute (η∗)(x,y,z):

η∗

(
∂

∂x

∣∣∣
(x,y,z)

)
=
∂u

∂x

∂

∂u

∣∣∣
(u,v)

+
∂v

∂x

∂

∂v

∣∣∣
(u,v)

= −2x
∂

∂u

∣∣∣
(u,v)

+ y
∂

∂v

∣∣∣
(u,v)

,

η∗

(
∂

∂y

∣∣∣
(x,y,z)

)
= x

∂

∂v

∣∣∣
(u,v)

,

η∗

(
∂

∂z

∣∣∣
(x,y,z)

)
= 2z

∂

∂u

∣∣∣
(u,v)

.

From these formulas and the definition (16.4.1), we have

(η#β)(x,y,z)

(
∂

∂x
,
∂

∂y

)
= βη(x,y,z)

[
η∗

(
∂

∂x

)
, η∗

(
∂

∂y

)]
= (3u+ v) (du ∧ dv)

(
−2x

∂

∂u
+ y

∂

∂v
, x

∂

∂v

)
= (3z2 − 3x2 + xy)(−2x2),

(η#β)(x,y,z)

(
∂

∂y
,
∂

∂z

)
= (3z2 − 3x2 + xy)(−2xz),

(η#β)(x,y,z)

(
∂

∂z
,
∂

∂x

)
= (3z2 − 3x2 + xy)(2yz).

These three formulas completely determine the 2-form η#β in R3, since Ω2(TpR3)
is three-dimensional. Thus we have

(η#β)(x,y,z) = (3z2 − 3x2 + xy)
(
− 2x2 dx ∧ dy − 2xz dy ∧ dz + 2yz dz ∧ dx

)
.

,
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The pull-back operation has a few remarkable properties. Intuitively they can
be thought of as arising from coordinate-invariance: if η happens to be a diffeomor-
phism, then when we write coordinates charts x and y on the domain and range of
η, we see that η is basically just a coordinate transformation, since the only thing
we ever actually use in coordinate computations is the map y ◦η ◦x−1. Hence we’d
expect the formulas below to be true just based on the fact that the wedge product
and differential of forms are coordinate-invariant notions. The nice thing is that
they work even if η is not a diffeomorphism.

Proposition 16.4.3. Suppose M and N are manifolds. If α is any j-form and β
is any k-form on N , then for any smooth map η : M → N , we have

(16.4.2) η#(α ∧ β) = (η#α) ∧ (η#β).

Furthermore,

(16.4.3) d(η#α) = η#(dα).

Proof. To prove (16.4.2) when both j and k are positive, we just use formula (4.3.6).
Let X1, · · · , Xj+k be any (j + k) vector fields on Rm. For the left side, we have(

η#(α ∧ β)
)
p
(X1, · · · , Xj+k) = (α ∧ β)

(
η∗(X1)p, · · · , η∗(Xj+k)p

)
=

∑
σ∈Sj+k

sgn (σ) α
(
η∗(Xσ(1))p, · · · , η∗(Xσ(j))p

)
· β
(
η∗(Xσ(j+1))p, · · · , η∗(Xσ(j+k))p

)
=

∑
σ∈Sj+k

sgn (σ) (η#α)p(Xσ(1), · · · , Xσ(j))

· (η#β)p(Xσ(j+1), · · · , Xσ(j+k))

=
[
(η#α) ∧ (η#β)

]
p

(
X1, · · · , Xj+k

)
.

The other cases are when one of j or k is zero, and when both j and k are zero.
If j = 0 and k > 0, then α is a function f , so that α ∧ β = fβ. Thus for any k
vector fields X1, · · · , Xk, we have

η#(fβ)p(X1, · · · , Xk) = fβ(η∗(X1)p, · · · , η∗(Xk)p)

= f
(
η(p)

)
β(η∗(X1)p, · · · , η∗(Xk)p) = (η#f)(p)(η#β)p(X1, · · · , Xk)

so that η#(f · β) = (η#f) · (η#β).
If j and k are both zero, then obviously

η#(fg) = (fg) ◦ η = (f ◦ η)(g ◦ η) = (η#f)(η#g).

Thus we have the product rule (16.4.2) in all cases.
Now we want to prove that d(η#α) = η#(dα). We can do this in coordi-

nates: choose charts (x, U) on the m-dimensional manifold M and (y, V ) on the
n-dimensional manifold N . write

α =
∑

1≤i1<···<ik≤n

αi1···ik(y) dyi1 ∧ · · · ∧ dyik ;
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since both d and η∗ are linear operators, it’s enough to prove the formula when
α = f(y) dyi1 ∧ · · · ∧ dyik . First, by the pull-back product rule (16.4.2), we have

(16.4.4) η#α = f
(
η(x)

)
(η#dyi1) ∧ · · · ∧ (η#dyik).

Let’s first compute η#dyi: we have for any index j ∈ {1, · · · ,m} that

η#dyi
(

∂

∂xj

)
= dyi

(
η∗

∂

∂xj

)
= dyi

(
n∑

m=1

∂(ym ◦ η ◦ x−1)

∂xj
∂

∂ym

)
=
∂yi ◦ η ◦ x−1

∂xj
.

Therefore

η#dyi =

n∑
j=1

∂yi ◦ η ◦ x−1

∂xj
dxj = d(yi ◦ η) = d(η#yi).

So formula (16.4.4) becomes

η#α = f
(
η(x)

)
d(η#yi1) ∧ · · · ∧ d(η#yik),

and by the product rule for differentials (16.3.6) (and the fact that d2 = 0), we
have

d(η#α) = d
(
f ◦ η(x)

)
∧ d(η#yi1) ∧ · · · ∧ d(η#yik)

=

m∑
j=1

∂

∂xj
(f ◦ η) dxj ∧ d(η#yi1) ∧ · · · ∧ d(η#yik)

=

m∑
j=1

n∑
l=1

∂f

∂yl
(
η(x)

) ∂yl ◦ η ◦ x−1

∂xj
dxj ∧ d(η#yi1) ∧ · · · ∧ d(η#yik)

=

n∑
l=1

∂f

∂yl
(
η(x)

)
d(η#yl) ∧ d(η#yi1) ∧ · · · ∧ d(η#yik)

=

n∑
l=1

η#

(
∂f

∂yl

)
η#(dyl) ∧ η#(dyi1) ∧ · · · ∧ η#(dyik)

= η#

(
n∑
l=1

∂f

∂yl
dyl ∧ dyi1 ∧ · · · ∧ dyik

)
= η#(dα).

�

We can also get a coordinate-independent proof of (16.4.3) using the defini-
tion 16.2.2, at least when η is a diffeomorphism, using the fact that η#[X,Y ] =
[η#X, η#Y ] in that case from Proposition 14.2.9, along with the fact that

(η#ω)(X1, · · · , Xk) =
(
ω(η#X1, · · · , η#Xk)

)
◦ η.

The difficulty in dealing with η#X when η is not a diffeomorphism seem to me to
make such a proof in the general case more trouble than it’s worth.

Finally let’s redo Example 16.4.2 using these shortcuts.

Example 16.4.4. Again suppose η : R3 → R2 is given in Cartesian coordinates by
(u, v) = η(x, y, z) = (z2 − x2, xy), and let β = (3u+ v) du ∧ dv be a 2-form on R2.
We want to compute η#β.
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First notice that

η#β = η#
(
(3u+ v) du ∧ dv

)
=
[
(3u+ v) ◦ η

]
η#(du) ∧ η#(dv)

=
[
(3u+ v) ◦ η

]
d(u ◦ η) ∧ d(v ◦ η).

Now u ◦ η = z2− x2 and d(u ◦ η) = −2x dx+ 2z dz, while v ◦ η = xy and d(v ◦ η) =
y dx+ x dy. Therefore we have

η#β =
(
3(z2 − x2) + (xy)

)
(−2x dx+ 2z dz) ∧ (y dx+ x dy)

= (3z2 − 3x2 + xy) (−2xz dy ∧ dz + 2yz dz ∧ dx− 2x2 dx ∧ dy).

This gives the same answer much more quickly, especially on higher-dimensional
manifolds. ,
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17. Integration and Stokes’ Theorem

“Size matters not. Look at me. Judge me by my size, do you?”

In this Chapter, we will define integrals of differential forms over k-chains, which
are a generalization of parametrized submanifolds. This allows us to discuss an
easy version of Stokes’ Theorem, which generalizes the Fundamental Theorem of
Calculus. Then we discuss integration over (nonparametrized) manifolds using
partitions of unity. Finally we define manifolds with boundary, which are the
language in which the “real” version of Stokes’ Theorem is written.

In multivariable calculus, we can integrate functions over volumes or surfaces
or curves, as long as we multiply by the correct “volume element” or “area ele-
ment” or “length element.” For example, if we have a function f : R3 → R given
by f(x, y, z) = x2, we can integrate it over the unit sphere by using spherical coor-
dinates ψ = (θ, φ), where 0 < θ < π and 0 < φ < 2π, and the area element is dA =
sin θ dθ dφ. The function in spherical coordinates is f ◦ ψ−1(θ, φ) = sin2 θ cos2 φ,
and we obtain ∫

S2

f dA =

∫ 2π

0

∫ π

0

sin2 θ cos2 φdθ dφ =
π2

2
.

Now there are two difficulties here. One is that in order to perform the integration,
I have to use a coordinate chart, but this chart does not cover the entire manifold.
The set of points not covered is diffeomorphic to a segment, which should have
“measure zero,” and so we don’t expect there to be any meaningful contribution to
the integral from this portion; however it’s certainly not a satisfactory definition if
it relies on this particular coordinate chart. The second difficulty is why the area
element should be dA = sin θ dθ dφ. This is natural in Euclidean geometry (where
I assume the square [0, 1] × [0, 1] has unit area), but that won’t make sense on a
general manifold without a notion of length (which leads to area, volume, etc.).

It is fair to object that I shouldn’t be trying to integrate functions if I don’t have
a notion of length. The way to resolve this is not by defining a notion of length,
but rather by not trying to integrate functions. Instead we should be integrating
differential forms. From a certain point of view, this is already intuitive, and the
notation is suggestive. For example every 1-form ω on R is of the form f(x) dx for
some function f . Assume ω has compact support; then it makes sense to compute

I =

∫
R
ω =

∫ ∞
−∞

f(x) dx

which is actually finite. If I change coordinates by x = h(u), then the integral of
course changes to I =

∫∞
−∞ f

(
h(u)

)
h′(u) du, and so it looks like the function has

changed to f
(
h(u)

)
h′(u). However the 1-form has stayed exactly the same.

17.1. Line integrals and 1-forms. More generally we can define the integral of
a 1-form along a curve as follows.

Definition 17.1.1. Suppose ω is a 1-form field on a smooth manifold and that
γ : [a, b] → R is a smooth curve. Then we define

∫
γ
ω, the line integral of ω along



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 215

γ, by the formula

(17.1.1)

∫
γ

ω =

∫ b

a

γ#ω =

∫ b

a

ω
(
γ′(t)

)
dt.

Notice that in the usual coordinate t on R, we have by Proposition 11.1.1 that

γ∗

(
∂

∂t

)
=

d

dt
γ(t) = γ′(t).

This is a strange-looking formula, but it’s a special case of the definition where we
view R as a manifold and the identity map as a curve in that manifold, so that
γ : R → M is a map of manifolds which takes the identity map on R to the curve
t 7→ γ(t). Thus by Definition 16.4.1 the 1-form γ#ω acts on the vector ∂

∂t by

(γ#ω)

(
∂

∂t

)
= ω

(
γ∗

(
∂

∂t

))
= ω

(
γ′(t)

)
.

Thus γ#ω = ω
(
γ′(t)

)
dt, where dt is the 1-form on R. Hence the second and third

terms of (17.1.1) really are equal.

Example 17.1.2. Suppose M ∼= R2 and ω is the 1-form given in coordinates by
ω = x3y dx + x dy, and let γ : [0, 2π] → M be given in coordinates by γ(t) =
(cos t, sin 2t). Then γ′(t) = − sin t ∂

∂x

∣∣
γ(t)

+ 2 cos 2t ∂
∂y

∣∣
γ(t)

, so that

ω(γ′(t)) = (x3y)|γ(t) · (− sin t) +x|γ(t) · (2 cos 2t) = − cos3 t sin 2t sin t+ 2 cos t cos 2t.

Thus the line integral is∫
γ

ω =

∫ 2π

0

(
− cos3 t sin 2t sin t+ 2 cos t cos 2t

)
dt = −π

4
.

,

In some sense, the set of points forming the curve is more important than the
parametrization of the curve. What we have in mind is integrating a 1-form over var-
ious 1-dimensional submanifolds, and although any connected 1-dimensional sub-
manifold is equal to the image of some smooth curve, there may be many possible
parametrizations of the same submanifold. Fortunately, the line integral does not
depend on the choice of parametrization.

Proposition 17.1.3. Suppose h : [c, d] → [a, b] is a smooth increasing diffeomor-
phism, let γ : [a, b]→M be a smooth curve, and let γ̃ = γ ◦h be a reparametrization
of γ. Then for any smooth 1-form ω on M , we have

∫
γ̃
ω =

∫
γ
ω.

Proof. Just use integration by substitution. Write x = h(u) and γ̃(u) = γ(h(u)).
We then have∫

γ̃

ω =

∫ d

c

(γ ◦ h)#ω =

∫ d

c

ωγ(h(u))

(
(γ ◦ h)′(u)

)
du

=

∫ d

c

ωγ(h(u))

(
γ′(h(u)) · h′(u)

)
du =

∫ b

a

ωx
(
γ′(x)

)
dx =

∫
γ

ω.

�
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Remark 17.1.4. Proposition 17.1.3 is not quite as strong as it seems: notice that
all our reparametrizations must have h′ > 0 everywhere since we needed to assume
that h(c) = a and h(d) = b. In fact if we had reversed the direction of the curve,
we would have flipped the sign of the line integral. For example, take γ(t) = (t, 0)
in R2 and suppose ω = 2x dx. Then∫

γ

ω =

∫ 1

0

2t dt = 1,

while if we take γ̃(t) = (1− t, 0), then we get∫
γ̃

ω =

∫ 1

0

2(1− t)(−1) dt = −1.

We don’t notice this when we’re integrating functions over “curves” (segments) in
R, because we always implicitly decide that the curve goes from left to right. Of
course for curves in higher dimensions, we have to decide how to traverse the curve:
if it’s diffeomorphic to a segment, we have to decide what the beginning and end
are, and if it’s diffeomorphic to a circle, we have to decide whether to traverse it
clockwise or counterclockwise. This is the one-dimensional version of orientation,
which we defined in Definition 8.2.14, corresponding to the choice that our basis
vector on R points to the right rather than to the left. In higher dimensions we
must make similar choices of orientation: for example in R2 that we will list the
“standard” coordinates and vectors as “right-pointing” followed by “up-pointing,”
which then leads to “counterclockwise” as being the natural induced orientation on
curves. These choices were made for you so long ago that you may have forgotten
that they ever could have been any other way, but now we need to remember it.

Given any one-dimensional submanifold possibly with boundary (meaning ei-
ther a closed curve or a set diffeomorphic to a closed interval) we can thus define
the integral of a 1-form over this submanifold by choosing an orientation and then
parametrizing it, and the value we get does not depend on the choice of parametriza-
tion (though it does depend on the choice of orientation).

Remark 17.1.5. The first time most students see line integrals is in physics, where

the line integral
∫ b
a

F(r) ·dr is defined to be the work done in transporting a particle
from r(a) to r(b) which is subject to the force F. This fits into our framework if
we reinterpret force to be a 1-form rather than a vector field. But actually this
is the natural way to do it: classical mechanics in the Hamiltonian approach uses
the cotangent bundle (positions and momenta) rather than the tangent bundle
(positions and velocities), where the derivative of the momentum 1-form is the
force 1-form. (In elementary physics the momentum is just the mass times the
velocity, but when one tries to generalize mechanics to incorporate constraints or
deal with forces that may depend on both position and velocity, this is no longer
true, and “conservation of momentum” only works if momentum is redefined.)

The following generalization of the Fundamental Theorem of Calculus is a simple
version of Stokes’ Theorem, which we will prove in Section 17.3.

Theorem 17.1.6. Suppose f : M → R is a smooth function and that ω = df is the
1-form defined by Proposition 15.2.7. Then for any curve γ : [a, b]→M we have∫

γ

df = f
(
γ(b)

)
− f

(
γ(a)

)
.
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Proof. This is literally just the ordinary Fundamental Theorem of Calculus once
we write it correctly. We have

df
(
γ′(t)

)
=

d

dt
(f ◦ γ)(t)

by definition of df and γ′(t), and therefore∫
γ

df =

∫ b

a

df
(
γ′(t)

)
dt =

∫ b

a

d

dt

(
(f ◦ γ)(t)

)
dt = (f ◦ γ)(b)− (f ◦ γ)(a).

�

However we can also do something interesting with line integrals on manifolds
which is not interesting on R. On R, every 1-form is a differential of some function:
we can write ω = g(x) dx and we know that if f(x) =

∫ x
a
g(t) dt for any a ∈ R,

then ω = f ′(x) dx = df . Already on R2 we have found that most 1-forms are not
differentials of functions: ω = h dx+j dy is equal to df for some f if and only if hy =
jx, as in the Poincaré Lemma 15.2.10. In other words, on M = R2 we can determine
whether a 1-form is the differential of a function by checking to see whether dω = 0.
In the next Theorem we will see how to determine this without actually computing
a derivative, which becomes useful when we want to talk about algebraic topology
(which involves only continuous functions, not differentiable ones).

First we want to generalize the notion of integral along a curve to curves that
are only piecewise smooth. In fact the notion of integral along a curve can be
generalized much more, but the piecewise smooth notion is as much as we need. In
fact with more work we could state and prove everything just for smooth curves,
but we’d have the annoying technical issue of having to smooth everything out.

Definition 17.1.7. A piecewise-smooth curve γ : [a, b]→M is a continuous func-
tion such that there are times {tk | 0 ≤ k ≤ m}, with a = t0 < t1 < · · · < tm = b,
such that γ|[tk−1,tk] is a smooth curve on each interval [tk−1, tk].

The integral of a 1-form ω over a piecewise-smooth curve γ is∫
γ

ω =

m∑
k=1

∫
γ|[tk−1,tk]

ω.

A piecewise curve is continuous but its tangent vector may have jump disconti-
nuities at the break points tk. There is a bit of concern over whether the integral
definition is consistent: for example you could take a smooth curve on [a, b], set
t1 = a+b

2 , then decide that γ is a piecewise smooth curve with break point at
t1. Fortunately the integral is the same since in one-dimensional calculus you can
always break up the integral of a continuous function f(t) as∫ b

a

f(t) dt =

∫ t1

a

f(t) dt+

∫ b

t1

f(t) dt.

Now we show how to determine whether a 1-form ω is the differential of a function
without computing dω.

Theorem 17.1.8. Suppose M is a path-connected smooth manifold. Suppose ω
is a 1-form on M and that for every piecewise-smooth curve γ : [a, b] → M with
γ(a) = γ(b) we have

∫
γ
ω = 0. Then ω = df for some smooth function f : M → R;

in particular we have dω = 0.
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Proof. Certainly if we already knew that ω = df , then for any curve γ : [0, 1]→M
with γ(0) = p and γ(1) = q we would have f(q)−f(p) =

∫
γ
ω. Furthermore we can

assume without loss of generality that at some fixed point p we have f(p) = 0, since
adding a constant to f does not change df . The idea is thus to use this formula to
define f(q), then check that we actually end up with df = ω.

Fix a point p ∈ M . For any point q ∈ M , construct a piecewise-smooth curve
from p to q as follows: first choose an arbitrary continuous curve η : [0, 1] → M
such that η(0) = p and η(1) = q. Since η[0, 1] is compact, there are finitely
many coordinate charts (φk, Uk) for 1 ≤ k ≤ m which cover η[0, 1]. Rearrange
the indices of Uk appropriately so that they appear in order along γ, and choose
points tk ∈ [0, 1] such that η[tk−1, tk] ⊂ Uk. Since the continuous curve η[tk−1, tk] is
completely contained in a coordinate chart, we can replace it with a smooth curve
γ : [tk−1, tk]→M which has the same endpoints (for example, by taking the curve
which is a straight line segment in coordinates). The union of these curves is then
a piecewise-smooth curve γ with endpoints p and q.

Having constructed a curve γ with γ(0) = p and γ(1) = q, define f(q) =
∫
γ
ω.

This definition does not depend on the choice of piecewise-smooth curve γ, since
if γ1 and γ2 were two piecewise-smooth curves with γi(0) = p and γi(1) = q, we
could concatenate them to get

γ3(t) =

{
γ1(t) 0 ≤ t ≤ 1

γ2(2− t) 1 < t ≤ 2.

Then γ3 is a piecewise-smooth curve with γ3(0) = γ3(2) = p which means we have∫
γ3
ω = 0. However we also have

∫
γ3
ω =

∫
γ1
ω −

∫
γ2
ω, where the minus sign

comes from the fact that γ2 is running backwards (using a u-substitution). Thus∫
γ1
ω =

∫
γ2
ω.

We now have a well-defined function f . It remains to check that df = ω. This
is easiest to do in coordinates, since it’s just a local computation. In a coordinate
chart, we can write ω =

∑n
k=1 ωk(x1, . . . , xn) dxk. To compute ∂f

∂x1 , we note that

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) +

∫
γ

ω,

where γ in coordinates is given by γ(t) = (tx1, x2, . . . , xn). We then have γ′(t) =
x1 ∂

∂x1

∣∣
γ(t)

, so that

ω
(
γ′(t)

)
= x1ω1(tx1, x2, . . . , xn).

Thus we have

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) + x1

∫ 1

0

ω1(tx1, x2, . . . , xn) dt.

Now change variables in the integral to s = tx1; then we have

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) +

∫ x1

0

ω1(s, x2, . . . , xn) ds,

and it is now clear that

∂f

∂x1
(x1, x2, . . . , xn) = ω1(x1, x2, . . . , xn).
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The same works for any other index, and we obtain ∂f
∂xk

= ωk for each k, so that
ω = df . In particular f itself is smooth in coordinates, and by Proposition 16.3.5
we have dω = 0. �

We have shown that if
∫
γ
ω = 0 for any piecewise-smooth closed curve γ, then

ω = df for some smooth function f , and the converse is true by Proposition 17.1.6
(which clearly applies as well to piecewise-smooth curves). Hence if

∫
γ
ω = 0 for

any piecewise-smooth closed curve, then dω = 0. The converse is not true however.
There are 1-forms ω such that dω = 0 but ω is not df for any smooth function f ,
and the easiest way to prove this is to show that there is at least one piecewise-
smooth closed curve γ such that

∫
γ
ω 6= 0. Clearly this cannot happen if M = R2

by the Poincaré Lemma 15.2.10, but if M = R2\{0} it can.

Example 17.1.9. Suppose M = R2\{0}, and let ω(x,y) = h(x, y) dx + j(x, y) dy,
where

h(x, y) = − y

x2 + y2
and j(x, y) =

x

x2 + y2
.

Then we have
∂h

∂y
=

y2 − x2

(x2 + y2)2
=
∂j

∂x
,

so that dω = 0. Although the condition in the Poincaré Lemma 15.2.10 is satisfied,
ω cannot be df for any function f : M → R (even if we exclude the origin). Es-
sentially the reason for this is that f(x, y) “wants to be” θ(x, y), given by formula
(5.2.4) on the plane minus the negative x-axis; in other words f(x, y) = arctan (y/x)
and the smooth extension of this. This function θ has a jump on the negative x-
axis, where it goes from −π below to +π above, and hence it is not even continuous.
The fact that f − θ is constant comes from the fact that d(f − θ) = 0, so f must
have the same difficulty.

A simpler yet more rigorous proof is to use the contrapositive of Theorem 17.1.6:
if there is a curve γ : [a, b] → M with γ(a) = γ(b) but

∫
γ
ω 6= 0, then ω cannot be

df for any smooth function f . Using the curve γ(t) = (cos t, sin t) on [0, 2π], we get

(γ#ω)t = ω(γ′(t)) dt = − sin t

sin2 t+ cos2 t
d(cos t) +

cos t

sin2 t+ cos2 t
d(sin t) = dt.

Therefore we have ∫
γ

ω =

∫ 2π

0

ω(γ′(t)) dt =

∫ 2π

0

dt = 2π,

in spite of the fact that γ(0) = γ(2π). So ω cannot be the differential of a function.
,

This example is one of the most important and basic examples in the entire
subject of differential forms, so you should be familiar with it. It’s the first coun-
terexample to the conjecture that dω = 0 implies that ω = df , and quantifying the
failure of this property ends up leading to de Rham cohomology.

17.2. Integration of k-forms. We now want to define the basic language in which
Stokes’ Theorem is stated. In the last Section, we saw that the Fundamental
Theorem of Calculus on R generalizes to line integrals of a 1-form on a manifold.
To proceed, we first want the correct notion of integration on Rk, and then we will
see how to integrate k-forms. First we have to handle the issue of orientation, which
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arose already in the one-dimensional case (Remark 17.1.4). There we observed that
integrals of 1-forms made sense on one-dimensional submanifolds as long as we were
able to specify a forward direction; in the more general case we have to distinguish
between things like the outside surface of a sphere and the inside surface. For right
now, this is taken care of automatically because we are parametrizing everything by
subsets of Rk, so all we need is an orientation for Rk itself. Later we will generalize
this to manifolds and connect it to the notion of orientability of a manifold from
Definition 8.2.14.

Definition 17.2.1. On Rk or any subset of it, we define the standard orientation
to be the k-form µ = dx1∧· · ·∧dxk where (x1, . . . , xk) are the Cartesian coordinates
on Rk. A nowhere-zero k-form ω on Rk or a connected subset of it can always be
written as ω = fµ for some nowhere-zero function f ; then ω is called positively-
oriented if f is always positive and negatively-oriented if f is always negative.

Thus for example on R3 we have the standard orientation dx∧dy∧dz; the 3-form
dz ∧ dx ∧ dy is also positively-oriented while the 3-form dy ∧ dx ∧ dz is negatively-
oriented. Of course in general one needs to specify a “preferred” ordering of the
coordinates that are not named in order to obtain an orientation.

We now define the integral of a k-form over a parametrized k-dimensional sub-
manifold in the same way as we defined line integrals: pull back the k-form using the
parametrization map and integrate over a region in Rk. For simplicity we assume
that all parametrizations are defined on cubes.

Definition 17.2.2. Let I = [0, 1], and let M be a smooth n-dimensional manifold.
A singular k-cube in M is the image c(Ik) of a smooth map c : Ik ⊂ Rk →M .

The integral of a k-form ω over a singular k-cube c is defined to be∫
c

ω =

∫
Ik
c#ω;

here if c = c(x1, · · · , xk), then c#ω = f(x1, · · · , xk) dx1∧· · ·∧dxk for some function
f , and we define

(17.2.1)

∫
Ik
c#ω =

∫
Ik
f(x) dx1 ∧ · · · ∧ dxk =

∫
Ik
f(x) dx1 · · · dxk

if dx1 ∧ · · · ∧ dxk is positively oriented.

If the form were negatively oriented, we’d have to insert a minus sign in the
integral. The reason is that forms are antisymmetric under transpositions, while
iterated integrals, by Fubini’s Theorem 5.3.1, are symmetric under transpositions.

The name “singular” comes not from any lack of smoothness, but rather from
the fact that we aren’t requiring that c be an immersion; in fact it could map the
entire cube to a single point. We sometimes just omit the adjective “singular”
entirely.

It’s easy to see that Definition 17.2.2 reduces to Definition 17.1.1 when k = 1.
Let’s compute an example when k = 2.

Example 17.2.3. Suppose ω = z dx ∧ dy + x dy ∧ dz on R3, and that we want
to integrate over the unit 2-sphere. Parametrize the sphere on [0, 1]× [0, 1] by the
formula

(x, y, z) = η(u, v) =
(

sin (πu) cos (2πv), sin (πu) sin (2πv), cos (πu)
)
.
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Then η#(ω) is a 2-form, which we can compute as in Proposition 16.4.3 as

η#(ω) = (z ◦ η) d(x ◦ η) ∧ d(y ◦ η) + (x ◦ η) d(y ◦ η) ∧ d(z ◦ η).

Computing one term at a time, we get

d(x ◦ η) = d
(

sin (πu) cos (2πv)
)

= π cos (πu) cos (2πv) du− 2π sin (πu) sin (2πv) dv

d(y ◦ η) = d
(

sin (πu) sin (2πv)
)

= π cos (πu) sin (2πv) du+ 2π sin (πu) cos (2πv) dv

d(z ◦ η) = −π sin (πu) du

We therefore have

η#(dx ∧ dy) = d(x ◦ η) ∧ d(y ◦ η) = 2π2 sin (πu) cos (πu) du ∧ dv

and

η#(dy ∧ dz) = d(y ◦ η) ∧ d(z ◦ η) = 2π2 sin2 (πu) cos (2πv) du ∧ dv.

Combining, we thus get that

η#(ω) = 2π2
[

sin (πu) cos2 (πu) + sin3 (πu) cos2 (2πv)
]
du ∧ dv.

Now if we decide that du ∧ dv is positively-oriented, the integral is then∫
η

ω =

∫ 1

0

∫ 1

0

η#(ω)

= 2π2

∫ 1

0

∫ 1

0

sin (πu) cos2 (πu) du dv + 2π2

∫ 1

0

∫ 1

0

sin3 (πu) cos2 (2πv) du dv

=
8π

3
.

We could have decided that dv ∧ du was positively-oriented, which would have
given us the negative of this answer. The choice corresponds to computing the
outward flux or the inward flux, and one way of determining this is to take the
outward normal N = x ∂

∂x + y ∂
∂y + z ∂

∂z , and then decide that the variable which

comes first is the one for which

dx ∧ dy ∧ dz
(
η∗

( ∂
∂u

)
, η∗

( ∂
∂v

)
, Nη(u,v)

)
> 0,

in terms of the standard orientation dx ∧ dy ∧ dz on R3. You can compute that
dx ∧ dy ∧ dz(η∗( ∂

∂u ), η∗(
∂
∂v ), N) = 2π2 sin (πu) > 0, so that we made the correct

choice by this standard. ,

If we want to generalize the Fundamental Theorem of Calculus (for 1-forms)
given by Theorem 17.1.6, we want to figure out what the boundary of a k-cube is.
We already have a dilemma when k = 1: the boundary of a 1-cube is not a 0-cube
(using the natural definition that a 0-cube is just a point in the manifold). Rather
the boundary of a 1-cube is two 0-cubes. In fact since

∫
γ
df = f(γ(b)) − f(γ(a)),

it is in some sense natural to think of the boundary of γ : [a, b] → M as being
γ(b) − γ(a), where the subtraction of points is shorthand for saying “to apply a
function, apply to each point and then subtract.”

Now suppose we take a 2-cube (a square). Obviously the boundary consists of
four segments, which we can either write as a single piecewise-smooth curve or as
the union of four disjoint 1-cubes. Again we will find it convenient to write this as
a linear combination of k-cubes, as shown in the following proposition.
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Figure 17.1. The boundary of I2

Proposition 17.2.4. Let ω be a 1-form on R2 and set β = dω. Then

(17.2.2)

∫
I2
β =

∫
ι+1

ω −
∫
ι−1

ω −
∫
ι+2

ω +

∫
ι−2

ω,

where ι+1 (t) = (1, t), ι−1 (t) = (0, t), ι+2 (t) = (t, 1), and ι−2 (t) = (t, 0).

Proof. Any 1-form on R2 can be written as ω = f(x, y) dx + g(x, y) dy for some
functions f and g, and we have

β = dω =

(
∂g

∂x
(x, y)− ∂f

∂y
(x, y)

)
dx ∧ dy.

Using the standard orientation on R2, we write the integral over the square as∫
I2
β =

∫ 1

0

∫ 1

0

(
∂g

∂x
(x, y)− ∂f

∂y
(x, y)

)
dx dy

=

∫ 1

0

∫ 1

0

∂g

∂x
(x, y) dx dy −

∫ 1

0

∫ 1

0

∂f

∂y
(x, y) dy dx

=

∫ 1

0

[
g(1, y)− g(0, y)

]
dy −

∫ 1

0

[
f(x, 1)− f(x, 0)

]
dx

=

∫ 1

0

(ι+1 )#ω −
∫ 1

0

(ι−1 )#ω −
∫ 1

0

(ι+2 )#ω +

∫ 1

0

(ι−2 )#ω,

which is (17.2.2) by Definition 17.1.1. �

We thus define the boundary of the square to be ∂c = ι+1 − ι
−
1 − ι

+
2 + ι−2 , which

makes sense since the only thing we’re going to do with these sums of curves is to
compute line integrals on them (by integrating along each curve and then adding
up the integrals). See Figure 17.1. The reason to do this is that formula (17.2.2)
becomes

∫
c
dω =

∫
∂c
ω. This is already a neat generalization of the Fundamental

Theorem of Calculus, but what’s even nicer is that just like Theorem 17.1.6, it gen-
eralizes to a formula for integration of arbitrary 2-forms over arbitrary parametrized
2-dimensional surfaces in a manifold of any dimension. And as you might be ready
to guess, the entire process generalizes to integrals of k-forms over singular k-cubes.
First let’s make sense of the boundary of a general k-cube.
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Definition 17.2.5. A k-chain in M denotes the formal sum of singular k-cubes:
c = i1c1 + · · · + imcm, where each ij ∈ Z and each cj is a singular k-cube in the
sense of Definition 17.2.2.

The boundary of a singular k-cube is denoted by ∂c(Ik). It consists of the (k−1)-
chain composed of the sum of the signed images of the 2k faces of the k-cube Ik;
the faces are parametrized by the maps ι+i and ι−i for 1 ≤ i ≤ k, where

ι+i (u1, · · · , uk−1) = (u1, · · · , ui−1, 1, ui, · · · , uk−1),

ι−i (u1, · · · , uk−1) = (u1, · · · , ui−1, 0, ui, · · · , uk−1).
(17.2.3)

Then we set ∂c to be the (k − 1)-chain

(17.2.4) ∂c =

k∑
i=1

(−1)i+1c ◦ ι+i + (−1)ic ◦ ι−i .

We extend this boundary operator to general k-chains by linearity: ∂(
∑
j ijcj) =∑

j ij∂cj .

Finally, the integral of a k-form ω over a singular k-chain c =
∑m
j=1 ijcj is defined

to be

(17.2.5)

∫
c

ω =

m∑
j=1

ij

∫
cj

ω.

The notion of a chain, while at first rather bizarre, is actually fairly natural,
in the sense that we frequently break up integrals over large sets into sums of
integrals over subsets. So the notion of chain just formalizes this idea that a set is
the sum of its disjoint subsets. The weird part is the subtraction, but this is also
natural since cubes do have a natural sign on their faces. The two parallel faces,
in each dimension, should have the opposite sign, since no matter how one orients
the cube, the “outward” facing direction is opposite on those two faces. For this
reason, it makes sense to both add and subtract subsets when doing integrations.
This is exactly what happened in the 1-dimensional case of Theorem 17.1.6 and the
2-dimensional case of Proposition 17.2.4.

Example 17.2.6. Let’s see how the boundary operator of a familiar surface like
the disc looks. Intuitively the boundary of a disc is a single curve (the boundary
circle) which is already parametrized by a smooth 1-cube, so what happens to the
rest of the square?

We can express the disc as a 2-chain using polar coordinates: write the 2-chain
c2 : [0, 1]2 → R2 as c2(s, t) =

(
s cos (2πt), s sin (2πt)

)
. First let us compute the

boundary of the disc, ∂c2. We have from formula (17.2.4) that

∂c2(t) =

2∑
i=1

(−1)i+1c2 ◦ ι+i (t) + (−1)ic2 ◦ ι−i (t)

= c2(1, t)− c2(t, 1)− c2(0, t) + c2(t, 0)

=
(

cos (2πt), sin (2πt)
)
−
(
t, 0
)
−
(
0, 0
)

+
(
t, 0
)
.

Observe that the first term goes counterclockwise around the unit circle, starting
and ending at (1, 0); the second term goes along the horizontal segment to the
origin; the third term is fixed at the origin; and the fourth term goes back along
the same horizontal segment from the origin to (1, 0).



224 STEPHEN C. PRESTON

Write c1(t) =
(

cos (2πt), sin (2πt)
)
. It is tempting to say that ∂c2 = c1, i.e.,

that the boundary of the disc is just the outer circle. To make this precise, we can
define two k-chains η1 and η2 to be equivalent if

∫
η1
ω =

∫
η2
ω for every k-form

ω on M . In the present case, the integral of any 1-form over the “curve” c2 ◦ ι−2
which sends everything to the origin must be zero. And the integrals of any 1-form
over the two horizontal segments c2 ◦ ι−2 − c2 ◦ ι

+
1 cancel each other out. Hence

∂c2 is equivalent to c1, in the sense that
∫
∂c2

ω =
∫
c1
ω for any 1-form ω. Thus the

boundary of the disc is the (counterclockwise-traversed) unit circle, which is just
what we’d expect. ,

Remark 17.2.7. It turns out that the boundary of a boundary is always zero, i.e.,
∂(∂c) = 0 for any k-chain c. We will prove this in general in Chapter 18, but for
now we will just describe the proof for 2-chains. Since the boundary operator ∂ is
linear, it is sufficient to prove it for 2-cubes. We have

∂c(t) = c(1, t)− c(t, 1)− c(0, t) + c(t, 0),

a sum of four curves. Furthermore the boundary of a curve γ(t) is ∂γ(t) = γ(1)−
γ(0), and thus we have

∂∂c =
[
c(1, 1)− c(1, 0)

]
−
[
c(1, 1)− c(0, 1)

]
−
[
c(0, 1)− c(0, 0)

]
+
[
c(1, 0)− c(0, 0)

]
.

Clearly these eight terms cancel out pairwise, so ∂∂c is actually equal to zero
(not just equivalent to zero). Intuitively we start with a solid square, take the
boundary to get a hollow square, and the hollow square has no endpoints and thus
no boundary.

We can ask the same kinds of questions about boundary operators as we ask
about the differentials of forms: for example, if γ is a 1-chain with ∂γ = 0, is there
a 2-chain η such that ∂η = γ? (We allow for equivalence rather than equality to
make things easier.)

We will discuss this in more detail later, in Chapter 18, but for now we will just
say that if M = R2, then every 1-chain with empty boundary must be the boundary
of some 2-chain: the idea is to write the 1-chain as a linear combination of closed
curves, and fill in each closed curve by drawing a segment from each point of the
curve to the origin. On the other hand, if M = R2\{(0, 0)}, then the unit circle has
empty boundary, but it is not the boundary of any parametrized surface. These
results do not rely on the fact that our k-chains are smooth; in fact the same things
happen if the k-chains are merely continuous, and these results can be proved using
general methods of algebraic topology. Thus we will not get into them here.

We should check that this Definition actually is independent of coordinates, since
we explicitly introduced coordinates to define (17.2.1). The following Proposition
17.2.9 generalizes the Proposition 17.1.3 on reparametrizing curves in a line integral.
First we need a Lemma to show us how to change variables in a top-dimensional
form.

Lemma 17.2.8. Suppose ω is a k-form on a k-dimensional manifold, with two
coordinate charts x and y. If we express

ω = f(x1, . . . , xk) dx1 ∧ · · · ∧ dxk = g(y1, . . . , yk) dy1 ∧ · · · ∧ dyk,
then

(17.2.6) f(x1, . . . , xk) det

(
∂x

∂y

)
= g(y1, . . . , yk),
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where we interpret the left side as a function of (y1, . . . , yk) using the transition
function x ◦ y−1.

Proof. The fact that any k-form on a k-dimensional manifold must be a function
multiplied by a basic k-form is a consequence of the fact that the dimension of
Ωk(TpM) is

(
k
k

)
= 1. The only other thing to verify is the formula (17.2.6), which

follows directly from Proposition 4.3.10. We could also prove this directly, using
basically the same technique as in Proposition 3.3.4. �

Proposition 17.2.9. Suppose c1 : [0, 1]k → M and c2 : [0, 1]k → M have the
same image, and that c2 ◦ c−1

1 is an orientation-preserving diffeomorphism (that
is, detD(c2 ◦ c−1

1 ) > 0). Then for any k-form ω on M , we have∫
c1

ω =

∫
c2

ω.

Proof. Just combine the Change of Variables Theorem 5.3.2 with Lemma 17.2.8. If
c1 = c1(x1, · · · , xk) and c2 = c2(y1, · · · , yk) for some coordinate charts x and y on
Rk, write (c1)#ω = f(x1, . . . , xk) dx1 ∧ · · · ∧ dxk and (c2)#ω = g(y1, . . . , yk) dy1 ∧
· · · ∧ dyk. Then ζ = c−1

2 ◦ c1 is just a coordinate change which preserves the unit
cube [0, 1]k, giving y in terms of x. We see that∫

c2

ω =

∫
Ik
c#2 ω =

∫
Ik
g(y)dy1 · · · dyk =

∫
Ik
g
(
ζ(x)

)
det
(
∂y
∂x

)
dx1 · · · dxk

=

∫
Ik
f(x)dx1 · · · dxk =

∫
Ik
c#1 ω =

∫
c1

ω.

�

Note that if c fails to be a diffeomorphism at a single point or more generally
on a set of measure zero, this doesn’t affect the result, so we could lighten the
hypotheses in Proposition 17.2.9 somewhat. However we can’t go too far: for
example traversing the set more than once or traversing it backwards will change
the result.

We have tried to justify the definitions of these things as they came up: a k-form
is defined to be an antisymmetric tensor because that’s what the derivative of a
(k − 1)-form wants to be. The differential d of a k-form is defined so that it is
coordinate-independent (which results in dη#ω = η#dω). Integrals of k-forms are
defined by just changing the basic k-form dx1 ∧ · · · ∧ dxk into the k-dimensional
volume element dx1 · · · dxk; the transformation formula for k-forms on Rk ends up
coinciding exactly with the transformation formula for the corresponding integrals,
and this is why k-forms should be thought of as the “correct” version of the k-
dimensional volume form (which otherwise has no meaning except attached to an
integral). Finally we defined chains because we wanted to consider boundaries of
cubes, which are obviously composed of 2k pieces of (k−1)-dimensional cubes (with
positive and negative orientations). Whether or not you thought it was natural so
far, you’ll hopefully appreciate the punch line.

17.3. Stokes’ Theorem on chains.
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Theorem 17.3.1. [Stokes’ Theorem] Suppose k ∈ N. If c is any k-chain on M ,
and ω is any (k − 1)-form on M , then

(17.3.1)

∫
c

dω =

∫
∂c

ω.

Proof. By definition of integration over chains, we know that∫
c

dω =

∫
Ik
c#dω =

∫
Ik
d(c#ω).

Furthermore we know that ∫
∂c

ω =

∫
∂Ik

c#ω.

Hence regardless of what’s happening on the manifold M , this really is just a
statement about k-forms on Ik ⊂ Rk. So we lose nothing by working in Cartesian
coordinates there.

Now regardless of what ω actually is, c#ω is a (k− 1)-form on Rk, so it must be
(in coordinates)

c#ω =

k∑
j=1

fj(x
1, · · · , xk) dx1 ∧ · · · dxj−1 ∧ dxj+1 ∧ · · · ∧ dxk

for some k functions fj : Ik → R. Thus obviously

d(c#ω) =

k∑
j=1

k∑
i=1

∂fj
∂xi

dxi ∧ dx1 ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxk.

Now this k-form must be zero unless i = j (because otherwise two of the basic
1-forms must be identical), and if i = j, then we must have

dxi ∧ dx1 ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxk = (−1)i−1dx1 ∧ · · · ∧ dxk.

Thus the formula for d(c#ω) is

d(c#ω) =

k∑
j=1

(−1)j−1 ∂fj
∂xj

dx1 ∧ · · · ∧ dxn.

Having computed these formulas, we just have to compute the integrals, using
the fundamental theorem of calculus.∫
c

dω =

∫ 1

0

· · ·
∫ 1

0

k∑
j=1

(−1)j−1 ∂fj
∂xj

dx1 · · · dxn

=

k∑
j=1

∫ 1

0

· · ·
∫ 1

0

(−1)j−1

(∫ 1

0

∂fj
∂xj

dxj
)
dx1 · · · dxj−1dxj+1 · · · dxn

=

k∑
j=1

∫ 1

0

· · ·
∫ 1

0

(−1)j−1
[
fj(x

1, · · · , xj−1, 1, xj+1, · · · , xn)

+ (−1)jfj(x
1, · · · , xj−1, 0, xj+1, · · · , xn)

]
dx1 · · · dxj−1dxj+1 · · · dxn
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Now we just compute the other side from the definition (17.2.4) of ∂c. We first
see what (c ◦ ι+i )#ω is. Since

(ι+i )#dxm =


dum m < i,

0 m = i,

dum−1 m > i,

we know that

(ι+i )#(dx1 ∧ · · · dxj−1 ∧ dxj+1 ∧ · · · ∧ dxk) =

{
du1 ∧ · · · ∧ duk−1 i = j

0 i 6= j.
.

Therefore

(c ◦ ι+i )#ω = (ι+i )#c#ω

= (ι+i )#
k∑
j=1

fj(x
1, · · · , xk) dx1 ∧ · · · dxj−1 ∧ dxj+1 ∧ · · · ∧ dxk

= fi(u
1, · · · , ui−1, 1, ui, · · · , uk−1) du1 ∧ · · · ∧ duk−1.

Similarly we get

(c ◦ ι−i )#ω = fi(u
1, · · · , ui−1, 0, ui, · · · , uk−1) du1 ∧ · · · ∧ duk−1.

Thus we have∫
∂c

ω =

k∑
i=1

(−1)i+1

∫
Ik−1

(ι+i )#c#ω +

∫
Ik−1

(−1)i(ι−i )#c#ω

=

k∑
i=1

∫ 1

0

· · ·
∫ 1

0

[
(−1)i+1f(u1, · · · , ui−1, 1, ui, · · · , uk−1)

+ (−1)if(u1, · · · , ui−1, 0, ui, · · · , uk−1)
]
du1 · · · duk−1.

Clearly this is the same as what we computed for
∫
c
dω. �

Although this version of the theorem seems less widely applicable than the ver-
sion known from vector calculus (since the shape we integrate over has to be the
image of a cube), it’s really not all that different, since the shape doesn’t have to
be the diffeomorphic image of a cube. For example the unit disc is the image of
the cube [0, 1]2 using the formula c(u, v) =

(
u cos (2πv), v sin (2πv)

)
, as in Example

17.2.6. Of course this map isn’t a diffeomorphism, but we don’t really demand that.
More generally it’s quite easy to get any shape you’d typically want as some union
of a finite image of cubes.

Example 17.3.2 (Stokes’ Theorem for 2-forms in R3). Let’s see how the Diver-
gence Theorem on the unit ball,∫

B(0,1)

divX dV =

∫
S(0,1)

X · n dS,

is a consequence of this general Stokes’ Theorem. (Here all the terms are the
standard ones in Euclidean coordinates, i.e., n is the unit normal vector and · is
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the Euclidean dot product.) We first get the unit ball B(0, 1) ⊂ R3 using the
following parametrization:

c(p, q, r) =
(
p sin (πq) cos (2πr), p sin (πq) sin (2πr), p cos (πq)

)
.

(Clearly these are just spherical coordinates.)
Now take a vector field X = u(x, y, z) ∂

∂x+v(x, y, z) ∂
∂y+w(x, y, z) ∂

∂z and rewrite

it as a 2-form

ω = u(x, y, z) dy ∧ dz + v(x, y, z) dz ∧ dx+ w(x, y, z) dx ∧ dy,
so that

dω =

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dx ∧ dy ∧ dz.

Now the left side of Stokes’ formula is
∫
c
dω, which is obviously∫

c

dω =

∫
B(0,1)

divX dxdydz,

the left side of the Divergence Theorem. To evaluate the integral explicitly, we just
have to compute c#dω, which by equation (17.2.6) is

c#(dx ∧ dy ∧ dz) = 2π2p2 sin (πq) dp ∧ dq ∧ dr.
(This is obviously how we would compute a volume integral over the ball: just
change to spherical coordinates and use the spherical volume element ρ2 sin θ; the
extra factor of 2π2 comes from the fact that we forced our integral to be over the
unit cube, rather than a general rectangle, so we had to rescale the angles.)

The other part is more interesting. Just as in Example 17.2.6, where the bound-
ary of the disc had four terms but three of them canceled out, here we will have
a number of boundary terms but most will cancel out. The general formula for
∂c in (17.2.4) means we don’t actually have to figure out how to integrate over
a particular boundary (and we don’t have to figure out the surface area element
either). Just use the formula to get an automatic parametrization. We have

c#dx = d(x ◦ c) =
∂x

∂p
dp+

∂x

∂q
dq +

∂x

∂r
dr

= sin (πq) cos (2πr) dp+ πp cos (πq) cos (2πr) dq − 2πp sin (πq) sin (2πr) dr,

c#dy = sin (πq) sin (2πr) dp+ πp cos (πq) sin (2πr) dq + 2πp sin (πq) cos (2πr) dr,

c#dz = cos (πq) dp− πp sin (πq) dq.

Therefore we get

c#(dy ∧ dz) = c#dy ∧ c#dz
= 2π2p2 sin2 (πq) cos (2πr) dq ∧ dr − πp sin (2πr) dp ∧ dq

+ 2πp sin (πq) cos (πq) cos (2πr) dr ∧ dp

c#(dz ∧ dx) = c#dz ∧ c#dx
= 2π2p2 sin2 (πq) sin (2πr) dq ∧ dr + πp cos (2πr) dp ∧ dq

+ 2πp sin (πq) cos (πq) sin (2πr) dr ∧ dp

c#(dx ∧ dy) = c#dx ∧ c#dy
= 2π2p2 sin (πq) cos (πq) dq ∧ dr − 2πp sin2 (πq) dr ∧ dp.



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 229

Now finally we want to compute the operations (ι+i )#c# based on these compu-
tations. We have for example that ι+2 (s, t) = (s, 1, t), so that

(ι+2 )#(dp ∧ dq) = 0, (ι+2 )#(dq ∧ dr) = 0, and (ι+2 )#(dr ∧ dp) = −ds ∧ dt.

Therefore

(ι+2 )#c#(dy ∧ dz) = (ι+2 )#
(
2πp sin (πq) cos (πq) cos (2πr) dr ∧ dp

)
= −

(
2πs sinπ cosπ cos (2πt)

)
ds ∧ dt

= 0,

(ι+2 )#c#(dz ∧ dx) = (ι+2 )#
(
2πp sin (πq) cos (πq) sin (2πr) dr ∧ dp

)
= −

(
2πs sinπ cosπ sin (2πt)

)
ds ∧ dt

= 0

(ι+2 )#c#(dx ∧ dy) = (ι+2 )#
(
− 2πp sin2 (πq) dr ∧ dp

)
= 2πs sin2 π ds ∧ dt
= 0.

Thus we get (ι+2 )#c# ≡ 0. Similarly we have (ι−2 )#c# ≡ 0.
For ι±3 , we have ι±3 (s, t) = (s, t, ε), where ε is either 0 or 1. Thus

(ι±3 )#(dp ∧ dq) = ds ∧ dt, (ι±2 )#(dq ∧ dr) = 0, and (ι±2 )#(dr ∧ dp) = 0.

Thus

(ι±3 )#c#(dy ∧ dz) = 0,

(ι±3 )#c#(dz ∧ dx) = πs ds ∧ dt,

(ι±3 )#c#(dx ∧ dy) = 0.

As a result we get (ι+3 )# − (ι−3 )# ≡ 0, so that there is no contribution to the ∂c
integral from ι3.

Finally, it is easy to see that (ι−1 )# ≡ 0 since we are setting p = 0 everywhere,
while

(ι+1 )#c#(dy ∧ dz) = 2π2 sin2 (πs) cos (2πt) ds ∧ dt

(ι+1 )#c#(dz ∧ dx) = 2π2 sin2 (πs) sin (2πt) ds ∧ dt

(ι+1 )#c#(dx ∧ dy) = 2π2 sin (πs) cos (πs) ds ∧ dt.

Thus we have

(ι+1 )#c#(ω) = 2π2 sin (πs)
(

sin (πs) cos (2πt)u
(
c(1, s, t)

)
+ sin (πs) sin (2πt)v

(
c(1, s, t)

)
+ cos (πs)w

(
c(1, s, t)

))
ds ∧ dt

= 2π2 sin (πs)(X · n)
(
c(1, s, t)

)
.

At long last, then we have∫
∂c

ω =

∫ 1

0

∫ 1

0

2π2 sin (πs)(X · n)
(
c(1, s, t)

)
dsdt =

∫
S(0,1)

(X · n) dS.

Matching up the terms of Stokes’ Theorem, we get the divergence theorem. ,
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17.4. Stokes’ Theorem in general. Everything we have done so far relies on
parametrizations of submanifolds, and although we have shown that the results we
get don’t actually depend on the choice of parametrization (as long as an orientation
is respected), it is aesthetically less pleasing than simply being able to integrate a
k-form over an arbitrary (oriented) k-dimensional submanifold. We were able to do
such computations over spheres, for example, but only by parametrizing by squares
(which ended up being singular although on a small set). It’s not totally clear
that we can parametrize arbitrary k-dimensional submanifolds by singular k-cubes
which are diffeomorphisms except on a set of measure zero and fill up the entire
submanifold—yet this is what we relied on to do all our practical computations.36

We would like a more general definition, but this will rely on generalizing all our
notions.

First is the question of what it means to integrate an n-form over an n-dimensional
manifold. Immediately we run into a problem: in the previous case we parametrized
our surfaces by cubes, which are compact, and hence all integrals were well-defined.
On the other hand we can’t in general even expect the integral of a general 1-form
on R to be finite or well-defined. So we can’t hope to make this work on every
possible manifold. However on compact manifolds this is not a concern.

The one thing we are worried about is orientation. Without a fixed parametriza-
tion, we have an ambiguity when we try to integrate an n-form on an n-dimensional
manifold: if the n-form is expressed in a coordinate chart as

ω = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn,

it is not clear whether the appropriate integral is
∫
I
f dx1 · · · dxn or−

∫
I
f dx1 · · · dxn.

Obviously one can make an arbitrary choice in each chart, but one wants to know
that the manifold can actually be covered with charts for which the choices are the
same. This relates to Definition 8.2.14.

Theorem 17.4.1. Suppose M is a smooth compact n-dimensional manifold. Then
the bundle Ωn(M) is trivial if and only if M is orientable in the sense of Definition
8.2.14. A nowhere-zero section µ of Ωn(M) is called an orientation of M or a
volume form, and any two volume forms µ1 and µ2 are related by µ2 = f µ1 for
some smooth nowhere-zero function f . Hence on a connected manifold, there are
only two equivalence classes of orientation.

Proof. The bundle is constructed in the same standard way we used for the tangent
bundle TM in Definition 12.1.4 and the cotangent bundle T ∗M in Definition 15.2.1.
Namely, given a coordinate chart (φ = x, U) on M , we observe that any µp ∈
Ωn(TpM) can be written as µp = a dx1|p∧· · ·∧dxn|p for some a ∈ R since Ωn(TpM)
is 1-dimensional by Proposition 4.3.8. The coordinate chart induced on Ωn(M) is
then

Φ: µ ∈ Ωn(TpM) 7→ (x1, . . . , xn, c).

By the transition formula Proposition 4.3.10 (or just by computing directly using
antisymmetry of the wedge product and the definition of the determinant), we know
if there are two coordinate charts (φ = x, U) and (ψ = y, V ) near p, and if

µp = a dx1|p ∧ · · · ∧ dxn|p = b dy1|p ∧ · · · ∧ dyn|p,

36You really can prove that you can do all necessary computations using k-chains, but that
actually requires more work than what we’re going to do.
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then we must have b = a · det
(
∂x
∂y

)∣∣
y(p)

. We conclude that coordinate transitions

are smooth, and defining open sets on Ωn(M) to be those which get mapped to
open subsets of Rn+1 by every coordinate chart, we get a topology which makes
Ωn(M) a smooth manifold and smooth bundle over M .

Suppose this bundle is trivial. Then there is a nowhere-zero section, which we
call µ. Given a coordinate chart (x, U), we have µ|U = f(x1, . . . , xn) dx1∧· · ·∧dxn
for some function f which is nowhere-zero on U , and hence it is either always
positive or always negative. Define the chart to be positively-oriented if f > 0
everywhere on U . Clearly if the chart is not positively-oriented, we can make a
trivial modification (such as switching x1 and x2, or replacing x1 with −x1) which
will make it positively-oriented. So there is an atlas of positively-oriented charts.
Now for any two charts x and y in this atlas, we have µ = f(x) dx1 ∧ · · · ∧ dxn and

µ = g(y) dy1∧· · ·∧dyn where both f and g are positive. Since f(x) = g(y) det
(
∂y
∂x

)
we conclude that the determinant of the coordinate transition matrix is positive,
which is exactly Definition 8.2.14.

Conversely suppose M is orientable, and pick finitely-many charts (φi, Ui) which
cover M and are compatible in the sense that the determinant detD(φi ◦ φ−1

j ) > 0
for all i and j. Choose a partition of unity ξi with supp ξi ⊂ Ui for each i. Let
µi = ξi · dx1 ∧ · · · ∧ dxn, defined a priori on Ui but extended smoothly to all of M .
Define µ =

∑
i µi. This is a smooth section of Ωn(M), and we want to prove it’s

nowhere-zero. To do this, pick any point p ∈ M and some i such that ξ(p) > 0.
Then µi(p) = dx1

i |p ∧ · · · dxni |p, and for any other j with ξj(p) > 0 we have

µj(p) = dx1
j |p ∧ · · · ∧ dxnj |p = det (

∂xj
∂xi

) dx1
i |p ∧ · · · ∧ dxni |p.

Thus

µ(p) =
∑
j

ξj(p) det (
∂xj
∂xi

) dx1
i |p ∧ · · · ∧ dxni |p,

where each term is interpreted as zero if ξj(p) = 0. Since all the determinants are
positive and ξj(p) ≥ 0 for all j, the coefficient is a sum of nonnegative terms with
at least one positive term, and hence positive. In particular it is not zero at p.

The remaining facts are obvious from the fact that the space of n-forms at each
point is 1-dimensional, and hence any volume form spans at each point. The fact
that the ratio of two volume forms is smooth follows from the quotient rule applied
in any coordinate chart. �

Given a choice of orientation on an n-dimensional manifold M , we can spec-
ify preferred parametrizations, and once we do that, we can integrate any n-form
which is supported in a single coordinate chart in a unique way: we just use Def-
inition 17.2.2 to define the integral (using the inverse of the coordinate chart as
a parametrization), and we know it does not depend on the choice of coordinate
chart or parametrization by Lemma 17.2.8. Naturally, to define the integral glob-
ally on the entire manifold, we just use a partition of unity; the fact that the choice
of coordinates does not matter suggests the choice of partition of unity does not
matter either.

Definition 17.4.2. Suppose M is a compact orientable n-dimensional manifold
with a specified choice of orientation, and let µ be any smooth n-form on M . Let
(φj , Uj) be a covering of M by finitely many coordinate charts for 1 ≤ j ≤ m
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which are positively-oriented with respect to the chosen orientation. Let {ξj} be
a partition of unity subordinate to {Uj}, so that Dj := supp ξj ⊂ Uj . Then each
φj [Dj ] is a compact subset of Rn contained in a cube of some large radius Rj , and
by rescaling the coordinate chart we can assume φj [Dj ] is contained in the unit
cube In.

Let ηj : Rn →M be the inverse of φj , and define

(17.4.1)

∫
M

µ =

m∑
j=1

∫
In

(ξj ◦ ηj)(ηj)#µ,

where the integral over the n-cube is defined as in Definition 17.2.2.

Obviously for this to give us what we want, we need to check the invariance
property.

Proposition 17.4.3. If M and µ are as in Definition 17.4.2, then the number∫
M
µ does not depend on the choice of positively-oriented coordinate charts or the

partition of unity.

Proof. Each term in the sum (17.4.1) is
∫
ηj
ξjµ by Definition 17.2.2. Consider

another collection of charts (ψi, Vi) for 1 ≤ i ≤ m′ with corresponding parametriza-
tions ζi : I

n → Vi ⊂ M given by ζi = ψ−1
i and a partition of unity χi with

suppχi ⊂ ξi[In]. Write∫
M

µ =

m∑
j=1

∫
ηj

ξjµ =

m∑
j=1

m′∑
i=1

∫
ηj

χi · ξj · µ.

Suppose for some i and j that supp(ξj) ∩ supp(χi) 6= ∅. Then the corresponding

coordinate charts overlap: let υ = φj ◦ ψ−1
i be the smooth transition map. Since

ζi = ψ−1
i and ηj = φ−1

j , we have ηj = ζi ◦ υ−1. Let D1 = φj
[

supp(ξj) ∩ supp(χi)
]

and let D2 = ψi
[

supp(ξj)∩ supp(χi)
]
; then both D1 and D2 are subsets of In and

are the closure of some open set. We can write∫
ηj

χi·ξj ·µ =

∫
D1

η#
j

(
χi·ξj ·µ

)
=

∫
D1

(υ−1)#ζ#
i

(
χi·ξj ·µ

)
=

∫
D2

ζ#
i

(
χi·ξj ·µ

)
=

∫
ζi

χiξjµ,

where we used the fact that the υ−1 is a diffeomorphism from D1 to D2 to change
variables in the integral. We thus have∫

M

µ =
∑
i

∑
j

∫
ηj

χi · ξj · µ =
∑
i

∑
j

∫
ζi

χi · ξj · µ =
∑
i

∫
ζi

χi · µ.

�

Now that we know how to integrate n-forms on n-dimensional manifolds in terms
of integrations of n-cubes as in Definition 17.2.2, we can prove Stokes’ Theorem on
a smooth manifold using Stokes’ Theorem 17.3.1 for n-chains.

Theorem 17.4.4. Suppose M is a smooth oriented compact n-dimensional mani-
fold and that ω is a smooth (n− 1)-form on M . Then

(17.4.2)

∫
M

dω = 0.
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Proof. Take a covering by finitely many charts with corresponding partition of
unity as in Definition 17.4.2. Then we can write

∫
M
dω =

∑
j

∫
M
ξjdω. However

by Proposition 16.3.6, the product rule for differential forms, we have ξjdω =
d(ξjω)− dξj ∧ ω, so that∫

M

dω =
∑
j

∫
M

d(ξjω)−
∫
M

(
∑
j

dξj) ∧ ω.

However since
∑
j ξj ≡ 1, we know

∑
j dξj ≡ 0. Furthermore we have∫

M

d(ξjω) =

∫
ηj

d(ξjω) =

∫
∂ηj

ξjω

by Stokes’ Theorem 17.3.1 for n-chains. But since the support of ξj ◦ ηj is in
contained in the unit cube, we know ξj is zero on every portion of the boundary
∂ηj . Thus

∫
∂ηj

ξjω = 0. We conclude
∫
M
dω = 0. �

This version of Stokes’ Theorem for smooth manifolds is the one most commonly
used in applications. The idea is that a smooth manifold has no boundary, and
thus Stokes’ Theorem in the form

∫
M
dω =

∫
∂M

ω would imply the right side is
zero since ∂M = ∅. However for some applications we actually want to allow the
manifold to have a nonempty boundary ∂M , which means we have to define what
this means. We will also have to figure out the relationship between the orientation
on M and the orientation on ∂M , since of course we cannot integrate forms without
an orientation. We won’t get too far into the details of this construction, but we
will sketch the basic ideas.

Definition 17.4.5. A topological space M is called an n-dimensional topological
manifold with boundary if for every p ∈ M there is a neighborhood U of p and
a map φ : U → Rn such that either φ is a homeomorphism onto Rn or φ is a
homeomorphism onto the closed half-plane Hn = Rn−1 × [0,∞).

Points of the first type are called interior points; those which are not of the first
type are called boundary points, and the set of all boundary points is called the
boundary of M and denoted by ∂M .

Proposition 17.4.6. If M is a topological manifold with boundary, then the bound-
ary ∂M is a topological manifold in the subspace topology.

Proof. Suppose p ∈ M is a boundary point, and let (φ,U) be a coordinate chart
with φ : U → Hn a homeomorphism. Since p is not an interior point, φ(p) must
actually be on the boundary Rn−1×{0}, because if the last component were positive,
there would be a neighborhood V = φ−1

(
Rn−1 × (0,∞)

)
containing p, and since

Rn−1 × (0,∞) is homeomorphic to Rn, we could find a homeomorphism from V to
Rn, which makes p an interior point.

I claim that if p is a boundary point, then for any chart (φ,U) with p ∈ U , we
must have φ|∂M ⊂ Rn−1 × {0}. Suppose not; then there is some q ∈ ∂M with
φ(q) ∈ Rn−1 × (0,∞), and as before we can obtain a chart around q making q an
interior point, a contradiction. Conversely if φ(q) ∈ Rn−1 × {0} for some q ∈ M ,
I claim that q ∈ ∂M . If there were some other chart (ψ, V ) with q ∈ V and ψ
a homeomorphism from V to Rn, then φ ◦ ψ−1 would be a homeomorphism from
some open subset of Rn to some open subset of Hn containing the boundary. The
contradiction here is a bit more complicated, but essentially relies on the fact from
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algebraic topology that Rn and Hn are not homeomorphic: deleting the origin
from the half-plane leaves a space that is contractible, while Rn minus a point is
not contractible.

Hence for any point p ∈ ∂M , with chart (φ,U) on M , there is a chart (φ̃, Ũ) on

∂M given by Ũ = U ∩ ∂M and φ̃ = φ|∂M . The map φ̃ is a bijection from U ∩ ∂M
to Rn−1 × {0}, and since φ is a homeomorphism, so is φ̃. Identifying Rn−1 × {0}
with Rn−1, these are all coordinate charts on ∂M . �

Proposition 17.4.6 is often summarized as “the boundary of a boundary is zero,”
and this fact is analogous to the fact alluded to in Remark 17.2.7, that ∂(∂c) = 0
for any k-chain c. If M happens to be the parametrized image of some n-cube,
these are essentially the same thing.

We define a smooth manifold with boundary by the condition that all the tran-
sition maps are C∞. All our transition maps will be defined either on a subset of
Hn or Rn, and map into either a subset of Hn or of Rn. We already know what to
do if the maps go from a subset of Rn to Rn. If a transition map is defined only on
an open subset of Hn, we say it is smooth if we can extend it to a smooth map on
an open set containing Hn. This is not the only possible definition, but what’s nice
is that it allows us to take derivatives in all directions even up to the boundary (so
that for example we can consider tangent vectors that stick out of the boundary).
Most of the concepts we have already studied can be extended without difficulty to
manifolds with boundary.

For example, as in Definition 9.1.9 a k-dimensional smooth submanifold N of a
smooth manifold with boundary M is a subset which is a manifold in the subspace
topology and such that for every p ∈ N , there is a chart (φ,U) on M such that
U ∩N = φ−1

[
Rk × {0, . . . , 0}

]
. It is easy to see from this definition that ∂M is an

(n − 1)-dimensional smooth submanifold of M , directly from the definition of the
coordinate charts on a manifold with boundary.

We can also extend the notion of orientabilty from Definition 8.2.14: a smooth
manifold with boundary is orientable if there is an atlas of charts {(φi, Ui)} such
that D(φi◦φ−1

j ) > 0 everywhere (where this map is defined either on Rn or on Hn).
We now want to see how to obtain an orientation on the boundary of a manifold.

Definition 17.4.7. Let M be an n-dimensional smooth manifold with boundary.
Let p ∈ ∂M , and let v ∈ TpM . The vector v is called tangent to the boundary if
there is a smooth curve γ : (−ε, ε)→M such that γ(t) ∈ ∂M for all t, with γ(0) = p
and γ′(0) = v. The vector v is inward-pointing if it is not tangent to the boundary
and there is a smooth curve γ : [0, ε) → M such that γ(0) = p and γ′(0) = v. v is
outward-pointing if −v is inward-pointing.

In a coordinate neighborhood (φ,U) of p ∈ ∂M such that φ[U ] = Rn−1× [0,∞),
it is easy to see that a vector v =

∑n
k=1 a

k ∂
∂xk

∣∣
p

is tangent to the boundary iff

an = 0, inward-pointing iff an > 0, and outward-pointing iff an < 0.

Proposition 17.4.8. If M is a smooth manifold with boundary, then there is a
smooth map X : ∂M → TM such that Xp ∈ TpM for every p ∈ ∂M and such that
Xp is outward-pointing at every p. We say that X is an outward-pointing vector
field along the boundary.

Proof. Since ∂M is a smooth submanifold of M , it is itself a smooth manifold.
Hence it has a smooth partition of unity {ξi} subordinate to some coordinate charts
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{(φ̃i, Ũi)} on ∂M , each of which comes from a coordinate chart (φi, Ui) on M . In
each coordinate chart Ui, define Xi = −ξi · ∂

∂xn , and define X =
∑
iXi. Since each

ξi is nonnegative and each Xi is outward-pointing everywhere, we know that X
is either outward-pointing or tangent to the boundary everywhere. Since for any
point at least one ξi is strictly positive, we know X is actually outward-pointing at
every point. �

Given a volume form µ on a smooth manifold with boundary M as in Theo-
rem 17.4.1 and an outward-pointing vector field X on ∂M , we define the induced
orientation on ∂M to be the (n− 1)-form ιXµ given at each p ∈ ∂M by

ιXµ(v1, . . . , vn−1) = µ(Xp, v1, . . . , vn−1)

for any vectors v1, . . . , vn−1 ∈ Tp∂M . In coordinates Xp has nonzero nth component
while all of the vectors vk have zero nth component, and thus it is easy to see that
ιXµ is a nowhere-zero (n − 1)-form on ∂M . As a consequence, the boundary of
any orientable manifold with boundary is an orientable manifold. For example, this
shows that any smooth compact surface which embeds in R3 must be orientable,
and explains why the projective plane and Klein bottle cannot be embedded in R3.

We need one more thing: partitions of unity. We obtain them on manifolds with
boundary just as we did for manifolds in Theorem 13.3.2: take bump functions
on Rn and restrict them to Hn for those coordinate charts that include boundary
points. Notice that a partition of unity on M restricts to a partition of unity on
∂M which is subordinate to the corresponding charts on ∂M .

Having set all this up, it now makes sense to ask whether
∫
M
dω =

∫
∂M

ω
for an (n − 1)-form ω defined on a smooth orientable manifold with boundary
M : we interpret the integral on the right as the integral of the pull-back ι#ω,
where ι : ∂M → M is the inclusion map, which is smooth since ∂M is a smooth
submanifold. Making sense of all this is the hard part; actually proving the theorem
is easy.

Theorem 17.4.9. Suppose M is a smooth n-dimensional orientable compact mani-
fold with boundary, and let ω be a smooth (n−1)-form on M . Then

∫
M
dω =

∫
∂M

ω.

Proof. Take finitely many charts (φi, Ui) on M and construct a partition of unity
ξi subordinate to them. Then we have∫

M

dω =
∑
i

∫
M

ξidω =
∑
i

∫
M

d(ξiω)−
∫
M

(
∑
i

dξi) ∧ ω.

Just as in Theorem 17.4.4, we have
∑
i dξi = 0 so this last integral vanishes. Fur-

thermore if ηi = φ−1
i is the induced parametrization, we have∫

M

d(ξiω) =

∫
ηi

d(ξiω) =

∫
∂ηi

ξiω.

Now ηi maps the unit cube to the manifold M . If it maps into the interior of the
manifold, then

∫
ηi
d(ξiω) = 0 exactly as in the proof of Theorem 17.4.4; however if it

comes from a boundary chart, then since the charts φi map Ui∩∂M to Rn−1×{0},
we know that ηi = φ−1

i maps one face of the unit cube to the boundary (and all
other faces to the interior of the manifold). Thus the integral

∫
∂ηi

ξiω is equal to
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η̃i
ξ̃iω where ξ̃i is the restricted partition of unity function and η̃i is the inverse of

the restricted coordinate chart φ̃i. We thus obtain∫
M

dω =
∑
i

∫
ηi

d(ξiω) =
∑
i

∫
η̃i

ξ̃iω =

∫
∂M

ω.

�

Stokes’ Theorem is a beautiful theorem in its own right, and has a variety of
applications (as you have probably seen in vector calculus or physics), but we
will most often use it to relate the boundary operator ∂ to the exterior derivative
operator d, and thus to relate homology to cohomology. See Chapter 18 for details.
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18. De Rham Cohomology

“Around the survivors a perimeter create!”

Let’s review the story so far. We defined vectors v ∈ TpM in terms of the
operation f 7→ v(f) ∈ R on smooth functions f defined near p. From there we
assembled all the tangent spaces to build vector fields X ∈ χ(M) which differentiate
functions globally, giving an operation f 7→ X(f) ∈ F(M) for each f ∈ F(M).
Then we changed perspective and viewed X(f) = df(X) not as a map on F(M)
but as a map on χ(M) given by X 7→ df(X). The object df became a section of
the cotangent bundle or a 1-form, but we saw there were many 1-forms ω ∈ Ω1(M)
which were not df for any function f .

Trying to determine whether a given ω was equal to df led to the construction
of dω; we saw that if ω = df then dω = 0 by Proposition 16.3.5, a consequence of
commuting mixed partials and antisymmetry of 2-forms. We then asked about the
converse: if dω = 0, is there a function f such that ω = df? If M = R2 we saw in
Proposition 15.2.10 (the Poincaré Lemma) that the converse is true; on the other
hand if M = R2\{0}, we saw in Example 17.1.9 that there was at least one 1-form
ω such that dω = 0 but ω is not df for any function f . We extended the exterior
derivative d to k-forms of any order, and Proposition 16.3.5 shows that a necessary
condition to have a given k-form ω be the exterior derivative of something is that
dω = 0. However we did not yet get a sufficient condition.

We also reinterpreted k-forms: although we started with k-forms as certain ten-
sorial operators, we saw by combining the Change of Variables Theorem 5.3.2
with Lemma 17.2.8 that k-forms change coordinates in exactly the same way as
k-dimensional integrals (up to a possible change of sign), and thus it made sense to
define the integral of a k-form over a parametrized k-dimensional surface (a k-cube)
as in Definition 17.2.2. This quantity depends only on the surface and its orien-
tation, but not on the choice of parametrization, and thus we were able to define
a notion of integration of an n-form on an n-dimensional manifold in Definition
17.4.2. We extended this to manifolds with boundary as well.

Finally we realized that it was possible to define a boundary ∂c of a parametrized
k-dimensional manifold c[Ik] in such a way that we would have Stokes’ Theorem∫
c
dω =

∫
∂c
ω for any (k − 1)-form ω. We showed in Example 17.2.7 that for a

2-cube that ∂(∂c) = 0 and hinted that this was true in general. We generalized this
notion to define the boundary of an unparametrized manifold in Definition 17.4.5,
and we showed in Theorem 17.4.9 that

∫
M
dω =

∫
∂M

ω for any (n − 1)-form ω.
Hence even if we didn’t know ∂ ◦ ∂ = 0, for every k-cube c we would have∫

∂(∂c)

ω =

∫
∂c

dω =

∫
c

d(dω) = 0

for any (k − 2)-form ω, which implies ∂(∂c) is at least equivalent to zero. We will
prove that it is actually equal to zero, and then we can ask the question of whether
∂c = 0 for a k-chain c implies that c = ∂b for some (k − 1)-chain b.

We thus have two questions: is im d = ker d, and is im ∂ = ker ∂? The first
question is smooth cohomology, while the second question is smooth homology, and
Stokes’ Theorem implies the duality between these concepts (hence the “co”). Now
homology and cohomology will turn out to be diffeomorphism invariants basically
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because of Stokes’ Theorem and the formula η# ◦ d = d ◦ η#. This is useful
since as we have seen, there may be many very different ways of representing the
same manifold, and determining whether two manifolds are diffeomorphic is not
necessarily easy. Computing the homology and cohomology is one way of doing
this. It will actually turn out that homology and cohomology are in fact smooth
homotopy invariants as well (so that for example the cohomology of the sphere
minus two points is the same as the cohomology of the circle). And from this it will
even turn out that cohomology is a homeomorphism invariant, which is de Rham’s
very surprising theorem. It implies that in spite of needing derivatives and smooth
functions to define the exterior derivative, the cohomology really only depends on
the topological structure and the continuous functions.

For some background on the history of this topic, I highly recommend the fol-
lowing:

• http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf John Still-
well’s translation of the paper “Analysis situs” by Henri Poincaré; the first
12 pages include a sweeping tour of the history of homology before and
after Poincaré invented it.
• http://books.google.com/books?id=7iRijkz0rrUC Victor Katz’s arti-

cle on “Differential forms” in History of Topology, which traces cohomology
all the way back to Cauchy’s integral formula.
• http://www.cs.sjsu.edu/faculty/beeson/courses/Ma213/HistoryOfForms.pdf

Hans Samelson’s history of differential forms up to de Rham’s theorem, in
American Mathematical Monthly.

18.1. The basic cohomology groups. For any k ≥ 1, the exterior derivative
d takes k-forms on a smooth manifold to (k + 1)-forms. In this Chapter we will
sometimes denote this operation by dk : Ωk(M) → Ωk−1(M); keeping track of the
index k helps to avoid confusion since we will be dealing with (k+1)-forms, k-forms,
and (k − 1)-forms simultaneously.

Definition 18.1.1. A k-form ω is called closed if dω = 0. A k-form ω is called
exact if ω = dα for some (k − 1)-form α. Since d is linear, the spaces of closed
and exact forms are vector subspaces. We denote the closed k-forms by Zk(M) ⊂
Ωk(M) and the exact k-forms by Bk(M) ⊂ Ωk(M). We have Zk(M) = ker dk and
Bk(M) = im dk−1.

Since dk ◦ dk−1 = 0, we know that Bk(M) is a subspace of Zk(M), and the
quotient vector space is denoted by Hk(M) = Zk(M)/Bk(M), and called the k-
dimensional de Rham cohomology space. If k = 0 then we say B0(M) is the trivial
vector space and Z0(M) = H0(M).

We have already done a couple of examples of cohomology without saying so:
now let’s say so.

Example 18.1.2. If M = R2, then we can write any 1-form as ω = h(x, y) dx +

j(x, y) dy. Then dω =
( ∂j
∂x
− ∂h

∂y

)
dx ∧ dy, and if dω = 0 then jx = hy. By

Proposition 15.2.10, we know that if dω = 0 then there is a function f such that
ω = df . In fact we can compute f explicitly, for example using the formula

(18.1.1) f(x, y) =

∫ x

0

h(σ, y) dσ +

∫ y

0

j(0, τ) dτ.
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Hence Z1(R2) = B1(R2) and H1(R2) = {0}.
If M = R2\{0} then the 1-form ω = − y

x2 + y2
dx+

x

x2 + y2
dy satisfies dω = 0,

but we saw in Example 17.1.9 that ω cannot be df for any function f . The reason
is that if γ : [0, 1] → M is given by γ(t) =

(
cos (2πt), sin (2πt)

)
, then

∫
γ
df = 0 for

any function f by the one-dimensional Stokes’ Theorem Proposition 17.1.6, while∫
γ
ω = 2π. We thus have at least one element of Z1(M) which is not an element

of B1(M), and therefore the de Rham cohomology H1(M) is a vector space of
dimension at least one. (Later we will show that the dimension is exactly one.) ,

As we see in Example 18.1.2, clever use of Stokes’ Theorem can often make
cohomology proofs simpler. Notice that I had to prove nonexistence of any function
f such that ω = df (which is hard), and I did it by proving existence of a single
curve γ with

∫
γ
ω 6= 0 (which is easy). There are a few cases where one can easily

compute the cohomology without any additional tools. The easiest cohomology
spaces are the lowest- and highest-dimensional spaces.

Theorem 18.1.3. Suppose M is a smooth n-dimensional manifold with q connected
components. Then H0(M) ∼= Rq.

Proof. By definition we have H0(M) = Z0(M), the space of all closed 0-forms
on M . Since 0-forms are functions, we want to characterize smooth functions
f : M → R such that df = 0. In any coordinate chart we have ∂f

∂xi dx
i = 0, so that

∂f/∂xi = 0 for every i on Rn. We conclude that f must be constant in any chart,
and on overlapping charts it must be the same constant. Hence f is constant on
each component. However on different components it may be different constants.
Writing M = ∪qj=1Mj where each Mq is connected, we can construct a basis {fj}
of H0(M) where

fj(p) =

{
1 p ∈Mj ,

0 p /∈Mj .

�

Alternatively we could have used the fact that smooth connected manifolds are
also path-connected via piecewise-smooth paths to show that f(p2) − f(p1) =∫
γ
df = 0 for any points p1 and p2 in the same component, in order to get a

coordinate-independent proof.
To compute the top-dimensional cohomology we use Stokes’ Theorem. Hence

we require compactness and orientability. For the moment we can only show its
dimension is positive; later we will show it’s actually one-dimensional.

Theorem 18.1.4. Suppose M is a compact n-dimensional orientable manifold.
Then dimHn(M) > 0.

Proof. Let µ be a volume form as in Theorem 17.4.1. Then since µ is an n-
dimensional form and every (n+1)-dimensional form on an n-dimensional manifold
must be zero, we know that dµ = 0 so that µ ∈ Zn(M).

If µ = dω for some (n − 1)-form ω, then by Stokes’ Theorem 17.4.4 we would
have

∫
M
µ =

∫
M
dω = 0. However by Definition 17.4.2, the integral is a finite sum

of integrals over n-cubes of the form
∫
ηj
ξjµ where ξj is a partition of unity and

each ηj is the inverse of a coordinate chart which is compatible with the orientation
µ. Hence in each chart we have µ = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn where f is a
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positive function, and thus each
∫
ηj
ξjµ is a positive number because ξj is positive

on some open set. So
∫
M
µ 6= 0, and thus µ cannot be dω for any (n − 1)-form ω.

So µ /∈ Bn(M). �

We also have the following trivial result on triviality.

Proposition 18.1.5. If M is an n-dimensional manifold and k > n, then Hk(M)
is trivial.

Proof. Every k-form is zero if k > n, and hence Ωk(M) is already trivial. Thus so
are its subspaces Zk(M) and Bk(M), and thus so is the quotient Hk(M). �

We can compute cohomology spaces in Rn. In general we can prove that Hk(Rn)
for any k > 0, but the general case is a mess in coordinates mainly because of the
notation for the general k-form dxi1 ∧ · · · ∧ dxik where i1 < · · · < ik. We’ll do the
easiest nontrivial case to try and illuminate how the general case works.

Theorem 18.1.6. The cohomology space H1(Rn) is trivial for any n ≥ 2.

Proof. Suppose ω is a closed 1-form. We will construct a formula for a function f
such that df = ω; the method is exactly the same as the special case (18.1.1) for
n = 2. Write ω =

∑n
k=1 ωk(x1, . . . , xn) dxk; then dω = 0 implies that

∂ωk
∂xj

=
∂ωj
∂xk

by formula (15.4.2). Define

f(x1, . . . , xn) =

∫ x1

0

ω1(t, x2, . . . , xn) dt+

∫ x2

0

ω2(0, t, x3, . . . , xn) dt

+ · · ·+
∫ xn

0

ωn(0, 0, . . . , t) dt.
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Clearly ∂f
∂x1 = ω1(x1, . . . , xn), and we have

∂f

∂xk
(x1, . . . , xn) =

k−1∑
j=1

∂

∂xk

∫ xj

0

ωj(0, . . . , 0, t, x
j+1, . . . , xk, . . . , xn) dt

+
∂

∂xk

∫ xk

0

ωk(0, . . . , 0, t, xk+1, . . . , xn) dt

=

k−1∑
j=1

∫ xj

0

∂ωj
∂xk

(0, . . . , 0, t, xj+1, . . . , xk, . . . , xn) dt

+ ωk(0, . . . , 0, xk, xk+1, . . . , xn)

=

k−1∑
j=1

∫ xj

0

∂ωk
∂t

(0, . . . , 0, t, xj+1, . . . , xk, . . . , xn) dt

+ ωk(0, . . . , 0, xk, xk+1, . . . , xn)

=

k−1∑
j=1

(
ωk(0, . . . , 0, xj , xj+1, . . . , xn)− ωk(0, . . . , 0, 0, xj+1, . . . , xn)

)
+ ωk(0, . . . , 0, xk, . . . , xn)

= ωk(x1, . . . , xn).

Putting it together, we see that df = ω, as desired. �

We know the cohomology of the simplest 1-dimensional manifold: Hk(R) is either
R if k = 0 or {0} if k > 0 by Theorem 18.1.6. Next let’s compute the cohomology
of S1.

Theorem 18.1.7. The de Rham cohomology of the circle is

Hk(S1) ∼=

{
R k = 0, 1

{0} k ≥ 2.

Proof. We already know H0(S1) = R since S1 is connected, and that Hk(S1) is
trivial for k ≥ 2 since all k-forms are trivial on a 1-dimensional manifold. We just
have to prove that H1(S1) is one-dimensional.

Now the circle is diffeomorphic to R/Z. Let π : R → S1 denote the quotient
map. For any closed 1-form α ∈ Z1(S1), we know π#α is some 1-form on R,
and therefore it must be π#α = f(x) dx for some function f : R → R. Since
the projection commutes with integer translations Kn := x 7→ x + n, and since
K#
n (f(x) dx) = f(x + n) dx, we must have f(x + n) = f(x), i.e., f is a periodic

function.
The question is whether α = dg for some function g : S1 → R. Now a function g

on S1 induces a function g̃ : R → R by g̃ = π#g = g ◦ π, which is invariant under
translations, and conversely a periodic function on R descends to a well-defined
smooth function on the quotient S1.

Hence we will have α = dg if and only if π#α = π#(dg) = d(g ◦ π), or in other
words if and only if f(x) dx = g̃′(x) dx for some function g̃ on R which is equal to
g ◦ π (i.e., g̃ is periodic on R). Now if f(x) = g̃′(x) for all x, then clearly we must
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have g̃(x) =
∫ x

0
f(s) ds, and since f is periodic, we know that g̃ is periodic if and

only if
∫ 1

0
f(s) ds = 0.

Finally, given any closed 1-form α on S1, let C =
∫
S1 α =

∫ 1

0
π#α. Define φ to

be the 1-form on S1 such that π#φ = dx. Then

π#(α− Cφ) =
(
f(x)− C

)
dx = f̃(x) dx

where
∫ 1

0
f̃(x) dx = 0 by definition of C, and thus we have π#(α − Cφ) = dg̃ for

some periodic function g̃ on R which descends to a smooth function g : S1 → R
satisfying g = g̃ ◦ π. We therefore have π#(α − Cφ) = d(g ◦ π) = π#dg, which
implies that α− Cφ = dg.

In conclusion every closed 1-form α is equal to some constant multiple of the
basic 1-form φ up to the differential of a function, and hence the quotient space is
one-dimensional and spanned by [φ]. �

18.2. Homotopy invariance of cohomology. In this Section we will construct
some useful tools for understanding and computing cohomology spaces. The first
is induced by the pull-back operation: given any map η : M → N , there is an
induced map η# from Ωk(N) to Ωk(M) for each k, and since d commutes with
η#, this descends to a linear map from Hk(N) to Hk(M). As a consequence it
turns out that if η is a diffeomorphism, this linear map is an isomorphism. This
should not be too surprising. What ends up being much more surprising is that
smoothly homotopic manifolds have isomorphic de Rham cohomologies, and from
this one can even prove that homeomorphic manifolds have isomorphic de Rham
cohomologies.

First we discuss the map induced by pull-back.

Theorem 18.2.1. Let M and N be smooth manifolds, possibly of different di-
mensions, and let η : M → N be a smooth map. Then for each k ≥ 0 the
linear map η# : Ωk(N) → Ωk(M) defined by (16.4.1) descends to a linear map
η∗ : Hk(N) → Hk(M) on the de Rham cohomology spaces defined by Definition
18.1.1.

If η : M → N and ξ : N → P are both smooth maps, then the induced cohomology
map (ξ ◦ η)∗ : Hk(P ) → Hk(M) is given by (ξ ◦ η)∗ = η∗ ◦ ξ∗. In particular if
η : M → N is a diffeomorphism, then η∗ : Hk(N)→ Hk(M) is an isomorphism of
vector spaces.

Proof. We use Proposition 16.4.3, which says that d(η#ω) = η#dω for any k-form
ω. Hence if ω ∈ Ωk(N) is closed, then so is η#ω. Similarly if ω ∈ Ωk(N) is exact,
then so is η#ω. To show that η∗ is a well-defined map on the quotient space Hk(N),
we want to show that given two closed k-forms ω1 and ω2 on N which are the same
in Hk(N), the closed k-forms η#ω1 and η#ω2 are the same in Hk(M). That is, we
want to show if ω1−ω2 = dβ for some (k−1)-form β on N , then η#ω1−η#ω2 = dα
for some (k − 1)-form α on M . Clearly this is true by picking α = η#β. Hence we
have a well-defined map on cohomology.

The formula (ξ ◦ η)∗ = η∗ ◦ ξ∗ on cohomology follows from the same formula for
pull-backs of forms in general. This is true because for any k-form ω on P , and any
point p ∈M and any vectors v1, . . . , vk ∈ TpM , we have by Definition 16.4.1 that(

(ξ ◦ η)#ω
)
(v1, . . . , vk) = ω

(
(ξ ◦ η)∗v1, . . . , (ξ ◦ η)∗vk

)
= ω

(
ξ∗(η∗v1), . . . , ξ∗(η∗vk)

)
= (ξ#ω)(η∗v1, . . . , η∗vk) =

(
η#(ξ#ω)

)
(v1, . . . , vk).
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Since the left and right sides are equal on all collections of k vectors at any point
of M , they must be equal as k-forms on M .

The fact that diffeomorphisms induce isomorphisms comes from taking P =
M and ξ = η−1, which implies that (η−1)∗ ◦ η∗ = id∗ = id. Hence if η is a
diffeomorphism, then η∗ is invertible. �

One goal of the de Rham cohomology theory (which de Rham accomplished in
his thesis) is to show that if two smooth manifolds M and N are homeomorphic
as topological spaces, then they have the same de Rham cohomology spaces. This
isn’t obvious since even spaces like R4 have a variety of nonequivalent differentiable
structures: that is, there are homeomorphisms from R4 (with one smooth structure)
to R4 (with a different smooth structure) which are not diffeomorphisms. So it is
not reasonable to hope for homeomorphism invariance of de Rham cohomology,
although fortunately it works anyway.

The concern is that even if homeomorphisms happen to be smooth, they need
not be diffeomorphisms since they may collapse tangent spaces; for example x 7→ x3

is a smooth homeomorphism of R but not a diffeomorphism. It turns out that the
collapsing doesn’t matter for the pull-back on forms, precisely because the pull-back
η# is well-defined regardless of whether η is a diffeomorphism or just an arbitrary
smooth map. Recall that we expected d◦η# = η# ◦d as in Proposition 16.4.3 when
η is a diffeomorphism simply because d is defined in a coordinate-invariant way, and
a diffeomorphism of manifolds is indistinguishable in coordinates from an ordinary
coordinate-transition map. However because η# makes sense for arbitrary smooth
maps, we get d ◦ η# = η# ◦ d also for arbitrary smooth maps, for free. This will
happen again when we study deformations of manifolds: we expect that if we have
a family of diffeomorphisms of a manifold (such as the flow of a vector field), the
cohomology will be preserved. But it turns out that for free it’s preserved even if
the family consists only of smooth maps and not necessarily diffeomorphisms. This
is homotopy invariance.

To motivate what we’re about to do a little more, recall the proof of Theorem
18.1.6, where we proved H1(Rn) = {0}. The technique was essentially to use the
Fundamental Theorem of Calculus

∫
γ
df = f(γ(1)) − f(γ(0)) when γ : [0, 1] → M ,

which is Theorem 17.1.6. To find f(p) given ω which we hoped was df , we simply
integrated along a particular piecewise-smooth path γ for which γ(0) = 0 and
γ(1) = p. Certainly it shouldn’t have mattered which path γ we used to get from 0
to p; we could have used any path. I used a piecewise path parallel to the coordinate
axes in order to make the proof that df = ω a little easier. But the key here is
that I can come up with some systematic way of building paths from a given point
to any other point; integrating forms along these paths will hopefully invert the d
operator. We’ll have to figure out what this means in a moment.

Now let’s digress (even more) to discuss how forms change under deformations
of a manifold. The simplest example is the flow of a vector field, so suppose M is
a smooth manifold with a smooth vector field X on it. Then X has a local flow Φt
by Definition 14.3.3 which satisfies Φ0(p) = p and ∂Φt

∂t (p) = XΦt(p). For any k-form

ω we get a pulled-back form Φ#
t ω, which we can differentiate with respect to t in

each cotangent space one point at a time. This is the analogue of the Lie derivative
of a vector field from Proposition 14.5.4, and is naturally called the Lie derivative
of the k-form. In the same way as we obtained the simple formula LXY = [X,Y ]
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for any vector field Y , we will obtain a simple formula for the Lie derivative of the
k-form.

First we discuss the interior product ιX , which takes any k-form to a (k−1)-form
by filling one slot with X. The idea behind using it is that if we want to integrate
a k-form along a path, we can plug in the tangent vector along the path as one of
the arguments of the k-form and reduce it to a (k − 1)-form (which we hope will
help us invert the d operator, which goes the other way).

Definition 18.2.2. Let M be a manifold and X a vector field. The operator
ιX : Ωk(M)→ Ωk−1(M) is defined for any k-form ω by the formula

ιXω(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1).

For a 1-form ω, we have ιX(ω) = ω(X), a function.
By tensoriality of ω, the value (ιXω)p depends only on Xp and ωp, so we can

also think of it as an operator in each tangent space.

We now prove Cartan’s magic formula, showing how to compute the Lie deriv-
ative of a k-form in direction X in terms of d and ιX . We will only do it in the
case k = 1 right now for simplicity, since the result for k-forms will follow from the
much more general result of Theorem 18.2.5.

Proposition 18.2.3. Suppose M is a smooth manifold, ω is a smooth 1-form on
M , and X is a smooth vector field on M . Let Φt be the local flow of X, and assume
for simplicity that Φt is defined globally (for all t, everywhere on M). Then we
have

(18.2.1)
∂

∂t
Φ#
t ω = Φ#

t (LXω) where LXω = ιXdω + d(ιXω)

and ιX is the operator in Definition 18.2.2.

Proof. The first step is to reduce to computing at time t = 0, using the additive
property of the flow map Φt in Proposition 14.4.1: Φs+to = Φs ◦ Φto . The conse-
quence is that if we want to differentiate at time to, we can write t = s + to and
instead differentiate at s = 0. We have

∂

∂t

∣∣∣
t=to

Φ#
t ω =

∂

∂s

∣∣∣
s=0

Φ#
s+toω =

∂

∂s

∣∣∣
s=0

Φ#
toΦ

#
s ω = Φ#

to

∂

∂s

∣∣∣
s=0

Φ#
s ω = Φ#

toLXω.

Here we were able to pull the Φ#
to through the s-derivative since Φ#

to is really just a
linear operator in each cotangent space T ∗pM .

Now to compute LXω, let Y be an arbitrary vector field on M ; we will compute
both sides of (18.2.1) on Y and show that we get the same answer. Recall the
definition of LXY from Proposition 14.5.4, which can be written in the form

LXY =
∂

∂t

∣∣∣
t=0

(Φ−t)#Y,

where the push-forward of a vector field Y is defined as in Definition 14.2.6 by(
(Φ−t)#Y

)
p

= (Φ−t)∗(YΦt(p)). We therefore have(
Φ#
t ω
)
p

(
((Φ−t)#Y )p

)
= Φ#

t ω
(
(Φ−t)∗(YΦt(p))

)
= ω

(
(Φt)∗(Φ−t)∗(YΦt(p))

)
= ωΦt(p)(YΦt(p)).

Thus if f denotes the function ω(Y ), we have

(Φ#
t ω)

(
(Φ−t)#Y

)
= f ◦ Φt.
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Differentiating both sides with respect to t and using the product rule (since after
all, the operation of ω on the vector fields Yi is just multiplication of the coefficients),
we obtain

(LXω)(Y ) + ω(LXY ) = X
(
ω(Y )

)
.

Now using the fact from Proposition 14.5.4 that LXY = [X,Y ], we get

(18.2.2) LXω(Y ) = X
(
ω(Y )

)
− ω([X,Y ]).

On the other hand using Definition 16.1.2 for dω we have

(ιXdω + dιXω)(Y ) = dω(X,Y ) + Y
(
ω(X)

)
= X

(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X,Y ]) + Y

(
ω(X)

)
= X

(
ω(Y )

)
− ω([X,Y ]).

Matching against (18.2.2) gives Cartan’s magic formula (18.2.1) for 1-forms. �

It turns out that we can generalize the formula (18.2.1) to any k-form and get
the same thing: LXω = ιXdω+dιXω. More significantly, however, we can prove an

analogous formula for the derivative ∂
∂tη

#
t ω when ηt is any time-dependent family

of maps, regardless of whether ηt is a diffeomorphism, and Cartan’s magic formula
will fall out if ηt happens to be the flow of a vector field. In fact if we don’t demand

that (η−1
t )# ∂

∂tη
#
t ω is independent of time, we can also discard the assumption that

ηt+s = ηt ◦ηs. The fact that we can get such a formula which involves only d will be
the main step toward showing that cohomology is homotopy-independent: we just
let ηt be an arbitrary smooth family of maps whose endpoints are two homotopic
spaces, and we will be able to conclude that the cohomology spaces are isomorphic.

Suppose η : [0, 1]×M → N is a smooth map; we denote ηt(p) = η(t, p) when we
want to consider a particular map ηt. Given a k-form ω on N , we have a family

αt = η#
t ω of k-forms on M , which of course depends smoothly on t. For each point

p ∈ M , the function t 7→ αt(p) is a curve in Ωk(TpM), a single vector space, and
so it makes sense to subtract them and compute a derivative. We therefore have

(18.2.3) α1(p)− α0(p) = (η#
1 ω)p − (η#

0 ω)p =

∫ 1

0

∂

∂t
(η#
t ω)p dt.

If we can find a formula for the derivative of a pullback in the general case which is
similar to Cartan’s magic formula (18.2.1) in the case where η is a diffeomorphism,
we can hope that we can relate the exterior derivative on the set η1[M ] to that
on the set η0[M ], and if we are clever we can make η0[M ] a much simpler space
than η1[M ] is. For example, there is a homotopy from the plane minus a point to
the unit circle, and reducing the dimension of a manifold is clearly a great way to
simplify cohomology.

First we define a generalization of the interior product ιX from Definition 18.2.2
and establish some of its properties.

Proposition 18.2.4. Suppose η : [0, 1] ×M → N is a smooth map which gives a
family ηt : M → N of smooth maps depending smoothly on t. For each p ∈ M ,
define Xt(p) = ∂

∂tηt(t, p) ∈ Tηt(p)N . Then Xt : M → TN , and we can define for
any k-form ω on N the interior product ιXtω, a time-dependent (k − 1)-form on
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M , by the formula

(18.2.4) ιXtω(v1, . . . , vk−1) = ωηt(p)
(
Xt(p), (ηt)∗v1, . . . , (ηt)∗vk−1

)
for any v1, . . . , vk−1 ∈ TpM .

Then the operator ιXt satisfies the product rule

(18.2.5) ιXt(α ∧ β) = ιXtα ∧ η
#
t β + (−1)kη#

t α ∧ ιXtβ

for any k-form α and `-form β on M .

Proof. We just have to check both sides of (18.2.5) on (k + ` − 1) vectors in any
tangent space TpM . It is enough to check this when β is a 1-form, since we can
build up the general case by induction using associativity of the wedge product.
We have

ιXt(α ∧ β)(v1, . . . , vk) = (α ∧ β)(Xt(p), (ηt)∗v1, . . . , (ηt)∗vk)

=

k∑
j=1

(−1)k−jα
(
Xt(p), (ηt)∗v1, . . . , (̂ηt)∗vj , . . . , (ηt)∗vk

)
· β
(
(ηt)∗vj

)
+ (−1)kα

(
(ηt)∗v1, . . . , (ηt)∗vk

)
· β
(
Xt(p)

)
=

k∑
j=1

(−1)k−jιXtα(v1, . . . , v̂j , . . . , vk) · η#
t β(vj)

+ (−1)kη#
t α(v1, . . . , vk) · ιXtβ

= (ιXtα ∧ η
#
t β)(v1, . . . , vk) + (−1)k(η#

t α ∧ ιXtβ)(v1, . . . , vk).

Since this is true for any collection of vectors in TpM , the k-forms are equal. Since
any `-form can be expressed as a linear combination of wedge products of 1-forms,
we can use this result one step at a time to get the general formula for wedge
products of k-forms and `-forms. �

Theorem 18.2.5. Suppose η : [0, 1]×M → N is a smooth map (in the sense of a
manifold with boundary as in the end of Chapter 17; that is, η extends to a smooth
map on some neighborhood of [0, 1]×M in R×M . Denote ηt = p 7→ η(t, p). Then
for any k-form ω we have

(18.2.6)
∂

∂t
η#
t ω = ιXtdω + d(ιXtω).

Proof. The trick is to do it for 1-forms first and establish a product rule which will
take care of it for higher-degree forms.

First let’s prove (18.2.6) for 1-forms. Now any 1-form can be written (at least
locally) as a sum of terms of the form f dg where f and g are smooth functions on
some open set of N . By linearity and locality, we will get the 1-form formula as
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long as we can prove it if ω = f dg. In this case the left side of (18.2.6) is

∂

∂t
η#
t (f dg) =

∂

∂t

(
η#
t f · η

#
t dg

)
=

∂

∂t

(
(f ◦ ηt) · d(g ◦ ηt)

)
=

(
∂

∂t
(f ◦ ηt)

)
· d(g ◦ ηt) + (f ◦ ηt) · d

(
∂

∂t
(g ◦ ηt)

)
= Xt(f) · η#

t dg + (η#
t f) · d

(
Xt(g)

)
Here we freely use η#

t ◦ d = d ◦ η#
t . The right side of (18.2.6) is

ιXtd(f dg) + d
(
ιXt(f dg)

)
= ιXt(df ∧ dg) + d

(
η#
t f ·Xt(g)

)
= Xt(f) · η#

t dg −Xt(g) · η#
t df

+ d(η#
t f) ·Xt(g) + η#

t f · d
(
Xt(g)

)
= Xt(f) · η#

t dg + η#
t f · d

(
Xt(g)

)
Hence formula (18.2.6) works if ω = f dg for some smooth functions f and g, and
thus it works for a general 1-form.

Now we know formula (18.2.6) works for 1-forms, and we want to prove it works
for k-forms. The easiest thing to do it to use induction. That is, we are going
to assume that the formula (18.2.6) holds for k-forms α and for `-forms β, and
then prove that it must also hold for the (k + `)-form α ∧ β. Since any form of
high degree can always be expressed as a linear combination of wedge products of
forms of lower degree, and since both sides of (18.2.6) are linear, this will prove the
formula for all degrees.

The first step is to notice that we have a product rule:

∂

∂t
η#
t (α ∧ β) =

∂

∂t
(η#
t α) ∧ (η#

t β)

=

(
∂

∂t
η#
t α

)
∧ (η#

t β) + (η#
t α) ∧

(
∂

∂t
η#
t β

)
.

(18.2.7)

This works since in coordinates, the wedge product is just a sum of products of
coefficients (with some signs arising from permutations) and we have a product
rule on each of the coefficient products. On each of the lower-degree terms we
already know (18.2.6), so we can write

(18.2.8)
∂

∂t
η#
t (α ∧ β) = (ιXtdα+ dιXtα) ∧ (η#

t β) + (η#
t α) ∧ (ιXtdβ + dιXtβ).

So really the question is whether it’s true that the right side of (18.2.8) is what we
want, i.e., whether

(18.2.9) ιXtd(α ∧ β) + dιXt(α ∧ β) = (ιXtdα+ dιXtα) ∧ (η#
t β)

+ (η#
t α) ∧ (ιXtdβ + dιXtβ).

So all we have to do is to combine the product rule for the exterior derivative d
from Proposition 16.3.6 with the product rule for the interior product ιXt from
Proposition 18.2.4, hoping that the various signs cancel themselves out.
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We suppose α is a k-form and β is an `-form. We have to keep track of the fact
that ιXt and d change the degree of the form when computing, and use the fact
that the sign depends on the degree of the first factor. We have

ιXtd(α ∧ β) + dιXt(α ∧ β) = ιXt
(
dα ∧ β + (−1)kα ∧ dβ

)
+ d
(
(ιXtα) ∧ (η#

t β) + (−1)k(η#
t α) ∧ (ιXtβ)

)
= (ιXtdα) ∧ (η#

t β) + (−1)k+1(η#
t dα) ∧ (ιXtβ)

+ (−1)k(ιXtα) ∧ (η#
t dβ) + (−1)k(−1)k(η#

t α) ∧ (ιXtdβ)

+ (dιXtα) ∧ (η#
t β) + (−1)k−1(ιXtα) ∧ (dη#

t β)

+ (−1)k(dη#
t α) ∧ (ιXtβ) + (−1)k(−1)k(η#

t α) ∧ (dιXtβ)

= (ιXtdα) ∧ (η#
t β) + (η#

t α) ∧ (ιXtdβ)

+ (dιXtα) ∧ (η#
t β) + (η#

t α) ∧ (dιXtβ)

as we hoped, using of course the fact that η#
t commutes with d. We thus know

(18.2.6) is true for forms of any order. �

Notice that this proof gives results already in the case where ηt is the flow of a
vector field X: we proved Cartan’s magic formula for 1-forms but not for k-forms,
and this proof gets us the magic formula when we use ηt = Φt and incorporate the
group homomorphism property Φt ◦ Φs = Φs+t. More importantly for the present
purpose, having a nice formula for the derivative along a curve gives us a nice
formula for the difference at the endpoints, just using the Fundamental Theorem
of Calculus.

Theorem 18.2.6. Suppose that ηt : M → N is a family of smooth maps that
depends smoothly on t as in Theorem 18.2.5. Suppose that ω is a closed k-form on

N ; then η#
1 ω = η#

0 ω + dφ for some (k − 1)-form φ on M .
As a consequence, if η∗t : Hk(N) → Hk(M) denote the map on cohomology in-

duced by the pull-back η#
t : Ωk(N)→ Ωk(M), then η∗0 = η∗1 .

Proof. To prove the first part, just integrate the derivative, which makes sense since
the derivative is being taken point-by-point in particular vector spaces Ωk(TpM)
for each p.

We have

η#
1 ω − η

#
0 ω =

∫ 1

0

∂

∂t
η#
t ω =

∫ 1

0

(ιXtdω) dt+

∫ 1

0

(dιXtω) dt

=

∫ 1

0

(ιXtdω) dt+ d

(∫ 1

0

(ιXtω) dt

)
,

since in the last term d is taken with respect to the spatial variables and therefore
commutes with the time integral. If ω is closed, then dω = 0 and we can write

η#
1 ω − η

#
0 ω = dφ where φ =

∫ 1

0
(ιXtω) dt.

Now to prove the second part, we know that each η#
t descends to a map η∗t

from Hk(N) to Hk(M) by Theorem 18.2.1. Given a closed k-form ω ∈ Zk(N),

let αt = η#
t ω. Let [ω] be the equivalence class of ω in the de Rham cohomology

Hk(N), and let [αt] denote the equivalence class of αt in Hk(M). Since η∗t is well-
defined on equivalence classes, we have [αt] = η∗t [ω] (i.e., the equivalence class of αt
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depends only on the equivalence class of ω). We want to show that [α0] = [α1] in
Hk(M), which means we want to show that α1 − α0 = dφ for some φ ∈ Ωk−1(M).
But this is precisely what we just did. �

18.3. Applications of homotopy invariance. To illustrate how useful Theorem
18.2.6 is, we will use it to compute the de Rham cohomology of a variety of spaces.
The main technique is when M = N and our family ηt satisfies η1 = id, while the
image of η0 is a hopefully simpler space (e.g., of smaller dimension). In such a
situation, η0[M ] is called a smooth deformation retract of M .

First we generalize Theorem 18.1.6, where we showed that H1(Rn) is trivial for
n > 0. We can easily prove the general case since Rn is contractible to the origin
(i.e., there is a smooth deformation retract to a single point).

Proposition 18.3.1. For any integers n > 0 and k > 0 we have Hk(Rn) = {0}.

Proof. Let M = N = Rn, and define ηt : Rn → Rn by ηt(x) = tx. Obviously ηt is
smooth in both t and x. When t = 1 we get the identity map, and when t = 0 we
get the trivial map η0(x) = 0.

The induced map η∗t : Hk(Rn)→ Hk(Rn) therefore does not depend on t. When
t = 1 this is the identity map. When t = 0 we have to understand Hk({0}). Note
that Ωk({0}) is trivial for k > 1; since the tangent vector space is the trivial one
containing only the zero vector, the cotangent vector space must also contain only
the zero vector, and hence so do all the higher k-forms spaces. This means the map
η∗0 must take all of Hk(Rn) to zero, which means Hk(Rn) must itself be the trivial
vector space. �

The other space which has nontrivial cohomology is M = R2\{0}. We saw in
Example 17.1.9 that there is at least one 1-form

(18.3.1) ω = − y

x2 + y2
dx+

x

x2 + y2
dy

such that dω = 0 but ω is not df for any f : M → R. We revisited this again in
Example 18.1.2. This allowed us to conclude that H1(M) has dimension at least
one, but we were not able to prove that the dimension is exactly one, or that H2(M)
has dimension zero. Now the fact that the plane minus the origin can be deformed
onto a circle will finish this computation.

Proposition 18.3.2. If M is the plane R2 minus the origin {0}, then M has the
same cohomology as the circle, as in Theorem 18.1.7.

Proof. Let M = N = R2\{0}, and let ηt : M → M be the map ηt(x) = ‖x‖t−1x.
Clearly ηt depends smoothly on both x and t as long as x 6= 0. And clearly η1

is the identity while η0 maps all of M onto the circle. By Theorem 18.2.6, the
identity map on cohomology of M must be the same as the map to cohomology of
S1. Hence for k ≥ 2 we have Hk(M) = {0}. On the other hand, for k = 1 we just
need to check that the cohomology map is not trivial into S1, and this comes from

the example ω from (18.3.1); the pull-back η#
0 maps this ω to the nontrivial 1-form

φ from Theorem 18.1.7, and thus the image of H1(M) is both at least and at most
one-dimensional. So H1(M) itself must be one-dimensional. �

We can also give a proof that there is no smooth vector field on S2 which is
nowhere-zero; recall that we gave a proof in Example 12.2.5, but obviously this
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relied on a very special property of the 2-sphere which we cannot generalize. The
following proof makes it a bit clearer what’s going on.

Proposition 18.3.3. There is no vector field X on S2 which is nowhere-zero.

Proof. Assume to get a contradiction that X is a nowhere-zero vector field on S2.
Let ι : S2 → R3 be the inclusion, and define f(p) = ‖ι∗(Xp)‖. Since Xp 6= 0,
this is a smooth function from S2 to R+, and thus Y = (1/f)X is also a smooth
nowhere-zero vector field on S2.

Define η̃t(p) = (cos t)ι(p)+(sin t)ι∗(Yp) for p ∈ S2 and t ∈ R, where the addition
and multiplication takes place in R3. Since ι(p) and ι∗(Yp) are orthonormal in
R3, it’s easy to see that η̃t(p) is actually a unit vector in R3, and hence we have
η̃t(p) = ι(ηt(p)) for some smooth function ηt : S

2 → S2. Clearly η0 is the identity
map and η1(p) is the antipodal map on S2.

Now the antipodal map A : S2 → S2 is the restriction of the map J : R3 → R3

given by J(x) = −x, and we have shown that A is homotopic to the identity. This
means that the induced map A∗ on cohomology H2(S2) must be the same as the
identity map on H2(S2), using Theorem 18.2.6. By the general result Theorem
18.1.4 we know that the top-dimensional cohomology H2(S2) is nontrivial.

In fact we can compute at least one nontrivial element. Let β = x dy ∧ dz +
y dz ∧ dx + z dx ∧ dy in Ω2(R3), and let ω = ι#β be the corresponding 2-form in
Ω2(S2). It is easy to compute that

∫
S2 ω > 0, and thus although dω = 0 we cannot

have ω = dα for any 1-form α.
Now since A is the restriction of the negation map J , we have J ◦ ι = ι◦A, which

means that ι# ◦ J# = A# ◦ ι#. Applying both sides to ω we get ι#J#ω = A# ◦ β.
Since J negates every component (x, y, z), it is easy to see that J#β = −β, and
thus A#ω = −ω, and we obtain that A∗[ω] = −[ω]. But the identity map has
id∗[ω] = [ω], and since [ω] 6= 0, we get a contradiction because A is homotopic to
the identity. �

More generally one can prove that for any compact orientable n-dimensional
manifold M , then Hn(M) ∼= R. The idea is basically that any particular choice
of volume form (orientation) as in Theorem 17.4.1 will generate the cohomology
Hn(M), and that every n-form which integrates to zero must actually be the ex-
terior derivative of some (n − 1)-form. There is an easy way to build a form if we
take for granted a Riemannian metric, using a trick of Moser, but without that
it’s kind of a pain. Hence we will skip the proof for now. But a consequence is
that since the space Hn(M) is always one-dimensional, for any map η : M → M
we have an induced vector space homomorphism η∗ : Hn(M) → Hn(M) which
must be η∗[µ] = k[µ] for some integer k. This integer k is then called the de-
gree of η : M → M . There are a variety of other ways to define degree, many of
them purely topological, and this generates more relationships between de Rham
cohomology and topology.

The computation of de Rham cohomology is generally made fairly routine by
using things like the Mayer-Vietoris sequence, which works for differential forms in
much the same way it works in algebraic topology. We will not actually discuss
the Mayer-Vietoris sequence, instead deferring it to algebraic topology where it
properly belongs. But this method allows us to explicitly compute the cohomology
of various spheres, along with all the compact surfaces, and many other spaces just
by using the homotopy invariance Theorem 18.2.6.
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The last thing we will discuss here is the homeomorphism invariance. The es-
sential point is to start with continuous maps and approximate them closely by
smooth maps, using the Weierstrass approximation theorem (a result often proved,
at least in one space dimension, in undergraduate real analysis). For a full proof see
Lee’s “Introduction to Smooth Manifolds.” The technical details are too involved
to make it worth presenting here, I think, so I will just discuss it in the way de
Rham originally thought of it.

Recall that for k-chains defined as in Definition 17.2.5 as formal integer linear
combinations of k-cubes, we have a boundary operator ∂. We claimed earlier that
∂∂c = 0 for any k-chain c, but we only proved this in Example 17.2.7 for 2-chains.
Now let’s prove it in general. It’s certainly reasonable to expect that it holds since
d2 = 0 for forms and for any (k − 2)-form ω we have∫

∂∂c

ω =

∫
∂c

dω =

∫
c

d2ω = 0.

Hence ∂(∂c) is a (k− 2)-chain such that for any (k− 2)-form ω the integral is zero.
We would like to conclude that ∂∂c = 0. But this is kind of a pain; it’s easier to
just use the algebraic definition of the boundary from Definition 17.2.5.

Proposition 18.3.4. Let c be any k-cube in a manifold M . Then ∂(∂c) = 0 in
the sense of Definition 17.2.5.

Proof. When we take the boundary of a k-cube c, we basically just plug in either
0 or 1 to one of the entries of c. When we take the boundary of the boundary, we
end up with two entries which are independently either 1 or 0, and we just want to
make sure every such entry appears exactly once with a plus sign and once with a
minus sign.

Consider a k-cube c, and let {i, j} be indices such that 1 ≤ i < j ≤ n. Consider
all terms of ∂∂c where the ith term is 1 and the jth term is 0. Either we plugged
in 1 to the ith term first and then plugged in 0 to the jth term, or the other way
around.

Now if we plugged in 1 to the ith term first, then we must have been deal-
ing with the face ι+i , which appears in ∂c in the form ∂c(u1, . . . , uk−1) = · · · +
(−1)i+1c(u1, . . . , ui−1, 1, ui, . . . , uk−1). When we then take the boundary to plug in
0 to the jth place of the original k-cube, we actually notice it’s the (j − 1)st place
of the boundary cube (since we lost one of the variables by plugging in for the ith

place). We therefore see the term

∂(∂c)(t1, . . . , tk−2) = · · ·+(−1)i+1(−1)j−1c(t1, . . . , ti−1, 1, ti, . . . , tj−1, 0, tj , . . . , tk−2).

On the other hand if we had plugged in j first then we would have gotten

∂c(u1, . . . , uk−1) = · · ·+ (−1)jc(u1, . . . , ui, . . . , uj−1, 0, uj , . . . , uk−1).

Taking the boundary again and plugging in 1 for the ith place (since i < j this
doesn’t change anything) we get the term

∂(∂c)(t1, . . . , tk−2) = · · ·+(−1)j(−1)i+1c(t1, . . . , ti−1, 1, ti, . . . , tj−1, 0, tj , . . . , tk−2).

Now the sign (−1)i+1(−1)j−1 obviously cancels out the sign (−1)j(−1)i+1, and this
term disappears in the overall sum of ∂(∂c).

Once we understand how it works in this case, the other three cases are exactly
the same (since changing a 1 to a 0 in one place changes both signs). So all the
terms must be canceling out. �
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Now for each k we can, just as in Definition 18.1.1, define closed chains and exact
chains. To make the theory look more like the cohomology theory, we will extend
the definition of k-chains to be real linear combinations of k-cubes, not just integer
linear combinations of them as we did in Definition 17.2.5. Note that, inspired by
the duality, we use subscripts on the spaces Z, B, and H instead of superscripts as
we did in Definition 18.1.1.

Definition 18.3.5. Let Qk(M) denote the set of all real linear combinations of
k-cubes on a manifold M , and denote the elements of Qk(M) as k-chains. Define
Zk(M) to be the set of all k-chains c such that ∂c = 0, and define Bk(M) to
be the set of all boundaries of (k + 1)-chains. Since ∂ ◦ ∂ = 0, we know that
Bk(M) is a vector subspace of Zk(M). Define Hk(M) = Zk(M)/Bk(M) to be the
k-dimensional smooth homology of M .

As we have mentioned repeatedly, the boundary operator ∂ makes sense even if
c is only a continuous k-cube on a topological space M . Hence there is a notion
of continuous homology which is in fact is the usual starting point in algebraic
topology.

Now for any smooth k-form ω, we have a map Λω : Qk(M)→ R given by Λω(c) =∫
c
ω. By definition of integration over chains, this is linear in c. The idea now is that

Stokes’ Theorem should tell us that this actually gives a map from the cohomology
space Hk(M) to the dual of Hk(M).

Theorem 18.3.6. Suppose that ω is a closed k-form, and let Λω be the operator
on closed k-chains given by Λω(c) =

∫
c
ω. Then ω 7→ Λω respects our equivalence

relation and therefore descends to a map from Hk(M) to Hk(M)∗, the dual space
of the smooth homology space Hk(M).

Proof. We just have to show that if ω1 − ω2 = dφ for some (k − 1)-form φ, and if
c1 − c2 = ∂b for some (k + 1)-chain b, then

∫
c1
ω1 =

∫
c2
ω2. To do this, notice that∫

c1

ω1 =

∫
c2+∂b

(ω2 + dφ)

=

∫
c2

ω2 +

∫
∂b

ω2 +

∫
c2

dφ+

∫
∂b

dφ

=

∫
c2

ω2 +

∫
b

dω2 +

∫
∂c2

φ+

∫
b

d2φ.

Now since dω1 = dω2 = 0 and ∂c1 = ∂c2 = 0 and d2φ = 0, all terms vanish except
the first one, and we get

∫
c1
ω1 =

∫
c2
ω2. �

In Theorem 17.1.8 we proved that for closed 1-forms ω and 1-chains γ, if
∫
γ
ω = 0

whenever ∂γ = 0, then ω = df for some function f . What this essentially accom-
plished is to show that the linear map Λ: H1(M)→ H1(M)∗ is an isomorphism: if
Λ(ω)(γ) = 0 for all closed 1-chains γ, then ω is the differential of a function, which
means that [ω] = 0 in H1(M). In other words, the induced map from cohomology
to dual-homology is injective and therefore an isomorphism (if we knew that all
these homology and cohomology spaces were finite-dimensional).

This can be generalized: cohomology classes integrate over homology classes to
give an isomorphism, and thus it is natural to think of Hk(M) as the dual space
of Hk(M). If we can then prove that the smooth homology is isomorphic to the
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continuous homology (which is true since we can approximate continuous functions
by smooth functions), it stands to reason that the smooth de Rham cohomology
should have a continuous analogue which is the dual space of the continuous ho-
mology space.

There is one other thing to be concerned about. The spaces Zk and Bk and
Zk and Bk are all infinite-dimensional vector spaces of smooth maps, and there is
no obvious reason why the quotient spaces Hk(M) and Hk(M) should actually be
finite-dimensional. The basic idea is that smooth manifolds can be triangulated,
and thus they are homeomorphic to certain graph-like structures (i.e., built up out
of vertices, edges, faces, etc.). The homology of such structures can be computed
explicitly and is always finite-dimensional, and thus all the other isomorphic spaces
are also finite-dimensional.

An alternate proof uses Hodge theory (which makes sense if one has a Rie-
mannian metric on the manifold) to pick out a distinguished closed k-form in each
cohomology class which minimizes the norm. The fact that there is only a finite-
dimensional space of minimizers and that there is a unique one in each class comes
from the fact that the corresponding differential operators end up being elliptic
operators, which implies compactness of the solution space, and compactness in
any linear Banach space implies finite-dimensionality. This sort of thing extends to
any elliptic operator on a smooth manifold, and the idea that the dimension of its
kernel and cokernel are finite suggests that we might hope that these dimensions
can be calculated in terms of purely topological information. This often turns out
to be correct, and the general theory is called index theory, a rather popular topic
of current research.

For now, however, we will abandon all these trains of thought, since it’s a huge
topic to which we cannot hope to do any more justice.
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19. Riemannian metrics

“We meet again, at last. The circle is now complete. When I left you, I was but
the learner; now I am the master.”

19.1. Definition and examples. Notice that everything we’ve done in the previ-
ous Chapters does not depend on inner products. Specifically, we’ve never used the
fact that the basic vectors in Cartesian coordinates, ∂

∂x and ∂
∂y , are orthonormal.

This is the power of differential geometry in general; even if those vector fields were
not orthonormal, everything we’ve done so far would still work.

However, most manifolds have more structure than what we’ve assumed. They
may have a Riemannian metric (a positive definite symmetric inner product on
each tangent space), or a Lorentzian metric (a symmetric inner product which is
nondegenerate but not necessarily positive), or a symplectic form (a nondegenerate
antisymmetric tensor of type (2, 0)), which represents something important about
it, and we want to study the things that make sense if we incorporate this structure.

Riemannian geometry is what most people think of as “geometry,” since it
represents curved spaces for which we can measure lengths and areas and such.
Lorentzian geometry is used in general relativity; many things carry over from
Riemannian to Lorentzian geometry, while some do not.

For now we will focus on Riemannian metrics.

Definition 19.1.1. If M is a manifold, the space of symmetric tensors of type
(2, 0) on M is a vector bundle, the elements of which are inner products. It may be
denoted by Sym(M). A Riemannian metric is a section g of this bundle which is
positive definite at each point. A Riemannian manifold (M, g) is a manifold with
some preferred Riemannian metric.

If g is a Riemannian metric and u ∈ TpM is a tangent vector at p ∈ M , the

length of u is ‖u‖ =
√
g(p)(u, u). If γ : [a, b]→M is a smooth curve, the length of

γ is

L(γ) =

∫ b

a

∥∥∥∥dγdt
∥∥∥∥ dt.

We frequently denote a Riemannian metric in coordinates by

g = ds2 =

n∑
i=1

n∑
j=1

gij(x
1, · · · , xn) dxi ⊗ dxj .

The notation here is inspired by the use of s for an arc length parameter. The
symmetry condition is that gij = gji. Nondegeneracy implies that det g > 0 at
every point.

We have already encountered Riemannian metrics, for example in Section 13.3
where we showed that every manifold with a partition of unity has a Riemannian
metric, and we mentioned that a Riemannian metric can be used to construct an
isomorphism between TM and T ∗M . Let’s do this now.

Definition 19.1.2. If g is a nondegenerate inner product on a single vector space
V , we define the musical isomorphisms between V and V ∗ as follows:
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• the index-lowering map is [ : V → V ∗ given by v[(w) = g(v, w) for any
w ∈ V ;
• the index-raising map is ] : V ∗ → V given by g(α], w) = α(w) for any
w ∈ V .

Nondegeneracy of g (the fact that g(u, v) = 0 for all v implies u = 0) is precisely
the condition that [ is an isomorphism, which is why ] exists.

The names arise from the action on a basis. Let {ei} be a basis of V , and let {αi}
be the dual basis of V ∗ satisfying αi(ej) = δij . Set gij = g(ei, gj). If v =

∑
i v
iei

and v[ =
∑
j ṽjα

j , we must have

v[(ej) = g(v, ej) =
∑
i

vig(ei, ej) =
∑
i

vigij .

We conclude that

v[ =
∑
j

ṽjα
j =

∑
j

∑
i

vigijα
j .

Hence in going from v represented by (v1, . . . , vn) to v[ represented by (ṽ1, . . . , ṽn),
we have lowered the indices. Similarly inverting this operation raises indices.

Note that since an inner product generates an isomorphism from V to V ∗, we
obtain an inner product on V ∗ by the formula g̃(β, γ) = g(β], γ]). Recall that

e[i =
∑
j gijα

i, and define gij to be the inverse matrix of gij , so that
∑
k gikg

kj = δji .

Then we must have (αi)[ =
∑
j g

ijej , which implies that

g̃(αi, αj) = g
(∑

k

gikek, g
j`e`

)
=
∑
k,`

gikgj`g(ek, e`) ==
∑
k,`

gikgj`gk` =
∑
k

gikδjk = gij .

Thus the components of the inner product on V ∗ in a dual basis are exactly the
components of the inverse matrix of the inner product on V in the basis.

It is now trivial to prove that the tangent bundle TM is isomorphic to the
cotangent bundle T ∗M , given any Riemannian metric on M . It is important to
note however that this isomorphism depends on the metric and is not in any sense
“natural.”

Theorem 19.1.3. Suppose M is a smooth manifold. Define a Riemannian metric
g on M as in Section 13.3 using a partition of unity. Then the operator v 7→ v[ given
by Definition 19.1.2 extends to a smooth map [ : TM → T ∗M given by [(v) = v[,
and this map is a bundle-isomorphism in the sense of Definition 12.1.6.

Proof. It is easy to see that the map [ is linear in each tangent space, and it
is an isomorphism of each tangent space by definition since the inner product is
nondegenerate. The only thing we have to worry about is that it is smooth. But
this follows in coordinates, since it’s a local property. The map [ is given in a
coordinate chart by

∂

∂xi

∣∣∣
p
7→
∑
j

gij(p)dx
j
∣∣
p
,

and since the metric components are smooth, so is this map. �

That’s as much as one needs to do to relate metrics to bundles. For now we
really just want to study simple examples which lead to interesting geometry.
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Example 19.1.4. If M = Rn, the Euclidean metric is the one obtained in Carte-
sian coordinates by

ds2 =

n∑
k=1

dxk ⊗ dxk,

in other words gij = δij .
In R2 we have ds2 = dx ⊗ dx + dy ⊗ dy, which is frequently abbreviated by

ds2 = dx2 +dy2. We can change coordinates using the formulas dx = ∂x
∂u du+ ∂x

∂v dv

and dy = ∂y
∂u du+ ∂y

∂v dv. For example in polar coordinates we have

ds2 = (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2

= dr2 + r2 dθ2.

In three dimensions we have ds2 = dx2 + dy2 + dz2 and using the spherical coordi-
nates (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ) we obtain

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2.

,

It is not a coincidence that the diagonal terms cancel out in these formulas; in
fact the coordinates themselves were chosen to make this happen. Such coordinates
are called “orthogonal,” since the diagonal terms being zero is equivalent to the
coordinate vectors ∂

∂xi being orthogonal to each other. This is common in two
dimensions, since if we take an analytic function on C given by z = f(w), or

x+ iy = g(u, v) + ih(u, v), then the Cauchy-Riemann equations imply ∂x
∂u = ∂y

∂v and
∂y
∂u = −∂x∂v , so that the metric in (u, v) coordinates will be

ds2 = (xu du+ xv dv)2 + (yu du+ yv dv)2

= (xu du− yu dv)2 + (yu du+ xv dv)2

= (x2
u + y2

u) (du2 + dv2).

Since analytic functions are easy to find, so are orthogonal coordinates. As an
example, parabolic coordinates (6.2.4) and elliptic coordinates (6.2.5) both arise
from analytic functions: parabolic coordinates (x, y) =

(
στ, 1

2 (τ2−σ2)
)

come from

x + iy = f(σ + iτ) where f(w) = −iw2/2, while elliptic coordinates (x, y) =
(coshµ cos ν, sinhµ sin ν) come from x+ iy = f(µ+ iν) where f(w) = coshw. The
metric in parabolic coordinates thus ends up being ds2 = (τ2 + σ2) (dτ2 + dσ2),
while the metric in elliptic coordinates is ds2 = (sinh2 µ + sin2 ν) (dµ2 + dν2). In
three dimensions it is much harder to find orthogonal coordinate systems, and the
formulas end up being more complicated.

The most common way to get other Riemannian metrics is to have a submanifold
of Euclidean space and have the submanifold inherit the Riemannian metric.

Definition 19.1.5. If N is a Riemannian manifold with Riemannian metric h,
then a Riemannian submanifold M is a manifold with an immersion ι : M → N ,
and such that the Riemannian metric g on M is given by

(19.1.1) g(u, v) = h(ι∗u, ι∗v)

for any vectors u, v ∈ TpM .
The inner product g is a genuine Riemannian metric since it is positive-definite:

if u 6= 0 then ι∗u 6= 0, so that h(ι∗u, ι∗u) > 0, so that g(u, u) > 0.
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We can abbreviate the formula (19.1.1) by g = ι∗h.

In most applications we have N = Rn and h is the Euclidean metric.

Example 19.1.6. The sphere S2 is a submanifold of Euclidean space R3, and the
immersion ι is given in coordinates by

(x, y, z) = ι(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

We have

ι∗

(
∂

∂θ

)
= cos θ cosφ

∂

∂x
+ cos θ sinφ

∂

∂y
− sin θ

∂

∂z

ι∗

(
∂

∂φ

)
= − sin θ sinφ

∂

∂x
+ sin θ cosφ

∂

∂y

so that

g11 =

〈
∂

∂θ
,
∂

∂θ

〉
= 1

g12 =

〈
∂

∂θ
,
∂

∂φ

〉
= 0

g22 =

〈
∂

∂φ
,
∂

∂φ

〉
= sin2 θ,

so the metric on S2 is

ds2 = dθ2 + sin2 θ dφ2.

Notice that we could also have computed this metric just by using the transforma-
tion formulas

dx = cos θ cosφdθ − sin θ sinφdφ

dy = cos θ sinφdθ + sin θ cosφdφ

dz = − sin θ dθ,

and plugging into ds2 = dx2 + dy2 + dz2.
This is frequently a much faster shortcut for computing the metric for an embed-

ded submanifold (or more generally for any immersed submanifold). The reason it
works is because in the shortcut we compute

g = ι∗h = ι∗

∑
i,j

hij(x) dxi ⊗ dxj


=
∑
i,j

(ι∗hij) (ι∗dxi)⊗ (ι∗dxj)

=
∑
i,j

hij(x ◦ ι) d(xi ◦ ι)⊗ d(xj ◦ ι),

so it’s just using the product rule for pull-backs (a special case of which is (16.4.2)).
In stereographic coordinates (u, v) the immersion is given by

(x, y, z) = ι(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
,
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and we can compute that the metric is

ds2 =
4(du2 + dv2)

(u2 + v2 + 1)2
.

We can generalize both coordinate systems easily. For example, spherical coor-
dinates on S3 would be given by

(w, x, y, z) = (sinψ sin θ cosφ, sinψ sin θ sinφ, sinψ cos θ, cosψ),

i.e., we just attach a sine of a new coordinate to all the old coordinates and throw
in a cosine to the new last coordinate. The metric on S3 is

(19.1.2) ds2 = dψ2 + sin2 ψ dθ2 + sin2 ψ sin2 θ dφ2,

and it should be clear how to get any other dimension to work out the same way.
Stereographic coordinates are even easier to generalize. On S3 we just set

(w, x, y, z) =

(
2t

t2 + u2 + v2 + 1
,

2u

t2 + u2 + v2 + 1
,

2v

t2 + u2 + v2 + 1
,
t2 + u2 + v2 − 1

t2 + u2 + v2 + 1

)
,

and the metric is

ds2 =
4(dt2 + du2 + dv2)

(t2 + u2 + v2 + 1)2
.

Again it is easy to see how to generalize this. ,

The simplest general class of examples comes from surfaces in R3, which were
historically the beginning of the theory. If we have a parametrization (x, y, z) =
(f(u, v), g(u, v), h(u, v)) of some two-dimensional manifold M , then the metric on
M is

ds2 = (f2
u+g2

u+h2
u) du2+(fufv+gugv+huhv) (du⊗dv+dv⊗du)+(f2

v +g2
v+h2

v) dv
2.

So we can just write it as

ds2 = E(u, v) du2 + F (u, v) (du⊗ dv + dv ⊗ du) +G(u, v) dv2

for some functions E,F,G. (Notice that if you take the common shortcut

ds2 = E du2 + 2F du dv +Gdv2,

you have to remember that g( ∂
∂u ,

∂
∂v ) = F rather than 2F ; all the cross terms will

get an extra factor of two depending on your notation.)

Example 19.1.7. A common example is a surface of revolution. Take a parametric
curve in the plane, and suppose it lies entirely to the right of the y-axis. We have
x = α(u), y = β(u) where α(u) > 0 for all u. Now suppose we want to revolve
this curve around the y-axis. We introduce a z-axis perpendicular to the plane and
consider a parametrized circle of x and z points around each fixed y point, of radius
α(u). Thinking of it this way, the parametrization is

(x, y, z) = (α(u) cos v, β(u), α(u) sin v).

Then the metric is

ds2 = (α′(u)2 + β′(u)2) du2 + α(u)2 dv2.

If we are fortunate enough that the original curve in the plane is parametrized by
arc length, then we have α′(u)2 + β′(u)2 = 1, and the metric becomes

ds2 = du2 + α(u)2 dv2.

The spherical coordinates metric on the sphere is obviously a special case of this.
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Another example is a paraboloid, obtained by revolving a parabola x = u, y = u2;
we get

ds2 = (1 + 4u2) du2 + u2 dv2.

An ellipsoid comes from revolving x = a cosu, y = b sinu, so we get

ds2 = (a2 sin2 u+ b2 cos2 u) du2 + a2 cos2 u dv2.

Unsurprisingly when a = b = 1 we get the standard metric on the sphere.
A cylinder comes from revolving a vertical line such as x = 1, y = u. In this

case we get ds2 = du2 + dv2. Note that this is the same formula as the flat plane’s
metric. This will be important in a bit.

A cone comes from revolving x = u, y = u, which leads to the metric ds2 =
2du2 + u2 dv2. Rescaling the coordinates to u = p/

√
(2) and v = q

√
2 we get the

metric ds2 = dp2 + p2 dq2, which is the same formula as the flat plane in polar
coordinates. ,

19.2. Invariance and curvature. To do Riemannian geometry, we imagine peo-
ple living in the manifold. They can measure lengths of curves, and therefore they
can measure lengths of vectors (which are just infinitesimal curves). So in any co-
ordinate system they use, they can tell you what the metric components are. If you
give them a surface, they’ll divide it up into little approximately flat quadrilaterals,
and compute the areas using the fact that they know the lengths of all the sides.
So they can compute areas. Similarly they can build up volumes and such. Since
they can also measure angles between vectors using

g(u, v) = |u||v| cos θ,

they can do most of what we think of as geometry. They’d build “straight lines”
out of geodesics, which are curves between two points minimizing lengths. In this
way they’d build “triangles.” By finding the shortest curve joining one point to
another, they’d compute distances. They could build “circles” or “spheres” by
finding all points equidistant to the center. The formulas they’d get for the relation
between the circumference or surface area of their circles or spheres in terms of
their radii would probably be different from what we have in Euclidean space, and
that’s how they could figure out whether they live in a curved manifold or not. The
only Euclidean constructions they might not be able to imitate are sliding things
around rigidly and rotating things, although even then some things would still work
depending on whether their manifold had symmetry.

The important thing is that the only things they can do geometrically, living
inside the manifold, are things that involve the metric. Locally (in a single coordi-
nate chart), only the metric components matter. Hence for example locally there
is no way for someone living on a cylinder or cone to tell the difference between
their surface and the Euclidean plane, since as we saw, in the right coordinates the
Riemannian metrics are all the same. Globally one could tell the difference since
one coordinate chart works for the plane and multiple are needed for the cone or
cylinder, and of course it’s an important problem to distinguish manifolds globally
that are the same locally, but the first thing to do is understand the local structure
in coordinates.

This is harder than it seems at first. Figuring it out for surfaces gets us most of
the main ideas we need, so we will specialize to that case. We know that the metric
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is completely determined by three functions appearing in the formula

ds2 = E(u, v) du2 + 2F (u, v) du dv +G(u, v) dv2.

However the same space may have many different representations. The Euclidean
plane is described by E(u, v) = 1, F (u, v) = 0, G(u, v) = 1 (Cartesian coordinates),
but it’s also described by E(u, v) = u2+v2, F (u, v) = 0, G(u, v) = u2+v2 (parabolic
coordinates), and it’s also described by E(u, v) = 1, F (u, v) = 0, G(u, v) = u2

(polar coordinates). So the geometry is encoded in these three functions in a rather
subtle way. The sphere is described by the three functions E(u, v) = 1, F (u, v) =
0, G(u, v) = sin2 u; how would I know just by looking at these formulas (without
knowing where they came from) that all the Euclidean formulas represent the same
space and the spherical formula represents a different space?

The original motivation for this problem is the question we discussed in the
introduction to these notes: why is there no good map of the earth? There are
good maps of a cylinder (you just cut it along some irrelevant line and unfold the
cylinder until it flattens so you see a rectangle) and of the cone (again, cut it and
unfold it until it flattens, and you’ll see a Pac-Man type of shape in the plane).
Something about the sphere prevents us from doing this, and we should be able to
see it in the metric components.

The issue here is that three functions determine the metric components, but
there’s a huge freedom to change coordinates. Roughly speaking I can change
coordinates using two new functions, and I expect to set it up so that I can change
two of the functions to whatever I want. So there should really only be one function
that determines the geometry. How would I find it?

It was actually found in a somewhat indirect way historically, and the reason
why will be clear once you see the formula.

Here’s the basic question. Let’s imagine we had some metric given to us:

ds2 = E(u, v) du2 + 2F (u, v) du dv +G(u, v) dv2.

Is this actually a Euclidean metric in some other coordinates? That is, are there
functions x = f(u, v), y = g(u, v) such that

ds2 = dx2 + dy2?

Once we decide what we’re looking for, we just apply the coordinate change formula.
We want to see

dx2 + dy2 = E(u, v) du2 + 2F (u, v) du dv +G(u, v) dv2,

which means

(f2
u + g2

u) du2 + 2(fufv + gugv) du dv + (f2
v + g2

v) dv2

= E(u, v) du2 + 2F (u, v) du dv +G(u, v) dv2.

So we get three partial differential equations for the unknown functions f, g:

f2
u + g2

u = E(u, v)

fufv + gugv = F (u, v)

f2
v + g2

v = G(u, v).

(19.2.1)

Three equations for two functions: again there is one constraint that the data will
have to satisfy, and this should be where the geometry is.
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Our equations involve differentiating with respect to both u and v, so a compat-
ibility condition comes from the fact that if there is a solution f, g, then we must
have fuv = fvu and guv = gvu. This is exactly the same sort of thing that came up
in Example 15.2.9 when we tried to solve the two equations

∂h

∂x
= α(x, y)

∂h

∂y
= β(x, y)

for one function h (that is, trying to solve dh = ω for a 1-form ω). There’s no
reason for a solution to exist without some special condition, and the condition you
find is that α and β must be related by ∂α

∂y = ∂β
∂x , since that’s what comes from

∂2h
∂x∂y = ∂2h

∂y∂x . In other words, dω = 0. Conversely if this condition is satisfied, then

we can solve for h by integrating one equation, and the other one will end up being
satisfied, using the Poincaré Lemma, Proposition 15.2.10.

Unfortunately the equations (19.2.1) are nonlinear. Now there is a general tech-
nique to figure out the conditions under which you can solve a nonlinear system of
partial differential equations, especially when they’re overdetermined (like this one
is). It’s called the Cartan-Kahler method; at the University of Colorado, Jeanne
Clelland is the local expert. Since we’re only doing this one special case, we won’t
discuss the general technique, but it’s worth knowing that there is one.

So the first thing we can do is differentiate them, because what we’ll end up
with will be linear in the highest-order terms. So we differentiate each of the three
equations with respect to whatever we can, to get six equations.

2fufuu + 2guguu = Eu 2fufuv + 2guguv = Ev(19.2.2)

2fvfuv + 2gvguv = Gu 2fvfvv + 2gvgvv = Gv.(19.2.3)

fufuv + fvfuu + guguv + gvguu = Fu(19.2.4)

fufvv + fvfuv + gugvv + gvguv = Fv(19.2.5)

(19.2.6)

The last two equations simplify, using the others, to

(19.2.7) fvfuu + gvguu = Fu − 1
2Ev,

and

(19.2.8) fufvv + gugvv = Fv − 1
2Gu.

We’ve now got six linear equations for six quantities fuu, fuv, fvv, guu, guv, gvv.
In fact they occur in pairs: if we just look at fuu and guu, then we have

fufuu + guguu = 1
2Eu

fvfuu + gvguu = Fu − 1
2Ev,

(19.2.9)

and we can think of this as a matrix equation with coefficient matrixA =

(
fu gu
fv gv

)
.

Of course, this is the transformation matrix from (u, v) to (x, y), so in particular it
should be nonsingular. In fact we can rewrite (19.2.1) as the single matrix equation

AAT = Λ where Λ is the matrix of metric coefficients, Λ =

(
E F
F G

)
.

So thinking of (19.2.9) as a matrix equation, we have

A

(
fuu
guu

)
=

1

2

(
Eu

2Fu − Ev

)
.
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We want to multiply by A−1, but doing this directly would involve finding the
determinant fugv − fvgu, which is not hard but which makes the equations more
complicated. Instead we work indirectly: since AAT = Λ, we know A−1 = ATΛ−1;
the nice thing about this is that our equations end up linear in the unknowns f
and g (and rather nonlinear in the knowns, but sacrifices must be made). Then we
get(
fuu
guu

)
=

1

2(EG− F 2)

(
GEufu +G(2Fu − Ev)fv − FEugu + (2Fu − Ev)gv
−FEufu − F (2Fu − Ev)fv + EEugu + E(2Fu − Ev)gv

)
.

Similarly with the other terms.
Summarizing it all is a bit easier in index notation: write u1 = u, u2 = v, x1 =

x = f(u, v), x2 = y = g(u, v). Then the equations we end up with are of the form

(19.2.10)
∂2xk

∂ui∂uj
=

2∑
m=1

Γmij
∂xk

∂um
,

where the functions Γmij are called the Christoffel symbols and are given by

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

Γ2
11 =

−FEu + 2EFu − EEv
2(EG− F 2)

Γ1
12 =

GEv − FGu
2(EG− F 2)

Γ2
12 =

EGu − FEv
2(EG− F 2)

Γ1
22 =

2GFv −GGu − FGv
2(EG− F 2)

Γ2
22 =

EGv + FGu − 2FFv
2(EG− F 2)

.

(19.2.11)

We set Γmij = Γmji .

Now finally we have linear equations (19.2.10) for the unknowns x1 = f and x2 =
g, and the question is whether we can solve them. Actually note that derivatives
of f and g satisfy the same equation, so it’s just a question of whether there is a
solution of the equation

∂2f

∂ui∂uj
=

2∑
m=1

Γmij
∂f

∂um
.

We want a compatibility condition that will come from equating mixed partials;
right now we’re not getting one (just Γmij = Γmji), so we have to differentiate one

more time. Let’s say with respect to uk.

∂3f

∂ui∂uj∂uk
=

2∑
m=1

∂Γmij
∂uk

∂f

∂um
+

2∑
m=1

Γmij
∂2f

∂um∂uk

=

2∑
p=1

∂Γpij
∂uk

∂f

∂up
+

2∑
m=1

2∑
p=1

ΓmijΓ
p
mk

∂f

∂up
.

The equality of mixed partials means that if we rearrange (i, j, k) in any way what-
soever, we’ll get the same thing on the left side, and so we should get the same thing
on the right side. Now we already know (and it’s easy to see) that the order between
i and j doesn’t matter. So the only interesting term comes from interchanging k
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with j, or equivalently interchanging k with i. So the condition is that
(19.2.12)

2∑
p=1

∂Γpij
∂uk

∂f

∂up
+

2∑
m=1

2∑
p=1

ΓmijΓ
p
mk

∂f

∂up
=

2∑
p=1

∂Γpik
∂uj

∂f

∂up
+

2∑
m=1

2∑
p=1

ΓmikΓpmj
∂f

∂up

for all combinations i, j, k. And actually we can write the whole equation as a
vector field (for each fixed i, j, k) which acts by differentiating the function f ; we
set

(19.2.13) Rpjki =
∂Γpij
∂uk

−
∂Γpik
∂uj

+

2∑
m=1

ΓmijΓ
p
mk −

2∑
m=1

ΓmikΓpmj ,

and equation (19.2.12) says that

2∑
p=1

Rpjki
∂f

∂up
= 0.

Recall this equation must be true for both f and g since (19.2.10) holds for both
f and g. So for each fixed i, j, k we have a vector field which, applied to both
coordinate functions, gives zero. That means the vector field itself must be zero.
So we obtain finally that

(19.2.14) Rpjki = 0 for all i, j, k, p.

This looks like a lot of conditions to satisfy (16 in principle), but it turns out
there’s really only one condition (as we expect heuristically), because R ends up
having a lot of symmetries. The tensor R is called the Riemann curvature tensor ;
many authors also define what I wrote to be the negative of the curvature tensor,
and the differential geometry community has never agreed which sign is correct.
It’s probably not at all obvious that it actually is a tensor (i.e., that you’d have
the same formula under a coordinate change), but in principle you could check
that, and historically that’s what would have been done. The nice thing about this
approach is that the exact same technique works just as well in higher dimensions
(though the definitions of the Christoffel symbols are different there).

As an example of the type of symmetries that exist in two dimensions, we can
(ask Maple to) compute that

FR2
121 + ER1

121 = 0, GR1
121 − FR1

122 = 0, FR1
122 +GR2

122 = 0.

So really if we know for example R2
121 then we know all the others. So only curvature

term that matters is the sectional curvature, normalized by K = R2
121/E, which

becomes, after plugging all the Christoffel symbols (19.2.11) into the curvature
formula (19.2.13), the big mess

(19.2.15) K = − 1

4(EG− F 2)2

(
2EGEvv − 2F 2Evv + 2EGGuu − 2F 2Guu

− 4EGFuv + 4F 2Fuv − EEvGv − EG2
u − FEuGv −GEuGu + FGuEv

+ 2GEuFv − 4FFuFv + 2FEvFv + 2FFuGu −GE2
v + 2EFuGv

)
Obviously nobody actually wants to work with this formula, but the beauty of it
is that it’s coordinate-invariant and depends only on the metric components. This
formula was Gauss’ “Remarkable Theorem.” The point of everything in this section
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so far has been to prove that if some metric components are given and it turns out
that K ≡ 0, then there is a new coordinate system in which the Riemannian metric
is Euclidean. Conversely if K 6= 0 at any point, then no coordinate chart will make
the metric Euclidean.

Example 19.2.1. The general formula (19.2.15) is probably a fair bit more com-
plicated than you might expect for something so seemingly natural, geometrically.
Practically we almost always have some special case that makes things easier.

The most common situation is when the coordinates are orthogonal, in which
case F ≡ 0. The curvature formula then reduces to

(19.2.16) K =
−1

4E2G2

(
2EGEvv + 2EGGuu −EEvGv −EG2

u −GEuGu −GE2
v

)
.

Specializing even further, if it happens that the cross-term F is zero and also
that the metric components don’t depend explicitly on v (such as for a surface of
revolution), then the curvature is

(19.2.17) K =
−1

4E2G2

(
2EGGuu − EG2

u −GEuGu
)
.

On the other hand if we have a polar representation for the surface, then we
can write E = 1 and F = 0 with G(u, v) some arbitrary positive function. Write
G(u, v) = α(u, v)2; then the curvature becomes the much simpler formula

(19.2.18) K = − 1

α4

(
2GGuu −G2

u

)
= −

∂2α
∂u2 (u, v)

α(u, v)
.

For example if we have a surface of revolution arising from a curve (α(u), β(u))
parametrized by arc length, then E = 1 and G = α(u)2, so that the curvature
simplifies to

(19.2.19) K = −α′′(u)/α(u).

Finally if we have an isothermal coordinate chart, in which the metric is such
that F = 0 and E(u, v) = G(u, v) (with possibly both depending on u and v), then
we get

(19.2.20) K =
−1

2E3

(
EEvv + EEuu − E2

u − E2
v

)
.

Now let’s do some things explicitly. First for Cartesian coordinates we have
E = 1, F = 0, G = 1, so that obviously K = 0 by (19.2.18). For the Euclidean
metric in polar coordinates we have E = 1, F = 0, G = u2 and (19.2.19) gives
K = 0 as expected. For the Euclidean metric in parabolic coordinates we have
E = G = u2 + v2, and (19.2.20) gives K = 0. For the Euclidean metric in elliptical
coordinates we have E = G = sinh2 u+ sin2 v, and again (19.2.20) gives K = 0.

For the standard sphere S2 we have E = 1, F = 0, and G = sin2 u, and (19.2.19)
gives K = 1 (independently of u). So the sphere has constant positive curvature.
The fact that the curvature is constant means that the local geometry is essentially
the same everywhere, which implies (if we didn’t know it already) that there are a
lot of isometries of the sphere.

Taking advantage of (19.2.19) we see that if E = 1, F = 0, and G = sinh2 u,
then we get K = −1, independently of u. This gives another space with a lot of
symmetry; the geometry is called hyperbolic geometry. This was historically the first
non-Euclidean geometry, and this was not at all the method used to find it. (There
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are a lot of different ways of thinking about hyperbolic geometry, corresponding
to many different models.) What’s a bit strange about this is that hyperbolic
geometry does not come from a surface of revolution of an arc-length parametrized
curve. If it did, we’d have to have α′(u)2 + β′(u)2 = 1 and α(u) = sinhu, but that
would imply β′(u)2 = 1−cosh2 u = − sinh2 u, which is impossible. The geometry is
basically the Euclidean plane with a different metric, but because the change from
sine to hyperbolic sine switches the curvature from +1 to −1, the hyperbolic plane
is sometimes called the “pseudosphere.” ,

This was not quite the historical development. Actually the approach was to
study the curvature of a surface S (which was of course a subset of R3) by using
the Frenet-Serret formulas for curvature of a curve. You take any point p you’re
interested in, take any unit vector s parallel to the surface, and the normal unit
vector n to the surface, and form the plane π spanned by s and n. The intersection
of the plane π with the surface S forms a curve C through p, which has a certain
curvature at the point p (found as the magnitude of the second derivative vector
when the curve is parametrized by arc length). Then you consider all possible unit
vectors s in the tangent plane and see how the curvature κ depends on s. Now it
turns out that κ(s) = 〈s,Πs〉 for some symmetric matrix Π, and so the maximum
and minimum of κ are the eigenvalues κ1 and κ2 which are called the principal
curvatures. These always occur in perpendicular directions (since eigenvectors of
a symmetric matrix are orthogonal), so the curvature and thus the geometry is
completely determined by κ1 and κ2 at every point.

The principal curvatures will tell you how a surface bends in space (the extrinsic
geometry), but they won’t characterize the geometry that can be measured from
inside the surface. Two spaces might have the same local geometry (i.e., the same
metric coefficients after coordinates are changed) but different principal curvatures.
For example on the plane, κ1 = κ2 = 0, while on the cylinder of radius R, we have
κ1 = 1

R and κ2 = 0. For the sphere of radius R we have κ1 = κ2 = 1
R . Yet the plane

and cylinder are the same in terms of local geometry, while the sphere is genuinely
different.

Gauss discovered that while the principal curvatures were not intrinsic geometric
invariants, the product of them K = κ1κ2 is a geometric invariant. He showed this
by computing it directly: he parametrized an arbitrary surface in terms of some
functions f, g, h, found the metric coefficients E,F,G in terms of those functions,
and also computed K = κ1κ2 in terms of those functions. Then by simplifying the
formula he found that K depended only on E,F,G. This made Gauss very happy,
and he named the result his “Theorema Egregium” (Remarkable Theorem). You
can imagine how he might have felt if you imagine what you’d have to do to compute
K directly from my description in terms of the Fernet-Serret formulas, then try to
find the cancellation which gets everything in terms of the metric coefficients (when
dealing with second-derivatives of everything, of course).

19.3. The covariant derivative. We now want to do something that will both
allow us to finally differentiate vector fields (and pretty much anything else). In
addition it will give us a much nicer invariant formula (in terms of vector fields,
not coordinates) for the Riemann curvature tensor.

We still have not defined derivatives of vector fields except for the Lie derivative,
and the problem with the Lie derivative LUV is that it’s not tensorial in either U
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or V . We’d expect an actual derivative in the standard sense, which we’ll denote
by ∇UV , to be tensorial in U and not tensorial in V . It should be a first-order
differential operator in V , so we should have the product rule

∇U (fV ) = U(f)V + f∇UV
for any smooth function f .

To get a clue about what it should be, let’s compute the covariant derivative
we expect in Cartesian coordinates. Write U =

∑
i u

i(x1, · · · , xn) ∂
∂xi and V =∑

j v
j(x1, · · · , xn) ∂

∂xj . Then we get

∇UV =
∑
i,j

ui(x1, · · · , xn)
∂vj

∂xi
(x1, · · · , xn)

∂

∂xj
.

Let’s see what happens to this in another coordinate system (y1, · · · , yn).

If U =
∑
k ũ

k ∂
∂yk

and V =
∑
l ṽ
l ∂
∂yl

, then we have ui =
∑
k
∂xi

∂yk
ũk and vj =∑

l
∂xj

∂yl
ṽl. So

∇UV =
∑
i,j

ui
∂vj

∂xi
∂

∂xj

=
∑
i,j,k,m

ũi
∂

∂yi

(
∂xj

∂yk
ṽk
)
∂ym

∂xj
∂

∂ym

=
∑
i,j,k,m

ũiṽk
∂2xj

∂yi∂yk
∂ym

∂xj
∂

∂ym
+
∑
i,j,k,m

ũi
∂ṽk

∂yi
∂xj

∂yk
∂ym

∂xj
∂

∂ym

=
∑
i,k,m

Γmikũ
iṽk

∂

∂ym
+
∑
i,j,k

ũi
∂ṽk

∂yi
∂

∂yk
,

where

(19.3.1) Γmik =
∑
j

∂ym

∂xj
∂2xj

∂yi∂yk
.

The terms Γmik are the Christoffel symbols that already came up in Section 19.2;
to see this, recall by formula (19.2.10) that

∂2xk

∂yi∂yj
=

n∑
m=1

Γmij
∂xk

∂ym

when the x-coordinate system is Euclidean. Thus the Christoffel symbols are ob-
tained by multiplying both sides by the inverse matrix ∂y

∂x .
They are not the components of a tensor of type (2, 1), despite the notation.

The Christoffel symbols are zero for Cartesian coordinates and nonzero for most
other coordinate systems, even on Euclidean space. If a tensor’s components are
zero in one coordinate system, then they must be zero in all coordinate systems.
They are not coordinate-invariant objects; they depend on the Euclidean metric. If
we are willing to incorporate Christoffel symbols, then we can define the covariant
derivative this way, but this only works on Euclidean spaces.

But we want a definition that will work for any Riemannian manifold. Notice
that we needed to incorporate the Riemannian metric in Euclidean space to get
this to work: we ended up with a formula that’s simple in Cartesian coordinates
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and more complicated in other coordinates. So we’re going to find some invariant-
looking properties of the covariant derivative we want.

The first thing is that in Euclidean space we have, for any vector fields U and V
that

∇UV −∇V U =
∑
i

∑
j

(
ui
∂vj

∂xi
− vi ∂u

j

∂xi

)
∂

∂xj
.

We recognize the right-hand side as the formula for the Lie bracket [U, V ] in co-
ordinates. In fact the right-hand side doesn’t depend on choice of coordinates, by
Proposition 14.5.4. So it seems perfectly reasonable to demand

(19.3.2) ∇UV −∇V U = [U, V ].

This isn’t enough though. Notice that if you took any functions ζkij which satis-

fied ζkij = ζkji, and declared

∇UV =
∑
i,j

ui
∂vj

∂xi
∂

∂xj
+
∑
i,j,k

ζkiju
ivj

∂

∂xk
,

then we would have ∇UV − ∇V U = [U, V ]. So we need some more properties to
completely determine ∇UV .

Consider any three vector fields U, V,W . Write 〈V,W 〉 = g(V,W ) to simplify the
notation a bit. Then 〈V,W 〉 is a function on the manifold, and U(〈V,W 〉) makes
sense and is another function. The operation (U, V,W ) 7→ U(〈V,W 〉) is linear
(over constants) and is obviously tensorial in U . It is also a first-order differential
operator in V and W , since it satisfies the product rule

U(〈fV,W 〉) = U
(
f〈V,W 〉

)
= U(f)〈V,W 〉+ fU

(
〈V,W 〉

)
.

So it would make sense to ask that

(19.3.3) U
(
〈V,W 〉

)
= 〈∇UV,W 〉+ 〈V,∇UW 〉;

Both sides are tensorial in U and satisfy a product rule in V and W separately.
Furthermore this formula obviously works out nicely for the Euclidean metric, when
〈V,W 〉 =

∑
k V

kW k. Since we’re trying to define ∇UV in a coordinate-invariant
way, and the left side of (19.3.3) is coordinate-independent, the fact that this for-
mula works is independent of the choice of Cartesian coordinates. (We could verify
it in another coordinate system on Euclidean space using the Christoffel symbols
from (19.3.1), and if you want some good practice with partial derivative manipu-
lations, you should try it.)

Now we haven’t asked for very much, just the absolute basics, but it turns
out the two requirements (19.3.2) and (19.3.3) completely determine the covariant
derivative in any Riemannian manifold. The proof is due to Koszul and is kind of
fun.

Proposition 19.3.1. Suppose M is a Riemannian manifold with Riemannian met-
ric g = 〈·, ·〉. Then there is a unique covariant derivative map on vector fields,
(U, V ) 7→ ∇UV , satisfying the properties

[U, V ] = ∇UV −∇V U,
U
(
〈V,W 〉) = 〈∇UV,W 〉+ 〈V,∇UW 〉,
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for any vector fields U, V,W , along with the properties

∇fUV = f∇UV,
∇U (fV ) = U(f)V + f∇UV,

(19.3.4)

for any smooth function f and any vector fields U and V .

Proof. The basic idea is to just start computing 〈∇UV,W 〉 using the assumed prop-
erties. It doesn’t look like it’ll work out at first, but it does. Then we conclude that
if we know 〈∇UV,W 〉 for every vector field W , then we know exactly what ∇UV
must be. So let’s go.

〈∇UV,W 〉 = U
(
〈V,W 〉)− 〈V,∇UW 〉

= U
(
〈V,W 〉)− 〈V, [U,W ]〉 − 〈V,∇WU〉

= U
(
〈V,W 〉)− 〈V, [U,W ]〉 −W

(
〈V,U〉

)
+ 〈∇WV,U〉

= U
(
〈V,W 〉)− 〈V, [U,W ]〉 −W

(
〈V,U〉

)
+ 〈[W,V ], U〉+ 〈∇VW,U〉

= U
(
〈V,W 〉)− 〈V, [U,W ]〉 −W

(
〈V,U〉

)
+ 〈[W,V ], U〉+ V

(
〈W,U〉

)
− 〈W,∇V U〉

= U
(
〈V,W 〉)− 〈V, [U,W ]〉 −W

(
〈V,U〉

)
+ 〈[W,V ], U〉+ V

(
〈W,U〉

)
− 〈W, [V,U ]〉 − 〈W,∇UV 〉,

and we end up back where we started with 〈∇UV,W 〉. Which is usually a bad
thing, except in this case it means we can pull both terms over to the left side and
get the Koszul formula

(19.3.5) 〈∇UV,W 〉 =
1

2

(
U
(
〈V,W 〉)− 〈V, [U,W ]〉 −W

(
〈V,U〉

)
+ 〈[W,V ], U〉+ V

(
〈W,U〉

)
− 〈W, [V,U ]〉

)
.

For a nice intricate exercise in understanding tensoriality, you can actually prove
using this formula that if 〈∇UV,W 〉 is defined by the right-hand side of (19.3.5),
then despite appearances it’s actually tensorial in U , tensorial in W , and satisfies a
product rule in V . So it does what we expect automatically, even without explicitly
incorporating those assumptions. Thus we end up with a definition of the covariant
derivative in terms of arbitrary vector fields. �

The formula (19.3.5) is rather cute, but we frequently want to do our com-
putations in coordinates. So let’s see what happens in a coordinate chart. Let
U =

∑
i u

i ∂
∂xi , V =

∑
j v

j ∂
∂xj . We get (using tensoriality in U and the product

rule in V ) that

∇UV =
∑
i

ui∇ ∂

∂xi

(∑
j

vj
∂

∂xj

)
=
∑
i

∑
j

ui
∂vj

∂xi
∂

∂xj
+
∑
i

∑
j

uivj∇ ∂

∂xi

∂

∂xj
.

Now whatever ∇ ∂

∂xi

∂
∂xj is, it’s a vector field for each fixed i and j and can

therefore also be expressed in the coordinate field basis. At long last, let’s give the
proper definition of the Christoffel symbols for a general Riemannian manifold.
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Definition 19.3.2. Suppose M is a Riemannian manifold, and ∇ is the unique
Riemannian covariant derivative determined by Propositon 19.3.1.

Then in any coordinate chart (x1, · · · , xn), the Christoffel symbols Γkij are defined
by the formula

(19.3.6) ∇ ∂

∂xi

∂

∂xj
=
∑
k

Γkij
∂

∂xk
.

Since
[
∂
∂xi ,

∂
∂xj

]
= 0 in any coordinate chart, we have Γkij = Γkji for any i, j, k.

If U and V are vector fields expressed in coordinates as U =
∑
i u

i ∂
∂xi and

V =
∑
j v

j ∂
∂xj , then the covariant derivative in these coordinates is

(19.3.7) ∇UV =
∑
i,j

ui
∂vj

∂xi
∂

∂xj
+
∑
i,j,k

Γkiju
ivj

∂

∂xk
.

Proposition 19.3.3. In a coordinate chart (x1, · · · , xn) on a Riemannian manifold
M , with metric g given in components by gij = g

(
∂
∂xi ,

∂
∂xj

)
and having inverse

metric g−1 = gij, the Christoffel symbols are given by

(19.3.8) Γkij =
∑
`

1

2
gk`
(
∂ig`j + ∂jg`i − ∂`gij

)
.

Proof. We just have to apply the Koszul formula when U = ∂
∂xi , V = ∂

∂xj , and

W = ∂
∂xk

. All the Lie brackets are zero, and only the derivatives of the metric
matter. We get

Γmij gmk =
1

2

(
∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij

)
.

Now apply the inverse matrix gk` to both sides to solve for Γmij , and rename indices
to get (19.3.8). �

We should verify this result in the Euclidean case, since we’ve already been
dealing with a different-looking formula (19.3.1). In x-coordinates the metric is δij ,
so that in y-coordinates we have

gij =
〈 ∂

∂yi
,
∂

∂yj

〉
=
∑
m

∂xm

∂yi
∂xm

∂yj
.

Thus

∂igjk + ∂jgik − ∂kgij =
∑
m

∂i
(
∂xm

∂yj
∂xm

∂yk

)
+ ∂j

(
∂xm

∂yi
∂xm

∂yk

)
− ∂k

(
∂xm

∂yi
∂xm

∂yj

)
=
∑
m

2 ∂2xm

∂yi∂yj
∂xm

∂yk
.

Plugging the left side into (19.3.8), we get (19.3.1), as expected.
We now know how to differentiate one vector field in the direction of another,

and in general you can replace any “directional derivative” in a Euclidean formula
with a covariant derivative to get a Riemannian version of that formula. (This is
useful when doing physics on manifolds, for example studying fluids on the surface
of a sphere.)

There is a different sort of derivative which is closely related and just as useful.
It involves differentiating a vector which depends on a parameter. Now if the vector
always stays in the same tangent space, there is no problem whatsoever, and we
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can differentiate it without even thinking about a Riemannian metric. The only
thing to worry about is when the vector’s base point moves around as well. So let’s
suppose we have a curve γ : (−ε, ε) → M and a vector V : (−ε, ε) → TM whose
base point is always γ(t). We say that V is a vector field along the curve γ.

Definition 19.3.4. Suppose V is a vector field along a curve γ. Then there is a
unique covariant derivative DV

dt such that

D

dt

(
f(t)V (t)

)
=
df

dt
V (t) + f(t)

DV

dt
,

d

dt
〈U(t), V (t)〉 =

〈
DU

dt
, V (t)

〉
+

〈
U(t),

DV

dt

〉
,

and if W is a vector field on M such that V (t) = W (γ(t)), then

DV

dt
= ∇ dγ

dt
W.

In coordinates (x1, · · · , xn), where the curve is γ(t) =
(
γ1(t), · · · , γn(t)

)
and the

vector field is V (t) =
∑n
j=1 v

j(t) ∂
∂xj

∣∣
γ(t)

, we have

(19.3.9)
DV

dt
=

n∑
i=1

dvi

dt

∂

∂xi

∣∣∣
γ(t)

+

n∑
i,j,k=1

vj(t)
dγk

dt
Γijk(γ(t))

∂

∂xi

∣∣∣
γ(t)

.

Uniqueness of this derivative is straightforward from the coordinate formula, and
the coordinate formula can be used to establish existence just by checking that the
same formula works in any coordinate system.

Using the covariant derivative along a curve, we can compute the second deriv-
ative of a curve just by setting V (t) = dγ

dt . We get

D

dt

dγ

dt
=

n∑
i=1

d2γi

dt2
+
∑
j,k

Γijk(γ(t))
dγj

dt

dγk

dt

 ∂

∂xi

∣∣∣
γ(t)

.

Similarly we can compute derivatives of all orders of a curve. It is important just
to note that it depends on the Riemannian metric.

Example 19.3.5. As an application, we consider the covariant derivative on the
Euclidean space R2 in polar coordinates. Suppose a curve is described by γ(t) =(
r(t), θ(t)

)
. The metric components are g11 = 1, g12 = 0, and g22 = r2. From this

we compute that the Christoffel symbols are

Γ1
22 = −1

2

∂

∂r
g22 = −r

Γ2
12 =

1

2r2

∂

∂r
g22 =

1

r
,

with all other symbols equaling zero. Hence the second derivative in polar coordi-
nates is

D

dt

dγ

dt
=

(
d2r

dt2
− r

(
dθ

dt

)2
)

∂

∂r
+

(
d2θ

dt2
+

2

r

dr

dt

dθ

dt

)
∂

∂θ
.

(Remember that the Christoffel symbols are symmetric, so we get a factor of two
because of Γ2

12 and Γ2
21.)
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These extra terms in the second derivative are important in physics, since they
essentially represent “forces.” Newton’s equation on a Riemannian manifold is

D

dt

dγ

dt
= F

(
γ(t)

)
where F is the vector field representing the force. Frequently the force acts only
along the radial vector (i.e., a “central force”), so it’s proportional to ∂

∂r . So it’s
natural to write Newton’s equations in polar coordinates. When you do this, you
end up with equations that look like

d2r

dt2
= r

(
dθ

dt

)2

+ F (r)

d2θ

dt2
= −2

r

dθ

dt

dr

dt
.

It looks like we have mysterious extra forces on the right side, like “centrifugal
force” and “centripetal force” and such. These aren’t actual forces, they’re just
the Christoffel symbols. Similar sorts of “forces” will show up in any coordinate
system where the metric components are not constant (which is typical in any
non-Cartesian system).

To make this look slightly more familiar, note that we can solve the second
equation for dθ

dt since it implies that d
dt (r

2 dθ
dt ) = 0. So dθ

dt = ω
r2 for some constant ω

(the angular momentum), and then the equation for r becomes

d2r

dt2
=
ω2

r3
+ F (r).

,

The analogue of a straight line in Riemannian geometry is a geodesic, which
is a curve γ(t) such that D

dt
dγ
dt = 0. This is the curve a particle in the manifold

will follow when there are no external forces. In Riemannian geometry these are
fundamental, and one builds many other concepts in terms of them. Note that the
geodesic equation in coordinates is just a second-order differential equation, and
thus it is uniquely determined once we specify the initial conditions γ(0) and γ′(0).

Now finally let’s see how to define the Riemann curvature tensor for a general
Riemannian manifold. (In Section 19.2 we defined it only for a manifold where the
metric was Euclidean after some coordinate change.)

Definition 19.3.6. Suppose M is a Riemannian manifold, with covariant deriv-
ative defined as in Proposition 19.3.1. Then the Riemann curvature tensor is a
tensor field of type (3, 1), i.e., it takes three vector fields and gives another vector
field, or you can think of it as taking three vector fields and a covector field and
giving you a function. It is defined as

(19.3.10) R(U, V )W = ∇V∇UW −∇U∇VW +∇[U,V ]W.

To call this a definition, we should of course verify that R is a tensor field, which
means that it’s tensorial in U , in V , and in W .

Proposition 19.3.7. The Riemann tensor is a tensor.
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Proof. First check tensoriality in U . We can easily see that [fU, V ] = f [U, V ] −
V (f)U . So we have

R(fU, V )W = ∇V∇fUW −∇fU∇VW +∇[fU,V ]W

= ∇V (f∇UW )− f∇U∇VW +∇f [U,V ]−V (f)UW

= V (f)∇UW + f∇V∇UW − f∇U∇VW + f∇[U,V ]W − V (f)∇UW
= fR(U, V )W.

Tensoriality in V is obvious since R(U, V )W = −R(V,U)W .
Now finally let’s check tensoriality in W . We have

R(U, V )(fW ) = ∇V∇U (fW )−∇U∇V (fW ) +∇[U,V ](fW )

= ∇V
(
U(f)W + f∇UW

)
−∇U

(
V (f)W + f∇VW

)
+ [U, V ](f)W + f∇[U,V ]W

= V (U(f))W + U(f)∇VW + V (f)∇UW + f∇V∇UW
− U(V (f))W − V (f)∇UW − U(f)∇VW − f∇U∇VW
+ U(V (f))W − V (U(f))W + f∇[U,V ]W

= fR(U, V )W.

�

You can easily compute what the coefficients Rpijk of this tensor are in terms

of the Christoffel symbols, and you come up with the formula (19.2.13) (of course
with 2 replaced by n).

So we already have two different interpretations of the Riemann curvature tensor.
One is a compatibility condition for a partial differential equation that sort of comes
out of nowhere, while another is an explicit check of the failure of the covariant
derivative to be commutative. When studying the details of geodesics one can get
another interpretation of the curvature tensor as a correction term of the deviation
between nearby geodesics (which in Euclidean space would obviously be linear in
the time parameter, but in general may have higher-order dependence on time).
The various things you can do with curvature are the subject of an entire course in
Riemannian geometry, but this is just a taste.

The curvature tensor has the obvious symmetry R(U, V )W = −R(V,U)W , but
we can make it look even more symmetric by defining a tensor of order (4, 0) by
lowering indices.

Definition 19.3.8. The index-lowered Riemann curvature tensor is a tensor field
of type (4, 0) defined by

(19.3.11) R(U, V,W,X) = 〈∇V∇UW −∇U∇VW +∇[U,V ]W,X〉.

Proposition 19.3.9. The index-lowered curvature tensor has the following sym-
metries:

R(U, V,W,X) +R(V,U,W,X) = 0(19.3.12)

R(U, V,W,X) +R(U, V,X,W ) = 0(19.3.13)

R(U, V,W,X)−R(W,X,U, V ) = 0(19.3.14)

R(U, V,W,X) +R(V,W,U,X) +R(W,U, V,X) = 0.(19.3.15)
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Proof. Equation (19.3.12) is obvious. For equation (19.3.13), the easiest thing to
do is to prove R(U, V,W,W ) = 0, since multilinearity does the rest. Note that

R(U, V,W,W ) = 〈∇V∇UW −∇U∇VW +∇[U,V ]W,W 〉
= V (〈∇UW,W 〉)− 〈∇UW,∇VW 〉 − U(〈∇VW,W 〉)

+ 〈∇VW,∇UW 〉+
1

2
[U, V ](〈W,W 〉)

=
1

2
V
(
U(〈W,W 〉)

)
− 1

2
U
(
V (〈W,W 〉)

)
+

1

2
[U, V ](〈W,W 〉)

= 0

by definition of the Lie bracket.
Equation (19.3.15) follows from the Bianchi identity

R(U, V )W +R(V,W )U +R(W,U)V

and the Jacobi identity

[[U, V ],W ] + [[V,W ], U ] + [[W,U ], V ] = 0.

The Jacobi identity is easy, and the Bianchi identity is proved via

R(U, V )W +R(V,W )U +R(W,U)V = ∇V∇UW −∇U∇VW +∇[U,V ]W

+∇W∇V U −∇V∇WU +∇[V,W ]U

+∇U∇WV −∇W∇UV +∇[W,U ]V

= −∇V [W,U ]−∇W [U, V ]−∇U [V,W ]

+∇[U,V ]W +∇[V,W ]U +∇[W,U ]V

= [[U, V ],W ] + [[V,W ], U ] + [[W,U ], V ]

= 0.

Finally (19.3.14) is surprisingly difficult to prove; it comes from using (19.3.15)
four times:

0 = 0 + 0 + 0 + 0

= R(U, V,W,X) +R(V,W,U,X) +R(W,U, V,X)

+R(V,W,X,U) +R(W,X, V, U) +R(X,V,W,U)

+R(W,X,U, V ) +R(X,U,W, V ) +R(U,W,X, V )

+R(X,U, V,W ) +R(U, V,X,W ) +R(V,X,U,W )

=
[
R(U, V,W,X) +R(U, V,X,W )

]
+
[
R(V,W,U,X) +R(V,W,X,U)

]
+
[
R(X,U,W, V ) +R(X,U, V,W )

]
+
[
R(W,X, V, U) +R(W,X,U, V )

]
+ 2R(W,U, V,X)− 2R(V,X,W,U).

All the terms in square brackets are zero by (19.3.13), so what’s left is zero as
well. �

These symmetries look somewhat mysterious, but they’re quite natural if you
think about them in the right way. What I’ll describe is the way Riemann originally
presented the curvature tensor publicly.

Suppose we want to study the Riemannian metric near a point. A natural
thing to do is to construct a Taylor expansion of its components. However it’s
not completely obvious how to do this, since the Taylor expansion depends on
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the coordinates we choose. We know we have a lot of freedom to choose convenient
coordinates, so what’s the best choice? There are two choices, depending on whether
we want the lower-order terms of the metric to look more like Cartesian coordinates
or like polar coordinates. The Cartesian approach was Riemann’s approach; the
polar approach was used by Gauss for surfaces and later generalized. First note
that given any point p, we can always change coordinates so that gij(p) = δij . (Of
course we can’t necessarily make this true at other points simultaneously; we’re just
asking to do it one point at a time.) The method for doing so is just to find some
constant linear combination of the coordinate basis vectors which is orthonormal at
p, then use these as new coordinates (since they all commute). So if we’re doing a
Taylor expansion of g, we can assume the first term is always the Euclidean metric.
Then the question is what the first derivative of g is. It turns out that by doing

more coordinate changes, we can always assume that
∂gij
∂xk

∣∣∣
p

= 0.

Riemann’s trick was to take coordinates defined by the geodesics of the man-
ifold. We saw the geodesic equation was second order, so solutions are uniquely
determined by a point and vector. If we look at all the geodesics through a par-
ticular point, then they are determined just by their initial tangent vectors at that
point. So we map v ∈ TpM to γ(1) where γ is the geodesic with γ(0) = p and
γ′(0) = v. This map from TpM to M is called the Riemannian exponential map.
It’s usually extremely hard to compute explicitly, but it’s got nice theoretical prop-
erties. On Euclidean space the exponential map looks like expp(v) = p+ v, so it’s
basically the identity map. On a general manifold it sends geodesics in a manifold
to straight lines in a tangent space, and hence it sort of does the “best possible
job” of flattening the manifold.

Since geodesics through p correspond to straight lines in TpM , the geodesic
equation at p must have all Christoffel symbols equal to zero at p. So the metric
takes the very nice form that gij(p) = δij and Γmij (p) = 0. Now the Christoffel
symbols were defined by (19.3.8), and if you play around a bit with this formula
you can solve for ∂

∂xk
gij in terms of them. So if all Christoffel symbols are zero,

then
∂gij
∂xk

is zero. Of course this is only true at the point p: we’ve set it up so that
geodesics through p look like straight lines through the origin in TpM , but there’s
no reason to expect that geodesics not passing through p will look like straight lines
in TpM .

So the linear approximation of any metric near a point is just the Euclidean
metric, in the right coordinates. The quadratic terms cannot be transformed away
by a coordinate transformation. In fact since the Riemann curvature tensor is
defined by operations involving two derivatives of the metric, we might expect to
see something like the Riemann curvature showing up in the quadratic terms. We
can compute the curvature in these coordinates, using the fact that gij = δij and
Γkij = 0 at the point p, to get

Rijk` =
1

2

(
∂2gi`
∂xj∂xk

+
∂2gjk
∂xi∂x`

− ∂2gik
∂xj∂x`

− ∂2gj`
∂xi∂xk

)
.

Observe the symmetries in this formula. Again some index trickery will tell us how

to solve for ∂2gi`
∂xj∂xk

in terms of the Riemann curvature. We end up with the Taylor
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expansion

g =
∑
i,j

gijdx
i ⊗ dxj =

∑
i,j

δijdx
i ⊗ dxj

+
1

3

∑
i,j,k,`

Rijk`(x
k dxi − xidxk)⊗ (x` dxj − xj dx`) +O(x3).

This was how Riemann actually discovered the curvature tensor, although it would
clearly be very hard to compute the curvature in general using this Taylor expan-
sion. Thus the roundabout way, which at least makes the computations straight-
forward if not always easy. Note the appearance of terms like xk dxi−xi dxk, which
you should essentially think of as something like dθik for an angular coordinate θik.
(Recall that in polar coordinates on the plane, r2dθ = y dx− x dy.)

Notice also, and this is perhaps the most important thing in Riemannian ge-
ometry, that if you want to compute any measurement in a small neighborhood
of a point, you can always use the Euclidean formulas to lowest order; the first
correction term will always involve the Riemann curvature. Hence you can define
the curvature by for example looking at the sum of the angles in a small triangle
whose edges are made of geodesics; this will be π plus a small correction term in-
volving the curvature. Subtract π, divide by the area, and take a limit to get the
curvature back out. You can do the same thing measuring the difference in the area
of a geodesic circle from to πr2, or the difference in circumference from 2πr. This
sort of thing is why the Riemann curvature tensor ends up being so important in
geometry.

We can generalize a fair amount of this. In terms of covariant derivatives, the
Riemannian case is fairly special; in general the only properties one needs from a
covariant derivative ∇UV are the basic tensoriality in U and product rule in V , as
in (19.3.4). On a manifold where there is no distinguished Riemannian metric, we
certainly shouldn’t expect (19.3.3) to hold, and in fact we don’t even need (19.3.2)
to hold. A general covariant derivative is frequently referred to as a connection,
the name coming from the fact that it’s essentially allowed us to connect different
tangent spaces. (Recall the fact that different vectors were in different tangent
spaces was the biggest problem with finding some way to differentiate vector fields;
you can’t even subtract vectors unless they’re in the same tangent space.)
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20. Orthonormal frames

“Remember, your focus determines your reality.”

If we have a Riemannian metric given in coordinates, then we can understand
everything in terms of the coordinate basis vector fields Xj = ∂

∂xj and their inner
products gij = 〈Xi, Xj〉. Of course we have [Xi, Xj ] = 0 since mixed partials of
smooth functions commute. We can compute the covariant derivative and curvature
tensor and such things just knowing these, since the inner products and Lie brackets
of arbitrary vector fields are all we need for those definitions.

For some purposes, however, coordinate computations are less convenient. An
alternative is to deal with orthonormal vector fields. These are vector fields Ei
(possibly defined only on some open set in the manifold) which satisfy 〈Ei, Ej〉 = δij
everywhere they’re defined. Such vector fields are called an orthonormal frame or
classically (since Cartan) a moving frame.

20.1. Basic properties. Once we do this, of course, we no longer expect to have
[Ei, Ej ] = 0. Instead [Ei, Ej ] =

∑
k cijkEk for some functions cijk. We only

know two things about the functions cijk: first, since [X,Y ] = −[Y,X], we have
cijk = −cjik. Second, by the Jacobi identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0,

we see that ∑
`

(cij`c`km + cjk`c`im + cki`c`jm) = 0

for all i, j, k,m.
It’s important to note that we can no longer take advantage of the rule that

upper and lower indices combined is an indication that something is invariant.
When dealing with orthonormal vector fields, we are using the metric in a crucial
way, and it’s easy to end up with covectors identified with vectors. (Prior to this
we’ve been making a distinction, which is what’s responsible for the importance of
the index position.)

Example 20.1.1. On the Euclidean plane in polar coordinates, the coordinate
vector fields Xr = ∂

∂r and Xθ = ∂
∂θ are orthogonal but not orthonormal, since

〈Xr, Xθ〉 ≡ 0, and |Xr| ≡ 1, but |Xθ| = r. However we can rescale these to get an
orthonormal basis

Er = Xr Eθ =
1

r
Xθ.

Then we have only one Lie bracket to compute:

[Er, Eθ] =
∂

∂r

(
1

r

∂

∂θ

)
− 1

r

∂

∂θ

∂

∂r
= − 1

r2

∂

∂θ
= −1

r
Eθ.

So c121 = 0 and c122 = − 1
r . Of course these vector fields are defined everywhere

except the origin; in Cartesian coordinates they are given by

Er =
x

r

∂

∂x
+
y

r

∂

∂y
and Eθ =

y

r

∂

∂x
− x

r

∂

∂y

where r =
√
x2 + y2.
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On the 2-sphere S2 we can similarly define Eθ = ∂
∂θ and Eφ = 1

sin θ
∂
∂φ and get

c121 = 0 and c122 = − tan θ.
On S3 we have a nice orthonormal basis given by the three vector fields on R4

restricted to S3, given by

E1 = −x ∂
∂w + w ∂

∂x − z
∂
∂y + y ∂

∂z ,

E2 = −y ∂
∂w + z ∂

∂x + w ∂
∂y − x

∂
∂z ,

E3 = −z ∂
∂w − y

∂
∂x + x ∂

∂y + w ∂
∂z .

We easily compute that [E1, E2] = −2E3, [E2, E3] = −2E1, and [E3, E1] = −2E2.
,

The last example on S3 works out the way it does (with constants for the cijk)
because of the Lie group structure of S3. We will discuss this in a bit.

The typical way to obtain an orthonormal basis is the Gram-Schmidt process.
We suppose we have some vector fields U1, · · · , Un which are not orthonormal. Set

F1 = U1, set F2 = U2 − 〈U2,F1〉
〈F1,F1〉F1, and in general set

Fk+1 = Uk+1 −
k∑
j=1

〈Uk+1, Fj〉
〈Fj , Fj〉

Fj

for 1 ≤ k < n. The field F2 is well-defined and smooth whenever F1 6= 0, while F3

is well-defined whenever F2 is defined and nonzero, etc. The set of points where
any Fk is zero is closed, so the vector fields Fk are all defined on some open set.
Then 〈Fk, Fj〉 = 0 whenever j < k, so the vector fields Fj are orthogonal on the

open set where they’re defined and nonzero. Finally set Ek = Fk
|Fk| for each k to get

orthonormal fields.

Example 20.1.2. Suppose we have the metric given by ds2 = y2 dx2 +2xy dx dy+
(1 + x2) dy2. Find an orthonormal basis. To do this, start with any known basis,
say U1 = ∂

∂x and U2 = ∂
∂y , and apply Gram-Schmidt. Set F1 = ∂

∂x and compute

〈F1, F1〉 = y2, while 〈F1, U2〉 = 〈 ∂∂x ,
∂
∂y 〉 = xy. So

F2 =
∂

∂y
− xy

y2

∂

∂x
.

We have |F1| = y and |F2|2 = 1 + x2 − 2x
y (xy) + x2

y2 y
2 = 1, so that E1 = 1

y
∂
∂x and

E2 = −xy
∂
∂x + ∂

∂y . ,

Of course, if we had started with F1 = ∂
∂y , then we would have gotten a totally

different orthonormal basis. It’s important to understand how to change from one
to another, since we frequently want to define objects using an orthonormal basis,
and we need to know it doesn’t actually matter which one we picked.

Proposition 20.1.3. Suppose {E1, · · · , En} and {F1, · · · , Fn} are two orthonor-
mal frames defined on the same open set. Then there is a unique linear operator
P ji such that

Ei =
∑
j

P ji Fj ,



278 STEPHEN C. PRESTON

for all i, and P is orthogonal in the sense that

n∑
k=1

P ki P
k
j = δij

for all i and j.

Proof. That P ji exists is a consequence of the fact that both sets of vectors form a
basis for each vector space. Once we have it, we just compute:

〈Ei, Ej〉 = δij =
∑
k,`

P ki P
`
j 〈Fk, F`〉 =

∑
k,`

P ki P
`
j δk` =

∑
k

P ki P
k
j .

�

We can compute the geometric objects like covariant derivatives and curvature
in an orthonormal basis. Write U =

∑n
i=1 u

iEi and V =
∑n
j=1 v

jEj , and we get

∇UV =
∑
i,j

∇uiEi(v
jEj) =

∑
i,j

uiEi(v
j)Ej + uivj∇EiEj .

The term ∇EiEj can be computed using the Koszul formula (19.3.5), and we get

∇EiEj =

n∑
k=1

〈∇EiEj , Ek〉Ek

=
1

2

n∑
k=1

(ckij + ckji + cijk)Ek.

Writing aijk = 1
2 (ckij + ckji + cijk), we can compute the curvature tensor (19.3.11)

as

R(Ei, Ej , Ek, E`) =
∑
m

〈∇Ej (aikmEm), E`〉 − 〈∇Ei(ajkmEm), E`〉+ cijm〈∇EmEk, E`〉

= Ej(aik`)− Ei(ajk`) +
∑
m

aikmajm` −
∑
m

ajkmaim` +
∑
m

cijmamk`.

20.2. Lie groups. The most common way to get an orthonormal basis is when the
manifold is a Lie group, with a left-invariant metric. Recall that a Lie group G is a
smooth manifold with a group structure such that the group operations are smooth
functions. If e is the identity element, then g = TeG is called the Lie algebra. We
can think of the vectors v ∈ g as vector fields, by defining the left-invariant vector
field Vg = (Lg)∗(v) for each g ∈ G, where (Lg)∗ : g→ TgG is the differential of the
left translation. Then since Lh is a diffeomorphism for any h, it makes sense to
consider the push-forward vector field (Lh)#V . For any element g ∈ G, we have

((Lh)#V )(g) = (Lh)∗(V (L−1
h (g))) = (Lh)∗(V (h−1g))

= (Lh)∗(Lh−1g)∗(v) = (Lhh−1g)∗(v) = V (g),

using the definition of push-forward, the definition of V , and the chain rule. So
(Lh)#V = V for any h ∈ G.

Now recall that whenever η is a diffeomorphism and X and Y are vector fields,
we have

η#[X,Y ] = [η#X, η#Y ]
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by Proposition 14.2.9. This general formula implies that if U and V are left-
invariant vector fields, then since (Lh)#U = U and (Lh)#V = V , we must have

(Lh)#[U, V ] = [(Lh)#U, (Lh)#V ] = [U, V ].

So if U and V are left-invariant, then their Lie bracket [U, V ] is also left-invariant.
Hence there must be some vector w ∈ g such that [U, V ](g) = (Lg)∗(w) for all
g ∈ G. We abbreviate this as [u, v] = w, and in this way we get an operation on g
itself, also called the Lie bracket. It satisfies the same properties as the bracket of
vector fields:

[u, v] = −[v, u], [[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

If we have a basis {e1, · · · , en} of the vector space g, then we can write

[ei, ej ] =

n∑
k=1

cijkek

just as before. Notice however that the cijk are constants (as of course they should
be, since we’re only working at the identity in the group). But that means that
even if we think of the left-translated vector fields Ei coming from ei, then the Lie
brackets satisfy [Ei, Ej ] =

∑
k cijkEk, where the functions cijk are actually just

constants.
Hence by far the nicest Riemannian metrics on Lie groups are left-invariant

metrics. We get one by just constructing a basis of left-invariant vector fields and
declaring it to be orthonormal. This tells us the inner product in general, since we
have U =

∑
i u

iEi and V =
∑
j v

jEj , and thus

〈U, V 〉 =
∑
i,j

uivj〈Ei, Ej〉 =
∑
i

uivi.

Of course, the fact that the metric looks like this in the orthonormal basis does
not mean the metric is Euclidean, since [Ei, Ej ] 6= 0. In fact clearly the only man-
ifolds for which there is an orthonormal basis satisfying [Ei, Ej ] = 0 are Euclidean
manifolds, since vector fields that commute can be used as coordinates.

There’s nothing to prevent us from doing all of the above using right-translations.
It all works in the same way, although in general you don’t get the same specific
formulas. In fact to see it’s equivalent, note that for any Lie group G, the inverse
map Φ: g 7→ g−1 is a diffeomorphism, and we have Φ(gh) = (gh)−1 = h−1g−1 =
Φ(h)Φ(g). So it’s an antihomomorphism, i.e., it switches the order of group op-
erations, and hence turns all left-translations into right-translations. So while the
actual structure may not be exactly the same, it will be isomorphic, so we don’t
really lose anything by just considering left-translations.

Example 20.2.1. Consider the upper half-plane with group operation (a, b) ·
(c, d) = (a+ bc, bd). The identity element is (0, 1). At (0, 1) we declare the vectors
∂
∂x and ∂

∂y to be orthonormal. Now let’s compute the left-translation. We have

L(a,b)(x, y) = (a+ bx, by) so that

(L(a,b))∗

(
∂
∂x

∣∣
(0,1)

)
= b ∂

∂x

∣∣
(a,b)

(L(a,b))∗

(
∂
∂y

∣∣
(0,1)

)
= b ∂

∂y

∣∣
(a,b)

.
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Therefore the left-invariant vector fields are

E1(x, y) = (L(x,y))∗

(
∂
∂x

∣∣
(0,1)

)
= y ∂

∂x

∣∣
(x,y)

E2(x, y) = (L(x,y))∗

(
∂
∂y

∣∣
(0,1)

)
= y ∂

∂y

∣∣
(x,y)

.

Thus we compute that [E1, E2] = −y ∂
∂x = −E1.

The metric comes from the equations〈 ∂

∂x
,
∂

∂x

〉
=

1

y2
〈E1, E1〉 =

1

y2〈 ∂

∂x
,
∂

∂y

〉
=

1

y2
〈E1, E2〉 = 0〈 ∂

∂y
,
∂

∂y

〉
=

1

y2
〈E2, E2〉 =

1

y2
.

So in coordinates it’s ds2 = dx2+dy2

y2 , which is the metric of hyperbolic space.

If we were to compute the right-invariant metric, we would have R(a,b)(u, v) =
(u+ va, vb). Then we would have

F1 =
∂

∂u

∣∣
(u,v)

and F2 = u
∂

∂u

∣∣
(u,v)

+ v
∂

∂v

∣∣
(u,v)

.

We compute the Lie bracket and obtain [F1, F2] = ∂
∂u

∣∣
(u,v)

= F1. Note we get the

same type of formula as with left-translations, just with a minus sign. Also if we
compute the metric in these coordinates, we obtain

ds2 = du2 − 2u

v
du dv +

1 + u2

v2
dv2.

Notice that (x, y)−1 = (−x/y, 1/y). So the inversion map is (u, v) = (−x/y, 1/y).
So we see that

du2 − 2u

v
du dv +

1 + u2

v2
dv2 =

(
− 1

y
dx+

x

y2
dy
)2

+ 2x
(
− 1

y
dx+

x

y2
dy)(− 1

y2
dy
)

+
(

1 +
x2

y2

)
dy2

=
1

y2
dx2 − 2x

y3
dx dy +

x2

y4
dy2 +

2x

y3
dx dy

− 2x2

y4
dy2 +

dy2

y2
+
x2

y4
dy2

=
dx2 + dy2

y2
.

So we get an isometry between the two rather different-looking metrics, as expected
since left-translations and right-translations are equivalent. ,

20.3. Inner products of k-forms. The easiest way to set up a metric on covec-
tor fields (and more generally on k-form fields) is to use orthonormal bases. For
example, if {Ei} is an orthonormal frame, then we have dual covector field bases
αi defined by

αi(Ej) = δji .

The most natural thing to do is to define the metric on covector fields by declaring
αi to be an orthonormal basis whenever Ei is an orthonormal basis. For this to
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work, of course, we have to check that we get the same definition no matter what
orthonormal basis we use. That is, if {Ei} is one orthonormal basis and {αi} is
its dual basis, and if {Fi} is another orthonormal basis with dual basis {βi}, then
{αi} is orthonormal if and only if {βi} is orthonormal.

Now using Proposition 20.1.3, we know that

Fi =
∑
j

P ji Ei

where
∑
k P

k
i P

k
j = δij . From this we derive that

αj(Fi) = αj

(∑
k

P ki Ek

)
=
∑
k

P ki δ
j
k = P ji .

So αj =
∑
i P

j
i β

i. If the βi are orthonormal, then we have

〈αk, α`〉 = 〈
∑
i

P ki β
i,
∑
j

P `j β
j〉

=
∑
i,j

P ki P
`
j 〈βi, βj〉

=
∑
j

P kj P
`
j .

Now we know that
∑
k P

k
i P

k
j = δij , which says that PTP = I, and that implies that

PPT = I, which implies that
∑
j P

k
j P

`
j = δk`. Hence if the βi are orthonormal,

then the αi are as well. So the metric on 1-forms does not depend on the choice of
orthonormal basis.

In fact we can generalize this. Notice that the map that takes Ei to αi is just the
lifting map from Definition 19.1.2, in a certain basis: we have E[i (Ej) = 〈Ei, Ej〉 =

δij = αi(Ej), so that E[i = αi. However the map v 7→ v[ doesn’t depend on
any particular basis, just on the metric. That means the same principle works in
coordinates. In other words, the map [ must always be an isometry, no matter how

we’re computing it. So in a coordinate chart we have ∂
∂xi

[
=
∑
j gij dx

j , and so

gij = 〈 ∂∂xi ,
∂
∂xj 〉 =

∑
k,`

gikgj`〈dxk, dx`〉.

Now multiply by the inverse matrices gip and by gjq, and sum over i and q. We get∑
i,j

gijg
ipgjq =

∑
k,`,i,j

gikg
ipgj`g

jq〈dxk, dx`〉

∑
j

δpj g
jq =

∑
k,`

δpkδ
q
` 〈dx

k, dx`〉

gpq = 〈dxp, dxq〉.
So the metric on the 1-forms is∑

p,q

gpq
∂

∂xp
⊗ ∂

∂xq
.

On other k-forms the metric is somewhat more complicated, and because there’s
no fantastic notation for k-forms when k > 1, it just doesn’t work out very well in
coordinates. However it’s very easy in terms of orthonormal vector fields.
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Definition 20.3.1. Suppose {Ei} is an orthonormal basis of vector fields, and
{αi} is the dual basis which is also orthonormal. Then we can define the metric on
k-forms by declaring the basis k-forms

αi1 ∧ · · · ∧ αik

to be orthonormal as well; that is,
(20.3.1)
〈αi1 ∧ · · · ∧ αik , αj1 ∧ · · · ∧ αjk〉 = δi1j1 · · · δikjk if i1 < · · · < ik and j1 < · · · < jk.

The metric thus obtained does not depend on the initial choice of orthonormal
vector fields.

This is not really a definition until we prove the statement made there.

Proposition 20.3.2. The metric defined by (20.3.1) does not depend on choice of
orthonormal basis αi.

Proof. The general proof is a mess of indices; it’s the sort of thing that’s not too
hard to do for oneself but is really difficult to do for someone else. Thus we’ll skip
the general proof and just prove it for 2-forms, where all the same issues already
appear in a simpler fashion. (The general proof can actually be constructed from
this case using induction on the size k of the form.)

So first we write αi =
∑
j P

i
jβ

j , where P is an orthogonal matrix satisfying both∑
k P

k
i P

k
j = δij and

∑
k P

i
kP

j
k = δij . Suppose that

〈βi1 ∧ βi2 , βj1 ∧ βj2〉 = δi1j1δi2j2 − δi1j2δi2j1 .
We want to prove the same formula for α.

We have

〈αk1 ∧ αk2 , α`1 ∧ α`2〉 =
∑

i1,i2,j1,j2

P k1i1 P
k2
i2
P `1j1 P

`2
j2
〈βi1 ∧ βi2 , βj2 ∧ βj2〉

=
∑

i1,i2,j1,j2

P k1i1 P
k2
i2
P `1j1 P

`2
j2

(δi1j1δi2j2 − δi1j2δi2j1)

=
∑
i1,i2

P k1i1 P
k2
i2
P `1i1 P

`2
i2
−
∑
i1,i2

P k1i1 P
k2
i2
P `1i2 P

`2
i1

= δk1`1δk2`2 − δk1`2δk2`1 .
�

As a result there are two distinguished choices of n-form field µ on any open
set of a Riemannian manifold where an orthonormal basis is defined. We just take
any orthonormal basis {α1, · · · , αn} and set µ = ±α1 ∧ · · · ∧ αn. If the manifold is
oriented, then only one of these is compatible with the orientation, and we can use
it to globally define the Riemannian volume form.

Definition 20.3.3. If M is an oriented Riemannian manifold, then the Riemannian
volume form µ is the unique n-form which has unit length and is compatible at every
point with the orientation. It satisfies µ(E1, · · · , En) = 1 whenever {E1, · · · , En}
is an oriented orthonormal basis.

Of course if M is not oriented, we may not be able to define a global volume
form. However we can typically find an oriented subset of full measure and use the
volume form on that subset to compute integrals on the entire manifold.



AN INTRODUCTION TO DIFFERENTIAL GEOMETRY 283

It’s important to know what µ is in coordinates.

Proposition 20.3.4. Suppose M is an oriented Riemannian manifold with a co-
ordinate chart (x1, · · · , xn) on some open set. Write the metric as

g =

n∑
i,j=1

gij(x
1, · · · , xn)dxi ⊗ dxj .

Then the Riemannian volume form is

(20.3.2) µ =
√

det g dx1 ∧ · · · ∧ dxn.

Proof. Let Fi = ∂
∂xi , and construct an orthonormal basis Ei using the Gram-

Schmidt process; suppose both bases are oriented. Then we have Fi =
∑
j P

j
i Ej

for some matrix P ji . Since 〈Fi, Fj〉 = gij and 〈Ek, E`〉 = δk`, we have

gij = 〈Fi, Fj〉 =
∑
k,`

P ki P
`
j 〈Ek, E`〉 =

∑
k

P ki P
k
j .

Hence as matrices we have g = PTP . So we have (detP )2 = det g.
Now on the other hand, the volume form satisfies

µ(F1, · · · , Fn) = (detP )µ(E1, · · · , En) = detP.

Hence µ(F1, · · · , Fn) =
√

det g. �

Using the Riemannian volume form, we can define the divergence of a vector
field. Physically, the divergence is a quantity that tells you how much of whatever
the vector field represents (fluid, current, force) is moving into or out of any given
volume. Mathematically it is defined in terms of the volume form using Stokes’
Theorem.

Definition 20.3.5. Suppose M is a Riemannian manifold with Riemannian volume
form µ. Suppose V is any vector field. Then the divergence of V is a function div V
defined by

(20.3.3) d(ιV µ) = (div V )µ,

where the inner product ιV µ is an (n− 1)-form defined by

ιV µ(W1, · · · ,Wn−1) = µ(V,W1, · · · ,Wn−1).

Stokes’ Theorem 17.3.1 for the (n − 1)-form ιuµ thus takes the form of the
divergence theorem: if M is the image of an n-chain c, then

(20.3.4)

∫
M

div V µ =

∫
∂M

ιV µ.

The term on the left is d(ιV µ), so this is just Stokes’ Theorem. For the term on
the right, note that to do the integral we compute (∂c)∗(ιV µ). So take any basis
w1, · · · , wn−1 of Rn−1 and plug in:

(∂c)∗(ιV µ) = µ(V, c∗w1, · · · , c∗wn−1).

Now the vectors c∗wi are all in TpM , so that only the component of V in the normal
direction contributes; that is, if n is the unit normal vector to ∂M at p, then

µ(V, c∗w1, · · · , c∗wn−1) = 〈V,n〉µ(n, c∗w1, · · · , c∗wn−1).
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Hence denoting the surface area element by the (n− 1)-form dS = ιnµ, we get∫
M

div V µ =

∫
∂M

〈V,n〉 dS,

which is the standard form of the divergence theorem you’d see in vector calculus.
Finally we define the Hodge star operator, which is the second most useful isom-

etry in Riemannian geometry, after the musical isomorphisms between vector fields
and covector fields.

Definition 20.3.6. Let Ωk(M) denote the space of k-form fields on M . Then the
Hodge star operator is the map ? : Ωk(M)→ Ωn−k(M) such that

(20.3.5) α ∧ ?β = 〈α, β〉µ

for every pair of k-forms α and β.

Proposition 20.3.7. The Hodge star operator exists and is unique.

Proof. This is one of those operations where the easiest thing to do is to say what
it does to a basis; but if we do that, we need to show that it doesn’t depend on
which choice of basis we use. A direct proof of that would be pretty nightmarish
(even more complicated than the proof of Proposition 20.3.2) since we hardly even
understand inner products of k-forms in a general basis. (We’ve only been using
orthonormal bases so far.) Instead we’ll use a trick which gets used again and again:
first prove that if we had such an operation satisfying all the desired properties,
it would have to be unique. Then define it however you want and check that it
satisfies the desired properties. Now you’ve established that there is one, and shown
that any two must be the same.

So first let us prove uniqueness; we just have to show that if ?1 and ?2 are two
operations with

(〈α, β〉)µ = α ∧ ?1β = α ∧ ?2β

for all k-forms α and β, then ?1β = ?2β for all k-forms β. By linearity, this comes
down to showing that if α ∧ (?1β − ?2β) = 0 for every k-form α, then the (n− k)-
form ?1β− ?2β must be zero. This is a general fact about forms which has nothing
to do with inner products.

Lemma 20.3.8. If γ is an (n− k)-form field with α∧ γ = 0 for every k-form field
α, then γ = 0 everywhere.

Proof. By the proof of Proposition 4.3.8, we know that for any basis {α1, · · · , αn}
of T ∗M , we can express

γ =
∑

i1<···<in−k

γi1···in−kα
i1 ∧ · · · ∧ αin−k

for some functions {γi1···in−k}. Now γ = 0 if and only if all of these coefficients
are zero. So assume that γi1···in−k 6= 0 for some particular choice of (n − k) in-
dices (i1, · · · , in−k). Let {j1, · · · , jk} be the elements of {1, · · · , n}\{i1, · · · , in−k},
ordered so that j1 < · · · < jk, and let α = αj1 ∧ · · · ∧ αjk . Then

α∧γ = (αj1 ∧ · · ·∧αjk)∧ (γi1···in−k α
i1 ∧ · · ·∧αin−k) = ±γi1···in−k α1∧ · · ·∧αn 6= 0,

a contradiction. �
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So Lemma 20.3.8 establishes that if there are any operators ? at all satisfying
(20.3.5), then there is only one. To show there is one, we just define it on a particular
basis. Let {α1, · · · , αn} be an oriented orthonormal basis of V ∗, and set

(20.3.6) ?αi1 ∧ · · · ∧ αik = sgn (j1 · · · jn−ki1 · · · ik)αj1 ∧ · · · ∧ αjn−k ,
where the indices {j1, · · · , jn−k} are chosen so that {i1, · · · , ik, j1, · · · , jn−k} =
{1, · · · , n}, ordered j1 < · · · < jn−k. Extend ? by linearity. We see that ? takes an
orthonormal basis of Ωk(M) to an orthonormal basis of Ωn−k(M) by Proposition
20.3.2, and the equation 20.3.5 follows. �

We can easily extend ? to an operator between 0-forms (functions) and n-forms
(volume elements) by setting ?1 = µ and ?µ = 1. This is already implicit in (20.3.5)
using the definition of the wedge product for 0-forms.

This operator is very easy to understand once you see it in action; in fact in
some sense we’ve been dancing around it throughout our discussion of forms.

Example 20.3.9 (The Hodge star on M2 and M3). Consider a two-dimensional
manifold M , and consider an orthonormal basis of vector fields {E1, E2} with dual
basis {α1, α2}, so that µ = α1 ∧ α2. Then the self-map ? : Ω1(M) → Ω1(M) must
satisfy ?α1 = α2 and ?α2 = −α1. Thus we clearly have ?? = −1; it corresponds
loosely to “rotation by 90◦.” We get a more traditional version of this if we apply it
to vector fields: define (in terms of the index-lowering map from Definition 19.1.2)
the operator

?V = (?V [)],

and we get that
?E1 = E2, ?E2 = −E1.

Now consider a three-dimensional manifold M and choose an orthonormal basis
{E1, E2, E3} with dual basis {α1, α2, α3} so that µ = α1 ∧ α2 ∧ α3. Then

?α1 = α2 ∧ α3, ?α2 = α3 ∧ α1, ?α3 = α1 ∧ α2

?α1 ∧ α2 = α3 ?α3 ∧ α1 = α2 ?α2 ∧ α3 = α1.

As a result ?? = 1 on 1-forms, hence also on 2-forms.
There is no operation of rotating vectors in a 3-dimensional space, since vectors

map to 2-forms. However we can define another operation that only makes sense in
three dimensions: the cross product. It’s defined on a general manifold as follows:
in terms of the musical isomorphisms from Definition 19.1.2, set

U × V = [?(U [ ∧ V [)]].
Notice that it satisfies antisymmetry obviously, and also that

〈U × V,U〉 = 〈?(U [ ∧ V [), U [〉 = U [ ∧ ? ? (U [ ∧ V [) = U [ ∧ U [ ∧ V [ = 0.

So as expected, the cross product is perpendicular to each of the vectors.
,

These computations suggest the following proposition.

Proposition 20.3.10. On an n-dimensional manifold M , the Hodge star operator
has the following self-inverse property:

(20.3.7) ? ? α = (−1)k(n−k)α

for any k-form α.
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In addition ? is an isometry between Ωk(M) and Ωn−k(M).

Proof. That ? is an isometry is obvious from the fact that it takes an orthonormal
basis of its domain to an orthonormal basis of its range.

For the doubling property (20.3.7), we just have to use a particular orthonormal
basis. We know that if β is a basis element of Ωk(M), then ?β is a basis element of
Ωn−k(M), and therefore by formula (20.3.6) we know ? ? β = ±β. So we just have
to determine the sign. That comes from the isometry property and (4.3.4):

〈β, β〉µ = 〈?β, ?β〉µ = ?β ∧ ? ? β = (−1)k(n−k)? ? β ∧ ?β = (−1)k(n−k)〈? ? β, β〉µ.

�

20.4. Vector calculus on functions and vector fields. We have seen that all
vector calculus operations seem to have a more natural analogue in terms of wedge
products and the d operator (neither of which depend on a Riemannian metric).
Now that we have a metric, the musical isomorphisms from Definition 19.1.2 and
the Hodge star operator allow us to get the vector calculus operations in a more
traditional appearance.

Definition 20.4.1. Suppose M is an n-dimensional oriented Riemannian manifold,
with a Riemannian volume form µ. If f : M → R is a smooth function, we define
the gradient of f , grad f , to be the vector field

(20.4.1) (grad f) = (df)].

If V is a vector field on M , we define the divergence of V to be the function div V
satisfying

(20.4.2) div V = ?d(?V [).

The composition of these two operators on a function f is another function,
called the Laplacian of f , given by ∆f = div grad f .

Note that we already defined the divergence in (20.3.3), so we should check that
we get the same result.

Proposition 20.4.2. (
? d(?V [)

)
µ = d(ιV µ).

Proof. By definition of ? on n-forms, we have (?f)µ = f whenever f is an n-form.
So we just need to check that d(?V [) = d(ιV µ), and it’s sufficient to check that
?V [ = ιV µ. To see this, consider an orthonormal frame {E1, · · · , En}, and write
V =

∑
i v
iEi. Then V [ =

∑
i v
iαi, and

?V [ =
∑
i

(−1)i+1viα1 · · · ∧ α̂i · · · ∧ αn

=
∑
i

αiιEiα
1 ∧ · · · ∧ αn

= ιV µ.

�
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Let’s see what these operations look like explicitly. First we’ll do it in coordi-
nates, then in an orthonormal frame. For the coordinate version, recall that the
musical isomorphisms are given by

(dxi)] =
∑
j

gij
∂

∂xj
and

( ∂

∂xi

)[
=
∑
j

gij dx
j ,

where gij is the metric on TM and gij are the components of the inverse of g.

Proposition 20.4.3. In a coordinate chart (x1, · · · , xn) on a Riemannian manifold
M with metric ds2 =

∑
i,j gijdx

i ⊗ dxj , the gradient of a function is

(20.4.3) grad f =
∑
i,j

gij
∂f

∂xi
∂

∂xj
.

The divergence is given by either of the formulas

(20.4.4) div V =
∑
i

1√
det g

∂

∂xi
(√

det g vi
)

or

(20.4.5) div V =
∑
i

∂vi

∂xi
+
∑
i,j

Γjijv
i.

Proof. The gradient is easy; we have

grad f = (df)] =
(∑

i

∂f

∂xi
dxi
)]

=
∑
i

∂f

∂xi
(dxi)] =

∑
i,j

∂f

∂xi
gij

∂

∂xj
.

For the divergence, first recall from Proposition 20.3.4 that the Riemannian
volume form is given by

µ =
√

det g dx1 ∧ · · · ∧ dxn.

Thus

ιV µ =
∑
i

(−1)i+1vi
√

det g dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

and so

d(ιV µ) =
∑
i

(−1)i+1 ∂

∂xi
(√

det gvi
)
dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
∑
i

∂

∂xi
(√

det gvi
)
dx1 ∧ · · · ∧ dxn.

Formula (20.4.4) follows.
For (20.4.5) we just use the product rule on (20.4.4). We obtain

(20.4.6) div V =
∑
i

∂vi

∂xi
+
∑
i

vi

2 det g

∂ det g

∂xi
.

Now for any time-dependent matrix A(t) whatsoever we have the general formula

d

dt
detA(t) = Tr

(
A(t)−1 dA

dt

)
detA(t).
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Thus the coefficient of the second term in (20.4.6) is

1

2 det g

∂ det g

∂xi
=

1

2

∑
j

gjk
∂gjk
∂xi

.

Recalling from (19.3.8) that

Γkij =
1

2

∑
`

gk`(∂ig`j + ∂jg`i − ∂`gij),

we see that ∑
j

Γjij =
1

2

∑
j,`

gj`(∂ig`j + ∂jg`i − ∂`gij),

so we get what we want if we show that∑
j,`

gj`∂jg`i =
∑
j,`

gj`∂`gij .

This is true since we can just interchange j and ` in the sum on the left to get the
sum on the right, since gj` = g`j . �

The formula (20.4.4) is almost always easier to apply in practice than (20.4.5),
since there’s only one geometric computation to do (the volume form coefficient√

det g) rather than a bunch of Christoffel symbols. However (20.4.5) suggests
that the divergence is a kind of “average” covariant derivative, which can be useful
conceptually. This is made more explicit in the orthonormal frames version.

Proposition 20.4.4. Suppose M is a Riemannian manifold and {E1, · · · , En} is
an orthonormal basis of vector fields. Then the gradient is given by

(20.4.7) grad f =
∑
i

Ei(f)Ei,

and the divergence is given by

(20.4.8) div V =
∑
i

〈∇EiV,Ei〉

or

(20.4.9) div V =
∑
i

Ei(v
i) +

∑
i,j

vj〈[Ei, Ej ], Ei〉.

Proof. Since df(Ei) = Ei(f) by definition, we have

df =
∑
i

Ei(f)αi,

where αi(Ej) = δij . By definition of the metric on 1-forms, if the Ei are orthonormal

then the αi are orthonormal as well, and we have (αi)] = Ei. Thus

grad f =
∑
i

Ei(f)Ei.

The proof of (20.4.8) is a bit subtler. Recall that by (19.3.7) we have for any
vector field U that

∇UV =
∑
i,j

ui
∂vj

∂xi
∂

∂xj
+
∑
i,j,k

Γjiku
ivk

∂

∂xj
.
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Now fix V and consider the operator Dp : TpM → TpM given by U 7→ ∇UV .
Since the covariant derivative is tensorial in U , the operator Dp really depends
only on the point p. Any operator from a vector space to itself has a trace which is
independent of any choice of basis, by Proposition 3.3.1. Now the components of
D in the coordinate basis { ∂

∂xi } are given by

Dj
i =

∂vj

∂xi
+
∑
k

Γjikv
k.

The trace is obtained by just setting i = j and summing over i, so we get by formula
(20.4.5) that

div V =
∑
i

Di
i =

∂vi

∂xi
+
∑
i,k

Γiikv
k.

Now to prove (20.4.8) we just compute the trace of the operator D in the basis
{Ei} instead of the basis { ∂

∂xi }. We have

D(Ei) = ∇EiV =
∑
j

〈∇EiV,Ej〉Ej ,

so the components of D in this basis are D̃j
i = 〈∇EiV,Ej〉. Hence the trace of this

operator D is

div V =
∑
i

D̃i
i =

∑
i

〈∇EiV,Ei〉,

so we obtain (20.4.8).
To get (20.4.9) we write V =

∑
j v

jEj , and obtain

div V =
∑
i,j

〈∇Ei(vjEj), Ei〉

=
∑
i,j

〈Ei(vj)Ej + vj∇EiEj , Ei〉

=
∑
i

Ei(v
i) +

∑
i,j

vj〈[Ei, Ej ], Ei〉+
∑
i,j

〈∇EjEi, Ei〉,

and the last term is zero since 〈∇EjEi, Ei〉 = 1
2Ej(〈Ei, Ei〉) = 1

2Ej(1) = 0. �

It is worth noting that although I defined the divergence using a Riemannian
volume form, the existence of which requires an orientation, the divergence makes
sense without this. The reason is that in the formula

d(ιV µ) = div V µ,

if we flip the sign of µ on both sides, the formula still works. The interpreta-
tion of the divergence as a trace of the covariant derivative makes it obvious that
orientability is irrelevant.

Also notice that we end up with terms like 〈[Ei, Ej ], Ei〉 = ciji in formula (20.4.9),
which is not surprising since that’s where all the geometry is in an orthonormal
basis.

Now the curl is more complicated since it depends on the dimension n of the
manifold. We want to take the derivative of a vector field V which corresponds
to a 1-form α. We have seen that d does the right sort of twisting, but of course
dα is a 2-form. If n = 1 we get zero (there’s no antisymmetric derivative in one
dimension). If n = 2 we get a volume form, and using the Hodge star operator we
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can get a more familiar 0-form out of this. If n = 3 we get a 2-form, and the Hodge
star operator gives a 1-form, which we can then lift to get a vector field back. If
n = 4 then the Hodge star just takes 2-forms to 2-forms, and there’s no way to
get back to functions or vector fields (and it’s not just our lack of cleverness; there
are six components of a 2-form in M4, so you just can’t match the dimension with
anything natural). If n > 4 it’s even worse. So curl is only going to be interesting
in dimension 2 or 3, if our main concern is operators that can be reduced to actions
on vector fields or functions and giving back vector fields and functions.

Definition 20.4.5. If M is a 2-dimensional Riemannian manifold and V is a vector
field on M , we define the curl of V to be the function curlV given by

(20.4.10) curlV = ?dV [,

in terms of the musical isomorphisms ] and [ from Definition 19.1.2.
If M is a 3-dimensional Riemannian manifold and V is a vector field on M , then

the curl of V is a vector field curlV given by

(20.4.11) curlV = (?dV [)].

As before, we want to compute this explicitly, both in a coordinate system and
in an orthonormal frame. The coordinate computation is an absolute mess in the
most general case, and this comes from the fact that the Hodge star operator is only
simple when it’s acting on orthonormal k-forms. In the general case of coordinates
it quickly becomes a mess, and 90% of the cases you need in a coordinate system
will be in an orthogonal coordinate system anyway, where the metric is

ds2 = h2
1dx

2 + h2
2dy

2 + h2
3dz

2.

In the other cases you either have a nice orthonormal basis of vector fields already
given, or you should find one.

Proposition 20.4.6. If M is a 2-dimensional Riemannian manifold with a coor-
dinate system (x, y) in which the metric is

ds2 = h2
1dx

2 + h2
2dy

2,

then the curl of a vector field V = u ∂
∂x + v ∂

∂y is

(20.4.12) curlV =
1

h1h2

(
∂(h2

2v)

∂x
− ∂(h2

1u)

∂y

)
If M is a 3-dimensional Riemannian manifold with a coordinate system (x, y, z)

in which the metric is

ds2 = h2
1dx

2 + h2
2dy

2 + h2
3dz

2,

then for any vector field V = u ∂
∂x + v ∂

∂y + w ∂
∂z , then the curl of V is

(20.4.13) curlV =
1

h1h2h3

(
∂(h2

3w)

∂y
− ∂(h2

2v)

∂z

)
∂

∂x

+
1

h1h2h3

(
∂(h2

1u)

∂z
− ∂(h2

3w)

∂x

)
∂

∂y
+

1

h1h2h3

(
∂(h2

2v)

∂x
− ∂(h2

1u)

∂y

)
∂

∂z
.
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Proof. In two dimensions it is easy to check from Definition 19.1.2 that we have

V [ = h2
1u dx+ h2

2v dy,

so that

dV [ =

(
∂

∂x
(h2

2v)− ∂

∂y
(h2

1u)

)
dx ∧ dy.

Since the determinant of the metric is det g = h2
1h

2
2, the Riemannian volume form

is µ = h1h2 dx ∧ dy. And since ?µ = 1, we know ?(dx ∧ dy) = 1
h1h2

. So

curlV = ?dV [ =
1

h1h2

(
∂

∂x
(h2

2v)− ∂

∂y
(h2

1u)

)
,

which is (20.4.12).
In three dimensions we have

V [ = h2
1u dx+ h2

2v dy + h2
3w dz.

Therefore

dV [ =

(
∂(h2

3w)

∂y
− ∂(h2

2v)

∂z

)
dy ∧ dz +

(
∂(h2

1u)

∂z
− ∂(h2

3w)

∂x

)
dz ∧ dx

+

(
∂(h2

2v)

∂x
− ∂(h2

1u)

∂y

)
dx ∧ dy.

To compute the Hodge star operator in this case, we’d like to have an orthonormal
basis for T ∗pM . Fortunately, this is provided by the 1-form fields h1 dx, h2 dy, and

h3 dz. Thus we have ?dx = h2h3

h1
dy ∧ dz, etc. So we have

?dV [ =
h1

h2h3

(
∂(h2

3w)

∂u2
− ∂(h2

2v)

∂u3

)
dx+

h2

h1h3

(
∂(h2

1u)

∂z
− ∂(h2

3w)

∂x

)
dy

+
h3

h1h2

(
∂(h2

2v)

∂x
− ∂(h2

1u)

∂y

)
dz.

Finally, applying the ] operator, we get formula (20.4.13). �

As mentioned, since the Hodge star is easy in an orthonormal frame, we expect
the curl formula to be easy as well. Actually the formulas in Proposition 20.4.6
are just a special case of those in the following proposition, when E1 = 1

h1

∂
∂x ,

E2 = 1
h2

∂
∂y , and E3 = 1

h3

∂
∂z .

Proposition 20.4.7. If M is a two-dimensional Riemannian manifold with or-
thonormal frame {E1, E2}, then the curl of a vector field V = v1E1 + v2E2 is

(20.4.14) curlV = E2(v1)− E1(v2)− 〈V, [E1, E2]〉.
If M is a three-dimensional Riemannian manifold with orthonormal frame {E1, E2, E3},

then the curl of a vector field V = v1E1 + v2E2 + v3E3 is

(20.4.15) curlV =
(
E2(v3)− E3(v2)

)
E1 +

(
E3(v1)− E1(v3)

)
E2

+
(
E1(v2)− E2(v1)

)
E3 − 〈V, [E2, E3]〉E1 − 〈V, [E3, E1]〉E2 − 〈V, [E1, E2]〉E3.

Proof. To prove (20.4.14), note that V [ = v1α1 + v2α2, and thus by the product
rule (16.3.6) we have

dV [ = dv1 ∧ α1 + dv2 ∧ α2 + v1dα1 + v2dα2.
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We have

dv1 ∧ α1 = (E1(v1)α1 + E2(v1)α2) ∧ α1 = −E2(v1)α1 ∧ α2.

Similarly dv2 ∧ α2 = E1(v2)α1 ∧ α2. To compute dα1 we use (16.1.2); we have

dα1(E1, E2) = E1

(
α1(E2)

)
− E2

(
α1(E1)

)
− α1([E1, E2])

= E1(0)− E2(1)− 〈E1, [E1, E2]〉 = −〈E1, [E1, E2]〉.

Similarly dα2(E1, E2) = −〈E2, [E1, E2]〉. Putting it all together, we obtain (20.4.14).
Now to compute (20.4.15), we note that

dV [ = d(v1α1 + v2α2 + v3α3)

= dv1 ∧ α1 + dv2 ∧ α2 + dv3α3

+ v1dα1 + v2dα2 + v3dα3

= E2(v1)α2 ∧ α1 + E3(v1)α3 ∧ α1 + E1(v2)α1 ∧ α2

+ E3(v2)α3 ∧ α2 + E1(v3)α1 ∧ α3 + E2(v3)α2 ∧ α3

+ v1dα1 + v2dα2 + v3dα3.

Since ?(α1 ∧ α2) = α3, ?(α2 ∧ α3) = α1, and ?(α3 ∧ α1) = α2 by Example 20.3.9,
we see the second-last and third-last lines give the first line of (20.4.15). So now
we just have to compute

v1 ? dα1 + v2 ? dα2 + v3 ? dα3.

Now for any i, j, k we have

dαk(Ei, Ej) = Ei
(
αk(Ej)

)
− Ej

(
αk(Ei)

)
− αk

(
[Ei, Ej ]

)
= −〈Ek, [Ei, Ej ]〉,

so that

dαk = −〈Ek, [E1, E2]〉α1 ∧ α2 − 〈Ek, [E2, E3]〉α2 ∧ α3 − 〈Ek, [E3, E1]〉α3 ∧ α1,

and thus

?dαk = −〈Ek, [E1, E2]〉α3 − 〈Ek, [E2, E3]〉α1 − 〈Ek, [E3, E1]〉α2.

Plugging in, we get the second line of (20.4.15). �

Again notice that the geometry enters into the formulas via the Lie bracket
coefficients cijk = 〈[Ei, Ej ], Ek〉.

Example 20.4.8. Let’s compute these things on S3. In the spherical coordinate
system (ψ, θ, φ) on S3 we have by (19.1.2) that h1 = 1, h2 = sinψ, and h3 =
sinψ sin θ. So the curl of an arbitrary vector field

V = u
∂

∂ψ
+ v

∂

∂θ
+ w

∂

∂φ

is, using (20.4.13),

curlV =
1

sin2 ψ sin θ

(
∂(sin2 ψ sin2 θw)

∂θ
− ∂(sin2 ψv)

∂φ

)
∂

∂ψ

+
1

sin2 ψ sin θ

(
∂u

∂φ
− ∂(sin2 ψ sin2 θw)

∂ψ

)
∂

∂θ

+
1

sin2 ψ sin θ

(
∂(sin2 ψv)

∂ψ
− ∂u

∂θ

)
∂

∂φ
.
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So for example curl ∂
∂ψ = 0, curl ∂

∂θ = 2 cosψ
sinψ sin θ

∂
∂φ , and curl ∂

∂φ = 2 cos θ ∂
∂ψ −

2 cosψ sin θ
sinψ

∂
∂θ .

Now on S3 we also have a nice orthonormal basis {E1, E2, E3} satisfying [E1, E2] =
−2E3, [E2, E3] = −2E1, and [E3, E1] = −2E2. So formula (20.4.15) gives for
V = v1E1 + v2E2 + v3E3 that

curlV =
(
E2(v3)−E3(v2)

)
E1+

(
E3(v1)−E1(v3)

)
E2+

(
E1(v2)−E2(v1)

)
E3+2V.

As a consequence we see that curlEk = 2Ek for any k. Thus these orthonormal
vector fields are actually curl eigenfields, which are useful in plasma and fluid
dynamics. ,

Trying to prove a general formula like curl grad f = 0 from the coordinate for-
mulas in Propositions 10.3.5 and 20.4.6, even in the special case of orthogonal
coordinates, is silly. Instead it makes a lot more sense to use general, simple prop-
erties of forms. This is why k-forms end up being more fundamental in many ways
than the basic objects of vector calculus (despite the fact that, of course, all of
these things were first discovered using components of vector fields in coordinates,
then generalized to forms later).

Proposition 20.4.9. We have the following identities:

(20.4.16) curl grad f ≡ 0

for any function f in two or three dimensions, and

(20.4.17) div curlV ≡ 0

for any vector field V in three dimensions.

Proof. These are easy consequences of d2 = 0 and ?? = ±1. �

The last thing to discuss is the Laplacian. On functions we have defined ∆f =
div grad f . In coordinates this ends up being

∆f =
1√

det g

∂

∂xi

(√
det g gij

∂f

∂xj

)
.

In Cartesian coordinates on Euclidean R3 we have the standard formula

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

In spherical coordinates on Euclidean R3 we have ds2 = dr2 +r2 dθ2 +r2 sin2 θ dφ2,
and thus we read off g11 = 1, g22 = 1

r2 , g33 = 1
r2 sin2 θ

, along with
√

det g = r2 sin θ,
so that

∆f =
1

r2 sin θ

∂

∂r

(
r2 sin θ

∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
r2 sin θ

r2

∂f

∂θ

)
+

1

r2 sin θ

∂

∂φ

(
r2 sin θ

r2 sin2 θ

∂f

∂φ

)
=

1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
.

Even with the Euclidean metric, the Riemannian approach gives an easier-to-
remember formula than just changing coordinates directly, and it explains all the
cancellations that inevitably happen.
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One of the most important things about the Laplacian is Green’s identity for
the Laplacian of a product. It’s easy to verify the product rules for gradient and
divergence:

grad(φψ) = φ gradψ + ψ gradφ,

div (φV ) = φdiv V + V (φ),

and from these we conclude that

∆(φψ) = div (φ gradψ + ψ gradφ) = φ∆ψ + ψ∆φ+ 2〈gradφ, gradψ〉.
Now notice that by the divergence theorem 20.3.4 that if a compact orientable
Riemannian manifold M has no boundary, then the integral of any divergence is
zero, and since the Laplacian is the divergence of a gradient, we have∫

M

∆(φψ)µ = 0.

Hence for example when φ = ψ we get∫
M

φ∆φµ = −
∫
M

|gradφ|2 µ.

This says that the Laplacian is a negative-definite operator on any compact ori-
entable Riemannian manifold; it also implies that the only solution of ∆φ = 0 is
φ = constant.

Similarly we have∫
M

φ∆ψ µ =

∫
M

φdiv gradψ µ =

∫
M

div (φ gradψ)µ−
∫
M

〈gradφ, gradψ〉µ

= −
∫
M

〈gradφ, gradψ〉µ =

∫
M

ψ∆φµ.

This formula establishes that ∆ is a self-adjoint operator. Now functional analysis
tells us that a negative-definite self-adjoint operator has eigenvalues and eigenfunc-
tions, so that we have functions φk and numbers λk > 0 such that ∆φk = −λkφk.
The numbers λk are different for every Riemannian manifold and tell us something
about the geometry. (Thus for example a famous problem is “Can you hear the
shape of a drum?” which refers to the fact that modes of a vibrating surface are
eigenfunctions of the Laplacian while frequencies are related to the eigenvalues,
so the question is asking whether two manifolds with the same eigenvalues of the
Laplacian must be isometric. It turns out to almost but not quite be true.)

The Laplacian of a vector field is more subtle, and in some sense more interesting.
The interesting thing is that there are two reasonable definitions: for example on a
3-dimensional manifold we can write

(20.4.18) ∆hV = grad div V − curl curlV,

which in the language of forms is the more easily-generalized formula

∆V = (d ? d ? V [ − ?d ? dV [)]

in terms of the musical isomorphisms from Definition 19.1.2.
Another alternative is to consider the operator

(X,Y ) 7→ ∇2V (X,Y )

defined by
(∇2V )(X,Y ) = ∇X∇Y V −∇∇XY V,
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with the correction term applied so that the operator is tensorial in both X and in
Y . Notice that

(∇2V )(X,Y )− (∇2V )(Y,X) = R(Y,X)V,

by definition of the Riemann curvature tensor (19.3.10), so this operator is symmet-
ric in X and Y if and only if the curvature is zero. By lifting indices and holding
V fixed, we can think of ∇2V as a linear map Ξ from TpM to TpM , defined so that

〈Ξ(X), Y 〉 = (∇2V )(X,Y ).

This map has a trace which does not depend on choice of any vector fields, and
from this idea we get a formula for the Laplacian in an orthonormal frame,

(20.4.19) ∆bV =

n∑
i=1

∇Ei∇EiV −∇∇EiEiV.

It sure would be nice if formulas (20.4.18) and (20.4.19) were the same. It
turns out they almost are, except for a correction term involving the curvature.
Formula (20.4.18) is called the Hodge Laplacian, while formula (20.4.19) is called
the Bochner Laplacian. (Frequently in Riemannian geometry the signs are switched
so that the Laplacian ends up being positive-definite instead of negative-definite.)
The difference between them is

∆bV −∆cV = ±
∑
i

〈R(Ei, V )Ei.

This is not a trivial issue: for example when writing the Navier-Stokes equations
for a fluid on a manifold, one needs the vector Laplacian for the viscosity term, and
there is some ambiguity over which one to use.

Speaking of fluids, let’s do something fun with everything we’ve learned in this
course. The Euler equation of ideal fluid mechanics for steady flow on a Riemannian
manifold is

(20.4.20) ∇V V = − grad p, div V = 0, ∆p = −div (∇V V ),

where V is the velocity field of the fluid and p is the pressure function, determined
implicitly by the fact that the operator ∆ is invertible. Now the fact that the
pressure is determined indirectly makes these equations rather difficult to analyze,
and so we can rewrite it to get rid of this term. Notice that if we lower indices
using Definition 19.1.2, we get

(∇V V )[ = −dp,
and so

d(∇V V )[ = 0.

Let’s try to simplify this. First notice that for any vector field Y we have

〈∇V V, Y 〉 = V
(
〈V, Y 〉

)
− 〈V,∇V Y 〉

= V
(
〈V, Y 〉

)
− 〈V, [V, Y ]〉 − 1

2Y
(
〈V, V 〉

)
.

(20.4.21)

Now recall that

dV [(V, Y ) = V
(
V [(Y )

)
− Y

(
V [(V )

)
− V [([V, Y ])

= V
(
〈V, Y 〉

)
− Y

(
〈V, V 〉

)
− 〈V, [V, Y ]〉.

(20.4.22)

Matching up terms between (20.4.21) and (20.4.22), we see that

〈∇V V, Y 〉 = dV [(V, Y ) + 1
2Y
(
〈V, V 〉

)
.
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This is true for every vector field Y , and both sides are tensorial in Y , so we can
eliminate it entirely and get

(∇V V )[ = ιV dV
[ + 1

2d(|V |2).

That means the Euler equation (20.4.20) becomes, in terms of forms,

ιV dV
[ + d

(
1
2 |V |

2 + p
)

= 0.

Taking d of both sides gives

dιV dV
[ = 0.

Now notice that by Cartan’s magic formula, Proposition 18.2.3, we have

LV dV [ = dιV dV
[ + ιV d

2V [ = dιV dV
[

since d2 = 0. So the Euler equation actually says that

LV dV [ = 0.

Let ω = dV [ be the vorticity 2-form. Then LV ω = 0 says that vorticity is conserved
along trajectories: that is, if Φt is the flow of V , then

Φ∗tω = ω.

Since the conserved quantity is a 2-form, we get rather different results in two di-
mensions vs. three dimensions, and this is by far the biggest difference between two-
dimensional fluids (which are relatively easy to understand) and three-dimensional
fluids (which are the source of some very famous unsolved problems).

We can go further. Consider a surface bounded by a curve (that is, a 2-chain
S whose boundary is a 1-chain C). Push the surface S by the flow Φt to get a
time-dependent surface St = Φt ◦ S. Then∫

St

ω =

∫
Φt◦S

ω =

∫
S

Φ∗tω =

∫
S

ω,

so that the vorticity flux is conserved along a surface moving with the fluid.
Furthermore we have

Ct = Φt ◦ C = Φt ◦ ∂S = ∂Φt ◦ S = ∂St.

Since ω = dV [, we have∫
St

ω =

∫
St

dV [ =

∫
∂St

V [ =

∫
Ct

V [.

Since the vorticity flux is conserved, this quantity is also conserved. The integral∫
C
V [ is called the circulation of the fluid, and the fact that circulation is conserved

along a closed curve that moves with the fluid is Kelvin’s circulation theorem.
Of course conservation of vorticity and Kelvin’s circulation theorem were histor-

ically derived without the benefit of Stokes’ theorem or differential forms, but the
nice thing about this approach is that this technique is applicable to all sorts of vari-
ations on the basic Euler equation to derive conservation laws in a straightforward
and elegant way. This is generally what makes differential geometry techniques
useful in practical fields, aside from the intrinsic beauty of the subject. You should
now be able to apply our formulas and concepts to a wide variety of situations.
Good luck!
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“At an end your rule is. And not short enough it was.”
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