
The Geometry of Axisymmetric Ideal Fluid Flows with Swirl

Pearce Washabaugh and Stephen C. Preston

August 21, 2016

Abstract

The sectional curvature of the volume preserving diffeomorphism group of a Riemannian
manifold M can give information about the stability of inviscid, incompressible fluid flows on
M . We demonstrate that the submanifold of the volumorphism group of the solid flat torus
generated by axisymmetric fluid flows with swirl, denoted by Dµ,E(M), has positive sectional
curvature in every section containing the field X = u(r)∂θ iff ∂r(ru

2) > 0. This is in sharp
contrast to the situation on Dµ(M), where only Killing fields X have nonnegative sectional
curvature in all sections containing it. We also show that this criterion guarantees the existence
of conjugate points on Dµ,E(M) along the geodesic defined by X.

Introduction

Let (M, g) be a Riemannian manifold of dimension at least two with Riemannian volume
form µ. The configuration space for inviscid, incompressible fluid flows on M is the collection of
smooth volume-preserving diffeomorphisms (volumorphisms) of M , denoted by Dµ(M). Arnold [1]
showed in 1966 that flows obeying the Euler equations for inviscid, incompressible fluid flow can
formally1 be realized as geodesics on Dµ(M). Using this framework, questions of fluid mechanics
can be re-phrased in terms of the Riemannian geometry of Dµ(M). An overview of this is given
in [2] or more recently in [7]. Of particular interest is the sectional curvature of Dµ(M). As in
finite dimensional geometry, given two geodesics with varying initial velocities in a region of strictly
positive (resp. negative) sectional curvature, the two geodesics will converge (resp. diverge) via
the Rauch Comparison theorem. In terms of fluid mechanics, this corresponds to the Lagrangian
stability (resp. instability) of the associated fluid flows.

Arnold showed that the sectional curvature K(X,Y ) of the plane in TidDµ(M) spanned by
X and Y is often negative but occasionally positive. Rouchon [14] sharpened this to show that
if M ⊂ R3, then K(X,Y ) ≥ 0 for every Y ∈ TidDµ(M) if and only if X is a Killing field (i.e.,
one for which the flow generates a family of isometries). This result was generalized by Misiołek
[9] and the second author [11] for any manifold with dimM ≥ 2. This gives the impression that,
in general, Dµ(M) will mostly be negatively curved. The question of when one can expect a
divergence free vector field to give nonpositive sectional curvature remains open. However, the
second author [12] provided criteria for divergence free vector fields of the form X = u(r)∂θ on the
area-preserving diffeomorphism groups of a rotationally-symmetric surface for which the sectional
curvature K(X,Y ) is nonpositive for all Y .

Our goal in this paper is to extend the curvature computation to Dµ,E(M), the group of
volumorphisms commuting with the flow of a Killing field E. In particular, we consider the solid

1This was proved rigorously by Ebin and Marsden [3], by working in the context of Sobolev Hs diffeomorphisms
for s > 1

2
dimM + 1. Here for simplicity we will work in the context of smooth diffeomorphisms since the curvature

formulas are the same either way.
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flat torus, M = D2 × S1, where D2 is the unit disk in R2 and S1 is the unit circle, with cylindrical
coordinates (r, θ, z) for 0 ≤ r ≤ 1 and θ, z ∈ [0, 2π]. We may think of this more concretely as the
subset of R3 with the planes z = 0 and z = 2π identified, where E = ∂θ is the field corresponding to
rotation in the disc. Fluid flows on this manifold correspond to axisymmetric ideal flows with swirl
on the solid infinite cylinder, which are 2π-periodic in the z-direction. We consider steady fluid
velocity fields of the form X = u(r)∂θ. The submanifold Dµ,E(M) is a totally geodesic submanifold
of Dµ(M) (see Vizman [15], as well as [6] and [10] for the general situation in the smooth context,
or see the preprint [5] for the Sobolev diffeomorphism context), corresponding to the fact that an
ideal fluid which is initially independent of θ will always remain so. Hence we compute sectional
curvatures K(X,Y ) where Y ∈ TidDµ,E(M) is divergence-free and axisymmetric, i.e., [E, Y ] = 0.

In [12] the second author effectively showed that when X was considered as an element of
Dµ,F (M) where F = ∂

∂z (corresponding to considering X as a two-dimensional flow rather than a
three-dimensional flow), the sectional curvature satisfied K(X,Y ) ≤ 0 for every Y ∈ TidDµ,F (M)
regardless of u(r). By contrast we show here that if u satisfies the condition

d

dr

(
ru(r)2

)
> 0, (1)

then K(X,Y ) > 0 for every Y ∈ TidDµ,E(M). We will also show that d
dr

(
ru(r)2

)
≥ 0 implies that

K(X,Y ) ≥ 0. This does not contradict the result of Rouchon, since the proof of that result relies
on being able to construct a divergence-free velocity field with small support which points in a given
direction and is orthogonal to another direction, and there are not enough divergence-free vector
fields in the axisymmetric case to accomplish this here.

The fact that the curvature is strictly positive in every section containing X makes it natural
to ask whether there are conjugate points along every such corresponding geodesic. Unfortunately
the Rauch comparison theorem cannot be used here, since infY ∈TidDµ,E(M)K(X,Y ) = 0 even if (1)
holds. Nonetheless we can show that as long as

ru(r)u′(r) + 2u(r)2 > 0, (2)

the geodesic formed by X = u(r)∂θ has infinitely many monoconjugate points. It is easy to see that
condition (1) implies (2). We do this by solving the Jacobi equation explicitly. As in [4], where the
case u(r) ≡ 1 was considered, we can prove that these monoconjugate points have an epiconjugate
point as a limit point, so that the differential of the exponential map is not even weakly Fredholm.
The second author gratefully acknowledges support from NSF grants DMS-1157293 and DMS-
1105660.

The Formula for Curvature

We first compute the curvature of Dµ,E(M) by expanding in a Fourier series in z. Here all our
vector fields and functions are smooth on the compact manifold M , so that convergence of the
series will never be an issue, as in the original computations of Arnold [1]. If desired one could do
the same computations in the Sobolev Hs context, with s > 5/2, and treat the curvature operator
as a continuous linear operator in Hs, as done by Misiołek [9], but the final curvature formula is
the same in either case. Our method here is similar to that of the second author in [12], where the
computations were two-dimensional.
Notice first of all that any smooth vector field Y which is tangent to Dµ,E(M) at the identity must
be divergence-free and must commute with E = ∂

∂θ . Therefore we can write in the form

Y (r, z) = −gz(r, z)
r

∂r +
gr(r, z)

r
∂z + f(r, z) ∂θ, (3)
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where f(0, z) = g(0, z) = 0 and g(1, z) is constant in z (in order to be well-defined on the axis of
symmetry and to have Y tangent to the boundary r = 1). We think of the term −gz

r ∂r + gr
r ∂z as

an analogue of the skew-gradient in two dimensions. We may express Y in a Fourier series in z as
Y (r, z) =

∑
n∈Z Yn(r, z) where

Yn(r, z) = einz
[
− in
r
gn(r) ∂r +

g′n(r)

r
∂z + fn(r) ∂θ

]
. (4)

On any Riemannian manifold (M, g) with volume form µ, a formula for the curvature tensor on
Dµ(M) is given by

R(Y,X)X = P
(
∇Y P (∇XX)−∇XP (∇YX) +∇[X,Y ]X

)
, (5)

where P (X) is the projection onto the divergence-free part of X. Concretely, P (X) is obtained by
solving the Neumann boundary value problem{

∆q = div X in M
〈∇q, ~n〉 = 〈X,~n〉 on ∂M

for q and then setting P (X) = X −∇q. The non-normalized sectional curvature is then given by

K(X,Y ) = 〈〈R(Y,X)X,Y 〉〉 =

∫
M

〈
R(Y,X)X,Y

〉
µ. (6)

See [9] for the derivation of the formula we use here. Our goal now is to compute R(Yn, X)X, and
to do this we first need to compute P (∇YnX).

Lemma 1. Suppose Yn is of the form (4) and X = u(r) ∂θ in cylindrical coordinates on M . Then
the covariant derivative P (∇YnX) in Dµ,E(M) is given by P (∇Y0X) = 0 and

P (∇YnX) = ∇YnX −∇(qne
inz) = −(rfnu+ q′n)einz∂r −

in

r
gn(u′ +

u

r
+ rqn)einz∂θ for n ∈ N,

where
qn(r) = −ζn(r)Hn(r) + ξn(r)Jn(r), (7)

with

Hn(r) =

∫ r

0
s2fn(s)u(s)ξ′n(s) ds and Jn(s) = −

∫ 1

r
s2fn(s)u(s)ζ ′n(s) ds, (8)

and
ξn(r) = I0(nr) and ζn(r) = K1(n)

I1(n)
I0(nr) +K0(nr),

with I0 and K0 denoting the modified Bessel functions of the first and second kinds.

Proof. Consider the cases n = 0 and n ∈ N separately. For n = 0 we have

Y0 = 1
r g
′
0(r)∂z + f0(r)∂θ

and ∇Y0X = −rf0(r)u(r)∂r.
This is also the gradient of a function, and thus P (∇Y0X) = 0.
Now for n 6= 0,

∇YnX = −rfnueinz∂r −
in

r
gn(u′ +

u

r
)einz∂θ.
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The solution qn(r)einz of {
∆(qn(r)einz) = div(∇YnX) in M,〈
∇(qne

inz), ~n
〉∣∣
∂M

= 〈∇YnX,~n〉|∂M on ∂M,
(9)

must satisfy the ordinary differential equation
1
r
d
dr

(
r dqndr

)
− n2qn(r) = −1

r
d
dr

(
r2fn(r)u(r)

)
for 0 < r < 1

q′n(1) = −fn(1)u(1)

|qn(0)| <∞.
(10)

The left side of this equation is a standard Bessel differential operator, and so the solution formula
(7) is essentially just the variation of parameters formula together with an integration by parts since
I0 and K0 solve the corresponding homogeneous equation. Here we can simply verify the solution:
taking the derivative of qn(r), we obtain

q′n(r) = −ζ ′n(r)Hn(r) + ξ′n(r)Jn(r) + r2fn(r)u(r)
(
ξn(r)ζ ′n(r)− ζn(r)ξ′n(r)

)
= −ζ ′n(r)Hn(r) + ξ′n(r)Jn(r)− rfn(r)u(r),

(11)

and since ζ ′n(1) = Jn(1) = 0 we get the correct boundary condition. Furthermore we get

q′′n(r) = −ζ ′′n(r)Hn(r) + ξ′′n(r)Jn(r)− d

dr

(
rfn(r)u(r)

)
,

and with these formulas we easily check that qn satisfies (10).

The projection P (∇YX) is the most complicated part of the curvature formula (5) since P (∇XX) =
0 for steady flows X. Hence Lemma 1 easily gives the following expression for the curvature tensor.

Proposition 2. Let M = D2 × S1. Suppose that X ∈ TidDµ,E(M) is defined by X = u(r)∂θ, and
let Yn be of the form (4). Then the curvature tensor R(Yn, X)X is given for n 6= 0 by

R(Yn, X)X = P

(
−inugn(2u′ +

u

r
)einz∂r +

(q′n + rfnu)ueinz

r
∂θ

)
, (12)

where qn is the solution of the ODE (10). For n = 0 we get R(Y0, X)X = 0.

Proof. We compute using formula (5). First note that ∇XX = −ru2∂r, which is the gradient of a
function. Thus P (∇XX) = 0.
With the formula for the projection P (∇YnX) from Lemma 1 in hand, we will get

∇X(P (∇YnX)) = inugn

(
u′ +

u

r

)
einz∂r −

(q′n + rfnu)ueinz

r
∂θ

for any nonzero integer n.
We also easily compute

∇[X,Yn]X = −ingn(r)u(r)u′(r)einz ∂r.

So, R will be given by (12).

The sectional curvature can now be computed explicitly using Lemma 1 and Proposition 2; the
formula simplifies substantially due to Bessel function identities.

4



Theorem 3. On M = D2 × S1 with X = u(r) ∂θ and Y expressed as in (3), the non-normalized
sectional curvature is given by K(X,Y ) =

∑
n∈ZK(X,Yn), where Yn is expressed as in (4) and

K(X,Yn) = 4π2
∫ 1

0

1

r

(
n2 |gn(r)|2 d

dr

(
ru(r)2

)
+
|Hn(r)|2

I1(nr)2

)
dr. (13)

Hence the curvature is positive for all Y if and only if d
dr

(
ru(r)2

)
> 0.

Proof. Using formula (11) in (12), we obtain

R(Yn, X)X = P

[
(−inugn(2u′ +

u

r
)einz)∂r +

u(ξ′nJn − ζ ′nHn)einz

r
∂θ

]
,

which can clearly be expressed as einz times a function of r only. Orthogonality of the functions
eimz and einz over S1 when m 6= n implies that

K(X,Y ) =
∑
m,n∈Z

〈〈Ym, R(Yn, X)X〉〉 =
∑
n∈Z
〈〈Yn, R(Yn, X)X〉〉 =

∑
n∈Z

K(X,Yn).

The latter is now relatively easy to compute. We have

K(X,Yn) = 4π2
∫ 1

0

n2

r2
|gn(r)|2 η(r) dr + 4π2

∫ 1

0
r2fn(r)

(
u(r)

(
ξ′n(r)Jn(r)− ζ ′(r)Hn(r)

))
dr, (14)

where η(r) = d
dr

(
ru(r)2

)
. By the definitions (8) of Hn and Jn, we see that the second term in (14)

is

4π2
∫ 1

0

(
H ′n(r)Jn(r)− J ′n(r)Hn(r)

)
dr.

From here we adapt the corresponding computation in [13]. Integrating by parts and using the fact
that Jn(r)Hn(r)→ 0 as r → 0 or r → 1, we get

∫ 1

0
H ′n(r)Jn(r)− J ′n(r)Hn(r) dr = −2Re

∫ 1

0
J ′n(r)Hn(r) dr =

∫ 1

0

J ′n(r)

H ′n(r)

d

dr

(
|Hn(r)|2

)
dr,

and another integration by parts (where again the boundary terms vanish) gives∫ 1

0
H ′n(r)Jn(r)− J ′n(r)Hn(r) dr = −

∫ 1

0

d

dr

(
K1(nr)

I1(nr)

)
|Hn(r)|2 dr.

Finally the Bessel function identity d
dr

(
K1(r)
I1(r)

)
= 1

rI1(r)2
implies (13).

Remark 4. The normalized sectional curvature is given by K(X,Y ) = K
〈〈X,X〉〉〈〈Y,Y 〉〉−〈〈X,Y 〉〉2 . Sup-

pose that f = 0 and that only one gn is nonzero in (4); then we have 〈〈X,Y 〉〉 = 0 and the sectional
curvature takes the form

K(X,Y ) =
n2
∫ 1
0

1
r |gn(r)|2 d

dr

(
ru(r)2

)
dr(∫ 1

0 r
3u(r)2 dr

)(∫ 1
0

(
n2

r |gn(r)|2 + |g′n(r)|2
)
dr
) .

We can make this arbitrarily small by choosing a highly oscillatory gn. Hence although the curvature
is strictly positive if d

dr

(
ru(r)2

)
> 0, it cannot be bounded below by any positive constant.
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Solution of the Jacobi equation

It is natural to ask whether the positive curvature guaranteed by the theorem above ensures the
existence of conjugate points along the corresponding geodesic. This is not automatic since although
the sectional curvature is positive in all sections containing the geodesic’s tangent vector, it is not
bounded below by any positive constant because of Remark 4; hence the Rauch comparison theorem
cannot be applied directly (and in any case would need to be proved in the present formal context of
weak metrics on Fréchet manifolds). In this section we answer this question affirmatively by solving
the Jacobi equation more or less explicitly along such a geodesic, and show that in fact conjugate
points occur rather frequently.

Theorem 5. Let η(t) be a geodesic on Dµ,E(D2 × S1) with initial condition η(0) = id and η̇(0) =
X = u(r)∂θ. Let ω(r) = 2u(r) + ru′(r) denote the vorticity function of X, and assume that
u(r)ω(r) > 0 for all r ∈ [0, 1]. Then η(t) is a monoconjugate point to η(0) for every time t = 2πλ/n,
where n ∈ N is arbitrary and λ is any eigenvalue of the Bessel-type Sturm-Liouville problem

1

r

d

dr

(
rψ′(r)

)
−
(
n2 +

1

r2

)
ψ(r) = −2λ2u(r)ω(r)ψ(r), ψ(1) = 0, ψ(0) finite.

Proof. Along a geodesic η(t) with (steady) Eulerian velocity field X, the Jacobi equation for a
Jacobi field J(t) = Y (t) ◦ η(t) may be written [11] as the system

∂Y

∂t
+ [X,Y (t)] = Z(t) (15)

∂Z

∂t
+ P (∇XZ(t) +∇Z(t)X) = 0, (16)

where P is the orthogonal projection onto divergence-free vector fields. The first equation is the
linearized flow equation, while the second is the linearized Euler equation used in stability analysis.
Write

Z(t, r, z) = −1

r

∂h

∂z
(t, r, z) ∂r +

1

r

∂h

∂r
(t, r, z) ∂z + j(t, r, z) ∂θ,

where h = 0 on the axis r = 0 and h is constant on the boundary r = 1. Then it is easy to compute
that (16) becomes the system

∂j

∂t
(t, r, z) =

ω(r)

r2
∂h

∂z
(t, r, z), (17)

−1

r

∂2h

∂t∂z
(t, r, z) ∂r +

1

r

∂2h

∂t∂r
(t, r, z) ∂z = 2P (ru(r)j(t, r, z) ∂r) , (18)

where ω(r) = 2u(r) + ru′(r) is the vorticity defined by curlX = ω(r) ∂z. Applying the curl to both
sides of equation (18) to eliminate the projection operator, we obtain

∂

∂t

[
∂

∂r

(
1

r

∂h

∂r

)
+

1

r

∂2h

∂z2

]
= −2ru(r)

∂j

∂z
. (19)

Differentiating (19) in time and substituting (17) we obtain the single equation

∂2

∂t2

[
∂

∂r

(
1

r

∂h

∂r

)
+

1

r

∂2h

∂z2

]
= −2u(r)ω(r)

r

∂2h

∂z2
. (20)

Expand h in a Fourier series in z to get

h(t, r, z) =
∑
n∈Z

hn(t, r)einz.
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Then for each n we can solve the eigenvalue problem

d

dr

(
1

r
φ′(r)

)
− n2

r
φ(r) =

2Cu(r)ω(r)

r
φ(r);

to make this look more familiar we set φ(r) = rψ(r) and obtain

1

r

d

dr

(
rψ′(r)

)
−
(
n2 +

1

r2

)
ψ(r) = 2Cu(r)ω(r)ψ(r),

which is a singular Sturm-Liouville problem analogous to the Bessel equation. We obtain a sequence
of eigenfunctions φmn(r) for m ∈ N, with eigenvalues Cmn. We see that

2C

∫ 1

0

u(r)ω(r)

r
φ(r)2 dr = −

∫ 1

0

1

r
φ′(r)2 dr −

∫ 1

0

n2

r
φ(r)2 dr,

so that if ω(r)u(r) > 0, then C must be strictly negative; we write C = −λ2mn for the eigenfunction
φmn(r). Expanding hn(t, r) in a basis of such eigenfunctions as

h(t, r, z) =
∑
n∈Z

∞∑
m=1

hmn(t)φmn(r)einz,

equation (20) becomes
−λ2mnh′′mn(t) = n2hmn(t),

which obviously has solutions

hmn(t) = amn cos

(
nt

λmn

)
+ bmn sin

(
nt

λmn

)
for some coefficients amn and bmn.
Suppose am,n = am,−n = 1

2 for some (m,n) with n 6= 0, and that all other a are zero and that every

b is zero, so that h(t, r, z) = cos
(

nt
λmn

)
φmn(r) cosnz. Then by equation (19) we compute that

j(t, r, z) = −λmnω(r)

r2
φmn(r) sinnz sin

(
nt

λmn

)
.

To find the Jacobi fields, write Y in equation (15) as

Y (t, r, z) = −1

r

∂g

∂z
(t, r, z) ∂r +

1

r

∂g

∂r
(t, r, z) ∂z + f(t, r, z) ∂θ.

We easily compute that X = u(r) ∂
∂θ gives [X,Y ] = 1

r
∂g
∂zu
′(r) ∂

∂θ , and thus equation (15) becomes
in components

∂g

∂t
(t, r, z) = h(t, r, z)

∂f

∂t
(t, r, z) +

u′(r)

r

∂g

∂z
(t, r, z) = j(t, r, z).

With g(0, r, z) = f(0, r, z) = 0, we find that

g(t, r, z) =
λmn
n

cosnz sin

(
nt

λmn

)
φmn(r)

f(t, r, z) =
2λ2mnu(r)

nr2
sinnz

(
cos

(
nt

λmn

)
− 1

)
φmn(r).

Thus both f and g vanish when t = 0 and when t = 2πλmn/n, so η(2πλmn/n) is monoconjugate to
the identity along η.
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Remark 6. Using the Sturm comparison theorem we can estimate the spacing of the eigenvalues
λmn and show that for fixed m the sequence λmn/n has a finite limit as n→∞. Just as in [4], this
must be an epiconjugate point. Therefore the differential of the exponential map is not even weakly
Fredholm along any geodesic of this form (which is to say the differential of the exponential map,
extended to a linear map in the weak Riemannian L2 topology, is not a Fredholm operator). It is
worth noting that the reason the Jacobi equation is explicitly solvable in this case is because there is
no “drift” term, so the total time derivative agrees with the partial time derivative, in the same way
as in [4].

It would be very interesting to generalize the curvature computation to fields of the form X =
u(r) sin z ∂θ, which is the initial velocity field of the Luo-Hou initial condition [8] that leads nu-
merically to a blowup solution. We expect that the formula

∫
H ′nJn − J ′nHn which appears both

here and in [12] is a typical feature of curvature formulas when computed correctly, although they
doubtless become substantially more complicated.
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