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1. Introduction

Let M be a compact, oriented Riemannian manifold of dimension n, possibly with
smooth boundary ∂M . Let Ds

µ(M) denote the group of all diffeomorphisms of Sobolev
class Hs preserving the volume form µ on M . If s > n/2 + 1 then Ds

µ(M) becomes
an infinite dimensional Hilbert manifold whose tangent space at a point η consists of
Hs sections X of the pull-back bundle η∗TM for which the corresponding vector field
U = X ◦ η−1 on M is divergence free and tangent to ∂M . Using right translations, the
L2 inner product on vector fields,

(1.1) 〈〈U,W 〉〉L2 =

∫
M

〈U(x), W (x)〉 dµ(x), U,W ∈ TidDs
µ(M)

defines a right-invariant metric on the group. Our main reference for basic facts re-
garding Ds

µ(M) is the paper of Ebin and Marsden [EMa].
A strong motivation to study the geometry of diffeomorphism groups comes from

hydrodynamics. In a seminal paper, Arnold [A] related motions of a perfect fluid in M
to geodesics in Dµ(M) = ∩sDs

µ(M). He observed that a curve η(t) is a geodesic of the

L2 metric (1.1) starting from the identity id in the direction Vo if and only if the time
dependent vector field V = η̇ ◦ η−1 on M solves the Euler equation of hydrodynamics:

∂tV +∇V V = −grad p,

div V = 0,

V (0) = Vo, 〈V, ν〉 = 0 on ∂M,

(1.2)

where ∇ denotes the covariant derivative, p is the pressure function and ν is the normal
to ∂M.

Soon after, Ebin and Marsden [EMa] discovered that there is a technical advantage
in rewriting the Euler equation in this way. Their result was that the corresponding
geodesic equation on the group Ds

µ(M) is in fact a smooth ODE and can therefore
be solved uniquely for small values of t using a standard Picard iteration argument.
Furthermore, since the solutions depend smoothly on initial data, it follows that the
L2 metric has a smooth exponential map

expid : TidDs
µ → Ds

µ(M)
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defined, for small t, by

expid(tVo) = η(t),

where η is the unique geodesic from the identity with initial velocity Vo. By the inverse
function theorem, this map is a local diffeomorphism from TidDs

µ to a neighborhood of
the identity in Ds

µ(M).
In [A] Arnold also suggested that this approach could be used to study stability of

fluid motions through the equation of geodesic deviation. This led to extensive calcu-
lations of the curvature of the diffeomorphism group and to the search for conjugate
points in Ds

µ(M). Many of these and related results together with references were
assembled in the book by Arnold and Khesin [AK].

Recall that a point γ(t) is said to be conjugate to the point γ(0) if the derivative
d expγ(0)(tγ̇(0)), identified with a map from the tangent space at γ(0) to the one at γ(t),
is singular. In contrast with finite dimensional geometry, two types of singularities can
occur in a general Hilbert manifold. Following Grossman [G], we say that a conjugate
point γ(t) is monoconjugate (respectively epiconjugate) to γ(0) if d expγ(0)(tγ̇(0)) fails
to be one-to-one (respectively onto). In finite dimensions the two types clearly coincide.

For general Hilbert manifolds many different conjugacies are possible. A simple
example of the unit sphere in the space `2 of square-summable sequences with the
induced metric shows that conjugate points may have infinite order. Another example,
due to Grossman, of an ellipsoid in the same space shows that finite geodesic segments
may contain infinitely many conjugate points of either type.

In the case of diffeomorphism groups, if the underlying manifold M has positive
curvature and enough symmetry, then conjugate points can be located along those
geodesics which are contained in the isometry subgroup of Ds

µ(M); see Misio lek [M1].
It is also known, though more difficult to prove, that conjugate points exist in Ds

µ(M)

even if M is flat. See Misio lek [M2] for the case when M is a flat torus T2 and
Shnirelman [Sh] for the ball in R3. It is therefore of interest to investigate the nature
of conjugate points in Ds

µ(M). We will prove the following result.

Theorem 1. Let M2 be a compact two-dimensional manifold without boundary. Then
the exponential map of the L2 metric on Ds

µ(M2) is a nonlinear Fredholm map of index
zero.

Recall that a bounded linear operator L between Banach spaces is said to be Fredholm
if it has closed range and both its kernel and cokernel are finite dimensional. L is said
to be semi-Fredholm if it has closed range and at least one of the other two conditions
holds. The index of a semi-Fredholm operator is defined as

ind L = dim ker L− dim coker L.

Semi-Fredholm operators form an open set in the space of all bounded linear operators
and the index is a continuous function on this set into Z∪{±∞}; see for example [K].
A smooth map f between Banach manifolds is called a Fredholm map if its Frechet
derivative df(p) is a Fredholm operator for each p. If the domain of f is connected
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then the index of the operator df(p) is independent of p and by definition is the index
of f . Fredholm maps were introduced by Smale [Sm].

Observe that as a corollary to Theorem 1 we find that the monoconjugate and
epiconjugate points in Ds

µ(M2) coincide if M has no boundary. Furthermore, they are
isolated and of finite multiplicity along finite geodesic segments. Also, by the infinite
dimensional version of Sard’s Theorem (see [Sm]) the set of all such points must be of
1st Baire category in Ds

µ(M2). Thus the structure of singularities of expid essentially
looks like that of a finite-dimensional manifold. A similar result is known to hold for
the exponential map on the free loop space of a compact manifold M with its natural
Sobolev H1 metric, see [M3]. The above Theorem was announced for the flat torus T2

and conjectured for other manifolds in [EMi].
The techniques we use to prove Theorem 1 fail if the surface M has a nonempty

boundary, and we do not know if the theorem is true in this case. The topology of
Dµ(M) is substantially more complicated when M has a boundary than when it does
not. For example, Shnirelman [Sh] gave an example of an area-preserving diffeomor-
phism ξ on the disc, smooth on the interior and continuous up to the boundary, such
that ξ cannot be joined to the identity by a curve of finite length in the L2 norm (in
particular, ξ is not in the image of expid). If Fredholmness fails on a manifold with
boundary, it could be related to such examples.

We can however prove a weaker result valid for any surface, using the weak topology
on each TidDµ generated by the L2 norm, rather than the Hs norm for s > n/2 + 1.
We denote the closure of TidDµ in this norm by TidD0

µ. Since expid is not necessarily

defined on TidD0
µ, we only have a result about the differential.

Theorem 2. Suppose M is any compact surface, possibly with boundary. For any
Vo ∈ TidDs

µ(M) with s > 2, the differential d expid(tVo) extends to a bounded operator

from TidD0
µ(M) to Texp(tVo)D0

µ(M) which is Fredholm of index zero in the L2 topology.

Notice that this theorem tells us about the monoconjugate points in the Hs norm as
well, since any point which is monoconjugate in the Hs sense is also monoconjugate in
the L2 sense. Thus for example, monoconjugate points cannot cluster on Ds

µ(M2) in a
finite interval.

Combining Theorems 1 and 2, we can say that if η(t) = exp(tVo) is not monocon-
jugate to id along the Hs geodesic η, then d expid(tVo) : TidD0

µ → Tη(t)D0
µ is surjective,

but the restricted map d expid(tVo) : TidDs
µ → Tη(t)Ds

µ may not be surjective. In other
words, the open question is whether d expid(tVo) smooths out vector fields near the
boundary or not.

In three dimensions, the situation changes dramatically: both Theorems 1 and 2 fail
in this case. In particular, we prove in Section 4 that along the geodesic corresponding
to uniform rotational flow of a flat solid torus D2 × S1, there are epiconjugate points
that are not monoconjugate points. We find epiconjugate points by first computing
the monoconjugate points, using a basis of vector fields which diagonalizes the Jacobi
equation. The set of monoconjugate points turns out not to be discrete, and in the
course of the proof we find that the cluster points of this set are epiconjugate points.
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In particular, if Vo is the initial velocity vector for uniform unit-speed rotational flow,
then the cut point of the geodesic at expid(πVo) is an epiconjugate point but not a
monoconjugate point, and thus the range of d expid(πVo) cannot be closed.

2. Background and preparation

It is useful to consider Ds
µ(M) as a Riemannian submanifold of the group Ds(M) of

all Hs diffeomorphisms equipped with the same L2 metric. The action of Ds
µ(M) on

Ds(M) given by composition on the right is an isometry of (1.1) and combined with
the Weyl decomposition gives an L2 orthogonal splitting of each tangent space

TηDs = TηDs
µ ⊕ grad Hs+1(M) ◦ η.

The projections onto the first and second summands above depend smoothly on the
base point η and will be denoted by Pη and Qη respectively, or simply P and Q if η = id.

The L2 metric induces a smooth invariant Levi-Civita connection ∇̃ on Ds
µ(M) whose

curvature tensor R̃ is also invariant with respect to right multiplication by Ds
µ(M). We

refer to [EMa] for the proofs of these facts.
Let Vo be any vector in TidDs

µ and let η be the geodesic of (1.1) starting from the
identity with initial velocity Vo. If M is two-dimensional, the Cauchy problem for the
Euler equation is globally well-posed, and it follows that the geodesic can be extended
indefinitely. (In three dimensions this is a major unsolved problem.) In order to study
Fredholmness of expid, it will be convenient to express its derivative at tVo in terms of
solutions to the Jacobi equation

(2.3) ∇̃η̇∇̃η̇J + R̃(J, η̇)η̇ = 0

along η(t) = expid (tVo) with initial conditions

(2.4) J(0) = 0, ∇̃VoJ(0) = Wo.

Existence and uniqueness of (global in time) Jacobi fields solving (2.3)–(2.4) follows
at once from the fact that R̃ is a smooth multi-linear operator and (2.3) is a linear
equation. See Misio lek [M1] for details.

If J is the Jacobi field along η with the initial conditions (2.4), then

(2.5) d expid (tVo)tWo = J(t).

Furthermore, the derivative of the exponential map at tVo forms a family of linear
operators F (t) : TidDs

µ → Tη(t)Ds
µ which are bounded for each fixed t and which depend

smoothly on t, and are given by F (t)(Wo) = J(t).
We will prove that this operator F (t) is Fredholm by using the decomposition of the

Jacobi equation, first noticed by Rouchon [R] and exploited by Preston [P] to study
Lagrangian stability of steady flows. First we note that if X(t) is any time-dependent
vector field along a curve η(t), i.e. with X(t) ∈ Tη(t)Ds

µ, then we can right-translate X
back to the identity to get a time-dependent vector field Y (t) ∈ TidDs

µ, given by

(2.6) Y (t) ≡ dR−1
η(t)X(t) = X(t) ◦ η−1(t).
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We can compute the covariant derivative of X along η using the formula

(2.7) ∇̃η̇(t)X(t) =

(
∂Y

∂t
+ P

(
∇V (t)Y (t)

))
◦η(t),

where V (t) is the Eulerian velocity field, defined by

∂η

∂t
= V (t)◦η(t).

From equation (2.7) and the geodesic equation ∇̃η̇η̇ = 0, one derives the Euler equation
of ideal, incompressible flow

(2.8)
∂V

∂t
+ P

(
∇V (t)V (t)

)
= 0.

Using formula (2.7), the Euler equation (2.8), and the definition of the Riemann cur-
vature operator, it is not difficult to verify that the Jacobi equation (2.3) is equivalent
to the two equations

∂Z

∂t
+ P

(
∇V (t)Z(t) +∇Z(t)V (t)

)
= 0,(2.9)

∂Y

∂t
+ [V (t), Y (t)] = Z(t),(2.10)

where Y (t) = J(t) ◦ η−1(t).
The reason this decoupling works is because the geodesic equation also decouples,

into the Euler equation of an ideal fluid and the flow equation; both decouplings are
due to the right-invariance of the metric on Ds

µ(M). The same thing happens for
any Lie group with a right-invariant Riemannian metric, and there is a corresponding
result for the left-invariant case. The equation (2.9) is the linearized Euler equation,
extensively studied in questions of linear stability of a steady incompressible flow, while
the equation (2.10) is the linearization of the flow equation.

For σ ≥ 0, let TidDσ
µ(M) denote the closure of the space of smooth, divergence-

free vector fields, tangent to the boundary of M , in the Hσ norm. By the Weyl
decomposition, this is a closed subspace of the space of all Hσ vector fields on M (see
[EMa]). For σ > n/2 + 1, this coincides with the actual tangent space to Dσ

µ(M). For
smaller σ, Dσ

µ(M) is not necessarily a smooth manifold.
It is helpful to observe the following. If V ∈ TidDs

µ(M), with s > n/2 + 1, then V is

of class C1, by the Sobolev embedding theorem. If we denote by LV the (unbounded)
operator from TidDσ

µ to itself given by

(2.11) LV : Y 7→ [V, Y ],

for divergence-free vector fields V and Y tangent to ∂M , then the formal L2-adjoint of
LV in TidD0

µ is easily computed to be

(2.12) LV
?(Z) = −P

(
(ιV dZ[)]

)
= −P (∇V Z +∇ZV ) + KV (Z),
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where the operator KV is defined as

(2.13) KV (Z) = P
(
(ιZdV [)]

)
.

(Here ] denotes the operator of raising indices using the metric on M , to get a vector
field from a 1-form, and [ denotes its inverse.)

If s ≥ σ + 1, then the operator KV is continuous on TidDσ
µ, since dV [ is of class Hs−1

and P is continuous. It is anti-self-adjoint in TidD0
µ because dV [ is antisymmetric.

Now, using equations (2.9) and (2.10), we can write the factorization of the Jacobi
equation as

(2.14)

(
∂

∂t
− LV (t)

? + KV (t)

)(
∂

∂t
+ LV (t)

)
Y (t) = 0.

Because the Jacobi equation is self-adjoint, we can factor it in another way as well.

Lemma 3. The equation (2.14) is equivalent to the equation

(2.15)

(
∂

∂t
− LV (t)

?

)(
∂

∂t
+ LV (t) + KV (t)

)
Y (t) = 0.

Proof. This is a consequence of self-adjointness, but we can also verify the formula
directly by proving that

(2.16)
d

dt
KV (t) = LV (t)

?KV (t) + KV (t)LV (t),

this formula arising from setting the difference of the operators in (2.14) and (2.15)
equal to zero. Here the time derivative is taken in the operator sense.

In standard Lie group notation, the group adjoint operator is Adη = dRη−1dLη.
Since on the diffeomorphism group, dRη−1(X) = X ◦ η−1 and dLη(X) = Dη(X), the
group adjoint is the push-forward operation of a diffeomorphism η on a vector field,
given by

(2.17) Adη(X) = η∗(X) = Dη ◦X ◦ η−1.

Then we have

(2.18)
d

dt
Adη(t)−1 = Adη(t)−1 LV (t),

and since LV
? is the L2-metric adjoint of LV in the space of divergence-free vector

fields, we have by general properties of adjoints that

(2.19)
d

dt
Adη(t)−1

? = LV (t)
?Adη(t)−1

?,

where Adη
? denotes the adjoint of the continuous operator Adη on TidD0

µ, in the L2

norm.
Explicitly, we can compute that this operator is

(2.20) Adη
?(Z) = P

(
(η∗Z[)]

)
= P

(
DηT(Z◦η)

)
,
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where η∗ is the pullback operator on differential forms. (Notice that although Adη maps
TidD0

µ to itself, the L2 adjoint does not; thus we must compose with the projection P

to get the TidD0
µ adjoint.)

For the Euler equation of ideal fluid mechanics, we know the vorticity 2-form dV (t)[

is transported by the flow, i.e., that dV (t)[ = [η(t)−1]∗dV [
o (see [E]). So KV (t)(Z) =

P
(
ιZ [η(t)−1]∗dV [

o

)
. Now for any vector field W , we have

ιZ(η−1)∗dV [
o (W ) = (η−1)∗dV [

o (Z,W ) = dV [
o (η−1

∗ Z, η−1
∗ W )

= ιη−1
∗ ZdV [

o (η−1
∗ W ) = (η−1)∗

(
ιη−1
∗ ZdV [

o

)
(W ).

Thus by formula (2.20), we find that

(2.21) KV (t) = Adη(t)−1
? ◦KVo ◦ Adη(t)−1 .

Computing the time-derivative of this operator, and using the equations (2.18) and
(2.19), we obtain the formula (2.16), as desired. �

Using the splitting (2.15), the solution operator F (t) of the Jacobi equation can then
be written in the following convenient form. Unfortunately because the splitting loses
one derivative (the equations are only defined on Hσ if V is in Hσ+1), we only get a
result on Hσ rather than Hs. We will be able to compensate for this later.

Proposition 4. If η is a geodesic curve in Ds
µ(M), with s > n/2+1 and s ≥ σ+1, then

the map F (t), which takes Wo to the Jacobi field J(t) with initial conditions J(0) = 0
and J ′(0) = Wo, extends to a continuous operator from TidDσ

µ to Tη(t)Dσ
µ. In addition,

we have the formula

(2.22) F (t) = Dη(t)
(
Ω(t)− Γ(t)

)
.

Here Ω(t) : TidDσ
µ → TidDσ

µ is a continuous operator, given by

(2.23) Ω(t) =

∫ t

0

Adη(τ)−1 Adη(τ)−1
? dτ.

(The operators Adη and Adη
? are as defined in Lemma 3.)

The operator Γ(t) : TidDσ
µ → TidDσ

µ is continuous and is given in terms of F (t) by

(2.24) Γ(t) =

∫ t

0

Adη(τ)−1 KV (τ) dRη−1(τ) F (τ) dτ.

Proof. As in the proof of Lemma 3, we can rewrite the operators LV and LV
? in terms

of the push-forward Adη and its adjoint Adη
?. From equation (2.19), we can write

d

dt
Adη(t)

? = −Adη(t)
?LV (t)

?.
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Using this equation and (2.18), the factored, right-translated Jacobi equation (2.15)
can be written using operator derivatives as the pair of equations

Adη(t)−1
? d

dt

(
Adη(t)

?W (t)
)

= 0,(2.25)

Adη(t)
d

dt

(
Adη(t)−1 Y (t)

)
+ KV (t)

(
Y (t)

)
= W (t).(2.26)

The solution of (2.25) is obviously W (t) = Adη(t)−1
?Wo, and from this we rewrite (2.26)

as

(2.27)
d

dt

(
Adη(t)−1 Y (t)

)
+ Adη(t)−1 KV (t)

(
Y (t)

)
= Adη(t)−1 Adη(t)−1

?Wo.

This is a linear differential equation for Adη(t)−1 Y (t) on TidD0
µ. Since η, η−1, and V

are all Hs, we know Adη−1 , Adη−1
?, and KV are all continuous operators on TidDσ

µ.
Therefore there is a unique solution Y (t) in TidDσ

µ with Y (0) = 0, defined for as long
as η(t) and V (t) are defined. Since F (t)(Wo) = Y (t) ◦ η(t), this shows that F (t) is
defined on all of TidDσ

µ.
Now, instead of actually solving (2.27), we simply integrate both sides in time and

obtain

Adη(t)−1 Y (t) = Ω(t)(Wo)− Γ(t)(Wo).

Using J(t) = Y (t) ◦ η(t) and the formula (2.17), we get the formula (2.22) as desired.
Continuity of the operators Ω(t) and Γ(t) is clear from their definitions, since η−1

and V are both in Hσ+1. �

The basic idea of the Fredholmness proof is to use the decomposition (2.22), showing
that Ω(t) is invertible and that Γ(t) is compact. We will do this in the next section.

3. Proof of Fredholmness

We first establish that Ω(t) is invertible on TidDσ
µ(M). If σ = 0, this is true for M

of any dimension and possibly with boundary. On the other hand, if σ > 0, then it is
true for a manifold of any dimension, without boundary. First the σ = 0 result.

Proposition 5. Suppose M is a compact manifold of any dimension, possibly with
boundary. If Vo ∈ TidDs

µ with s > n/2+1 and η(t) = expid(tVo), then the operator Ω(t)

defined by equation (2.23) is positive-definite on TidD0
µ, satisfying the estimate

(3.28) 〈〈Wo, Ω(t)(Wo)〉〉L2 ≥ C(t)〈〈Wo, Wo〉〉L2 ,

with C(t) =

∫ t

0

dτ

‖Dη(τ)T Dη(τ)‖L∞
. Consequently, Ω(t) is also invertible on TidD0

µ.
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Proof. We have

〈〈Wo, Ω(t)(Wo)〉〉L2 =

∫ t

0

〈〈Wo, Adη(τ)−1Adη(τ)−1
?(Wo)〉〉L2 dτ

=

∫ t

0

‖Adη(τ)−1
?(Wo)‖2

L2 dτ ≥
(∫ t

0

1

‖Adη(τ)
?‖2

L2

dτ

)
‖Wo‖2

L2 .

We can compute, using formula (2.17) for the push-forward map, that

‖Adη(τ)
?‖2

L2 = ‖Adη(τ)‖2
L2 ≤ ‖Dη(τ)T Dη(τ)‖L∞ ,

the L∞ norm denoting the maximum on M of the largest eigenvalue of the symmetric
matrix DηT Dη, which is well-defined since η is C1. The inequality (3.28) then follows.

Now since Ω(t) is positive-definite, it must have empty kernel. Since Ω(t) is self-
adjoint, it must also have empty cokernel. And by the Schwartz inequality, we have

C(t)‖Wo‖L2 ≤ ‖Ω(t)(Wo)‖L2 ,

which implies that Ω(t) has closed range, and is hence surjective. So Ω(t) is invertible
on TidD0

µ. �

To define the Sobolev topology on TηDσ
µ(M), where M has no boundary, we set

up coordinate systems on a partition of unity {Oj} of M , and then for any element
X ◦ η ∈ TηDσ

µ, write X ◦ η =
∑

k Xk(η) ∂k and define the Sobolev norm as

(3.29) ‖X ◦ η‖Hσ =
∑

j

∑
k

∑
|α|≤σ

‖∂α1

x1 ∂α2

x2 · · · ∂αn
xn Xk(η)‖L2(Oj),

where |σ| = α1 + α2 + · · ·+ αn. To simplify notation, we will abbreviate this as

‖X ◦ η‖Hσ =
∑

‖∂αX(η)‖L2 .

See Ebin-Marsden [EMa] for details of these constructions.

Lemma 6. Suppose M is a compact manifold of dimension n, without boundary, and
O is a coordinate patch in M . Suppose η is a C∞ volume-preserving diffeomorphism.
Then for any multi-index α with |α| ≤ σ and any W in Hσ, we have the estimate

‖[∂α, Pη](W )‖L2(O) ≤ Bα‖W‖Hσ−1(O)

for some constant Bα.

Proof. First consider [∂xi , Pη]. If X is an Hσ vector field (not necessarily divergence-
free), then we can write X = U + ∇f , where U ∈ TidDσ

µ and f is an Hσ+1 function.
Then

[∂xi , Pη](X◦η) = ∂xi(U ◦η)− P
(
∂xi(X◦η)◦η−1

)
◦η.

We will prove first that

(3.30) ‖[∂xi , Pη](X◦η)‖L2 ≤ bi‖X‖L2 .
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Write N j
i = ∂ηj

∂xi ◦η−1. Then, with gij denoting the components of the inverse metric,
we have

∂xi(Xk◦η)◦η−1 ∂k =

(
N j

i

∂Xk

∂xj

)
∂k

=

(
N j

i

∂Uk

∂xj
+ N j

i

∂gkl

∂xj

∂f

∂xl
+ N j

i g
kl ∂2f

∂xj∂xl

)
∂k

=

(
N j

i

∂Uk

∂xj
+ N j

i

∂gkl

∂xj

∂f

∂xl
− gkl ∂f

∂xj

∂N j
i

∂xl

)
∂k +∇

(
N j

i

∂f

∂xj

)
.

Since the projection of a gradient is zero, we have

[∂xi , Pη](X◦η) = Q

(
N j

i

∂Uk

∂xj
∂k

)
◦ η − P

((
N j

i

∂gkl

∂xj

∂f

∂xl
− gkl ∂f

∂xj

∂N j
i

∂xl

)
∂k

)
◦ η.

The L2 norm of the second term is bounded by the L2 norm of first derivatives of f ,
which are in turn bounded by the L2 norm of X. It remains to bound the L2 norm of
the first term by the L2 norm of X.

We recall that for any vector field Z, we have

Q(Z) = ∇∆−1 div Z,

where the inverse Laplacian is uniquely determined up to a constant since the manifold

has no boundary. So we simply compute div
(
N j

i
∂Uk

∂xj ∂k

)
. If in coordinates the volume

form is µ = ϕ dx1 ∧ dx2 ∧ · · · ∧ dxn, we have

div
(
N j

i

∂Uk

∂xj
∂k

)
=

1

ϕ

∂

∂xk

(
ϕN j

i

∂Uk

∂xj

)
=

∂N j
i

∂xk

∂Uk

∂xj
− 1

ϕ
N j

i

∂

∂xk

(
Uk ∂ϕ

∂xj

)
,

using the fact that U is divergence-free. Since this expression only involves first deriv-
atives of U , we have

‖Q(Z)‖L2 ≤ ‖∆−1 div Z‖H1 ≤ C‖U‖L2 ≤ C‖X‖L2 .

So we therefore can conclude the formula (3.30), as desired.
Inductively, the formula (3.30) implies that for any multi-index α with no more than

σ terms, we will have
‖[∂α, Pη](W )‖L2 ≤ Bα‖W‖Hσ−1 ,

as desired. �

Now we prove invertibility of Ω(t) on TidDσ
µ. For convenience we assume that η(t) is

C∞, but this will not affect the proof of Theorem 1.

Proposition 7. Suppose M is a compact manifold of dimension n without boundary.
If Vo is a smooth, divergence-free vector field and η(t) = expid(tVo), then Ω(t) defined
by equation (2.23) satisfies the estimate

(3.31) ‖Ω(t)(Wo)‖Hσ ≥ C(t)‖Wo‖Hσ −K‖Wo‖Hσ−1 ,
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where C(t) =

∫ t

0

dτ

‖Dη(τ)T Dη(τ)‖L∞
and K is some constant. Consequently Ω(t) has

closed range on TidDσ
µ and hence is invertible.

Proof. To obtain the Hσ estimate, we use the L2 bound on Ω from formula (3.28) to
get

‖Ω(t)(Wo)‖Hσ =
∑

‖∂αΩ(t)(Wo)‖L2

≥
∑

‖Ω(t)(∂αWo)‖L2 −
∑

‖[∂α, Ω(t)](Wo)‖L2

≥ C(t)‖Wo‖Hσ −
∑

‖[∂α, Ω(t)](Wo)‖L2 .

(3.32)

Now we want to show that the commutator term is bounded in Hσ−1. Using formulas
(2.18) and (2.19) in the definition (2.23) of Ω(t), we can write

(3.33) Ω(t) =

∫ t

0

Dη−1(τ) dRη(τ) P dRη−1(τ) Dη−1(τ)T dτ.

As a consequence, it is obviously enough to show that for each fixed τ , the commutator∑
‖[∂α, Dη−1(τ) Pη(τ) Dη−1(τ)T](Wo)‖L2

is bounded in terms of the Hσ−1 norm of Wo, where we used the formula Pη = dRη ◦
P ◦ dRη−1 to simplify notation. Now since

(3.34)
∑

‖[∂α, Dη−1 Pη (Dη−1)T](Wo)‖L2 ≤
∑

‖[∂α, Dη−1] Pη (Dη−1)T(Wo)‖L2

+
∑

‖Dη−1 [∂α, Pη] (Dη−1)T(Wo)‖L2 +
∑

‖Dη−1 Pη [∂α, (Dη−1)T](Wo)‖L2 ,

it is enough to prove that the L2 norms ‖[∂α, Dη−1](W )]‖L2 , ‖[∂α, Pη](W )‖L2 , and
‖[∂α, (Dη−1)T](W )‖L2 can all be bounded by ‖W‖Hσ−1 .

For the first and third terms, we notice that the operators Dη−1 and (Dη−1)T are
simply matrices of smooth functions. The commutator of an σ-order derivative operator
and a multiplication operator is a (σ−1)-order derivative operator, by the Leibniz rule,
and so we are done with these. For the second term, we use Lemma 6. We have thus
established the estimate (3.31), and thus we know that Ω(t) has closed range.

To establish invertibility of Ω(t) on TidDσ
µ, we first use the fact from Proposition 5

that Ω(t) is invertible as a map from TidD0
µ. So if Y ∈ TidDσ

µ, we choose X ∈ TidD0
µ

such that Ω(X) = Y , and prove inductively using the estimate (3.31) that the Hk

norms of X are bounded for k ≤ σ. Thus X ∈ TidDσ
µ. �

Remark. The reason Proposition 7 fails if M has a boundary is that Lemma 6 fails. If
in coordinates the boundary is y = 0, then ‖[∂y, P ]W‖L2 = ‖Q∂yP‖L2 is not bounded
by ‖W‖L2 . The problem is that although ∂yW is divergence-free if W is, it need not
be tangent to the boundary.

On the other hand, if we used a weaker Sobolev topology involving only the deriva-
tives tangent to the boundary, Lemma 6 would be valid, as would Proposition 7.
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All of the preceding is true for n-dimensional M , but the proof of Fredholmness
works only in two dimensions, and for the rest of this section we will specialize to that
situation.

The essential difference between the two-dimensional and the three-dimensional cases
is the following compactness result.

Proposition 8. Suppose M is a two-dimensional manifold, possibly with boundary. If
s > 2 and s ≥ σ + 1, then for any Hs vector field V , divergence-free and tangent to
∂M , the operator

KV : TidDσ
µ(M) → TidDσ

µ(M),

defined by the formula (2.13), is compact.

Proof. We can approximate V in the Hs norm by a sequence of smooth vector fields
Vk, such that KVk

→ KV in the Hσ operator norm. Since a limit of compact operators
is also compact, it is enough to prove that KV is compact if V is smooth.

In two dimensions, the operator KV can be simplified to

KV (Z) = P
(
(curl V ) ?Z

)
,

where curl V is a function (the vorticity function of the vector field V ) and ?Z denotes
the vector field obtained by rotating Z by 90◦ in each tangent space.

We note that any Z ∈ TidDσ
µ may be written as

(3.35) Z = πs(Z) + πh(Z) = ?∇f + α,

where f : M → R is an Hσ+1 function which vanishes on the boundary, and α is a
smooth harmonic vector field, i.e., a field satisfying div α = curl α = 0 and tangent to
the boundary. The projections πs and πh are both continuous in the Hσ topology.

The space of harmonic vector fields tangent to the boundary has finite dimension,
and an immediate consequence is that πh is compact. Thus KV ◦ πh is also compact,
and since

KV = KV ◦ πs + KV ◦ πh,

it is now sufficient to prove KV ◦πs is compact.
We compute

(3.36) KV ◦πs(Z) = KV (?∇f) = −P
(
(curl V )∇f

)
= P

(
−∇(f curl V ) + f ∇curl V

)
= P

(
f ∇curl V

)
,

since the projection of a gradient is zero. Since ∇curl V is a smooth vector field,
we know f ∇curl V is an Hσ+1 vector field. Thus the map Z 7→ f∇curl V , being a
continuous map from Hσ vector fields to Hσ+1 vector fields, is compact by Rellich’s
Lemma. Since P is continuous, we see KV ◦πs is a composition of a continuous and a
compact operator, and hence compact. �

Corollary 9. Suppose M is a two-dimensional manifold, possibly with boundary. Sup-
pose s > 2 and s ≥ σ +1. Let Vo ∈ TidDs

µ, and let η(t) = expid(tVo). Then the operator
Γ(t) defined by equation (2.24) is compact on TidDσ

µ.
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Proof. Since we know the operators F (τ) and η−1(τ)∗ are both continuous and KV (τ) is
compact for each τ , the composition appearing in the integral (2.24) which defines Γ(t)
is compact for each τ . Then the integral Γ(t), as a limit of sums of compact operators,
is also compact. �

Proposition 5 and Corollary 9 now allow us to prove Theorem 2.

Proof of Theorem 2. Since Ω(t) is invertible and Γ(t) is compact on TidD0
µ, we know

Ω(t) − Γ(t) is Fredholm on TidD0
µ. Since dLη(t) = Dη(t) is continuous and invert-

ible on TidD0
µ, the decomposition (2.22) proves that F (t) is Fredholm, and thus that

d expid(tVo) is as well.
The index is a continuous function on the space of Fredholm operators. When t = 0,

d expid(0) is the identity map, which has index zero. Thus the index is zero for all
t. �

The proof of Fredholmness in Hs is not quite as simple, since if η is Hs, the decom-
position (2.22) only works in Hs−1. Nonetheless we can approximate η by a smoother
η̃ to obtain the result.

Proof of Theorem 1. It is enough to prove that F (t) = d expid(tVo) has closed range
and finite-dimensional kernel. If these conditions hold, then F (t) is semi-Fredholm and
we can compute its index. Since the index is continuous on the space of semi-Fredholm
maps, we must have the same index for all time. Since F (0) is the identity, with index
zero, we will be able to conclude that F (t) is Fredholm of index zero for all t.

Finite-dimensionality of the kernel in TidDs
µ follows from finite-dimensionality of the

kernel in TidD0
µ, since the former kernel is a subset of the latter. So the proof will be

complete once we prove that F (t) has closed range in TidDs
µ.

It will be sufficient to establish an estimate of the form

(3.37) A‖Wo‖Hs ≤ ‖F (t)(Wo)‖Hs + B‖Wo‖Hs−1 + ‖Φ(Wo)‖Hs ,

for some positive constants A and B, where Φ is a compact operator on Hs.
First we choose a C∞ vector field Ṽo, close to Vo in the Hs norm, in a sense to be

specified later. For such a vector field, the geodesic η̃(t) is also smooth and is defined
for all time. Then from the decomposition (2.22) we can write

F̃ (t) = Dη̃
(
Ω̃(t)− Γ̃(t)

)
,

and this formula is valid on TidDs
µ(M) as well as on TidD0

µ(M).
We observe that since the geodesic and Jacobi equations are smooth on Ds

µ, the

solutions depend continuously on the initial conditions. Thus F̃ (t) is close to F (t) in
the Hs operator norm and η̃(t) is close to η(t) in Hs. We then have

(3.38) ‖F (t)(Wo)‖Hs ≥ ‖F̃ (t)(Wo)‖Hs − ‖F̃ (t)− F (t)‖Hs‖Wo‖Hs

≥ ‖Dη̃ Ω̃(Wo)‖Hs − ‖Dη̃ Γ̃(Wo)‖Hs − ‖F̃ (t)− F (t)‖Hs‖Wo‖Hs .
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(The subtraction of F (t) from F̃ (t) is not well-defined without the chosen coordinate
system, since the two maps generally have different tangent spaces as ranges. Here
we simply mean the subtraction of the components in the coordinate system, which is
well-defined.)

From Proposition 7, we have the estimate

(3.39) ‖Ω̃(t)(Wo)‖Hs ≥ C̃(t)‖Wo‖Hs −K‖Wo‖Hs−1 ,

where

C̃(t) =

∫ t

0

dτ

‖Dη̃(τ)T Dη̃(τ)‖L∞
.

Inserting (3.39) into (3.38) we obtain, with Φ = Dη̃(t)Γ̃(t) and some constant B,
the inequality

‖F (t)(Wo)‖Hs ≥ C̃

‖Dη̃−1‖L∞
‖Wo‖Hs − ‖F̃ (t)− F (t)‖Hs‖Wo‖Hs

−B‖Wo‖Hs−1 − ‖Φ(Wo)‖Hs

≥ A‖Wo‖Hs −B‖Wo‖Hs−1 − ‖Φ(Wo)‖Hs ,

(3.40)

where

(3.41) A =
C

‖Dη−1‖L∞
−
( C

‖Dη−1‖L∞
− C̃

‖Dη̃−1‖L∞

)
− ‖F̃ (t)− F (t)‖Hs .

The last two terms in (3.40) are Hs norms of compact operators on TidDs
µ(M), and

so we will have obtained the desired estimate (3.37) if we choose Ṽo close enough to Vo

that the number A is positive.
The number C given by (3.28) depends only on the C1 norm of η, as does the

number ‖Dη−1‖L∞ . So if Ṽo is close enough to Vo in Hs, then C̃ will be close to C
and ‖Dη̃−1‖L∞ will be close to ‖Dη−1‖L∞ . In addition ‖F̃ (t) − F (t)‖Hs will be close
to zero. Thus A can be made positive, so that the estimate (3.37) will be satisfied. So
F (t) = d expid(tVo) must have closed range in the Hs topology.

The proof of Theorem 1 is now complete. �

4. A counterexample in three dimensions

In three dimensions, the operator KV takes the form

KV (Z) = P (ιZdV [)] = −P (Z × curl V ),

which is typically not a compact operator. Thus the proof of Fredholmness fails even
in TidD0

µ(M). In fact, the result is false, as we will show with a very explicit example.

Let M be the solid cylinder in R3 of radius 1 and height 2π, and identify the top
and bottom surfaces to obtain a solid torus. Use cylindrical coordinates {r, θ, z}. Let
V = ∂

∂θ
be a rigid rotation of the cylinder. We can easily verify that V is a steady

solution of the Euler equation (1.2), with pressure function p(r) = 1
2
r2.
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Theorem 10. For M the solid cylinder as above and V = ∂θ, the differential of the
exponential map is not Fredholm at the point πV ∈ TidDs

µ(M).

Proof. Our method will be to compute all of the conjugate points explicitly. We will
demonstrate that, along the geodesic expid(tV ), a sequence of conjugate point locations
decreases to π. Then we show that as a result, the differential of the exponential map
is not closed at πV .

We will solve the right-translated Jacobi equation in the form (2.14). We observe
that LV = ∂θ and LV

? = −∂θ, where ∂θ is the componentwise partial derivative. We
also compute that since curl ∂θ = 2 ∂z,

curl KV (Z) = curl (2 ∂z × Z) = −[2 ∂z, Z] + 2(div Z) ∂z − 2(div ∂z)Z = −2 ∂zZ,

and thus KV = −2 ∂z curl−1, where curl−1 is the inverse operator defined on the space
of divergence-free vector fields. (By convention we will take curl−1(∂z) = 0.) Equation
(2.14) then becomes

(4.42) (∂t + ∂θ − 2 ∂z curl−1)(∂t + ∂θ)Y (t) = 0.

Recall that there is a basis for the divergence-free vector fields tangent to the bound-
ary of the cylinder, given by U000 = ∂z and

Ukmn = λkmn∇Φkmn × ∂z + curl (∇Φlmn × ∂z), k ∈ Z\{0}, m ∈ Z, n ∈ Z

where λkmn = sgn(k)
√

α2
kmn + m2 and

Φkmn = Jn(αkmnr) einθ eimz,

with Jn the Bessel function of order n. The number αkmn is determined by the boundary
condition

(4.43) λkmnnJn(αkmn)−mJ ′
n(αkmn) = 0, k 6= 0, m and n not both zero,

or, if m = n = 0, the condition J1(αk00) = 0 for k ≥ 1. We set α000 = 0 so that
λ000 = 0 (the field U000 being the only harmonic vector field on M). We have

curl Ukmn = λkmnUkmn.

(This is the Chandrasekhar-Kendall [CK] construction of the eigenfields of curl on the
cylinder; see Yoshida [Y] for a proof of completeness.)

Thus if we expand Y (t) =
∑

ykmn(t)Ukmn, then by equation (4.42), the coefficients
ykmn satisfy the ordinary differential equation(

d

dt
+ in− 2im

λkmn

)(
d

dt
+ in

)
ykmn(t) = 0, (k 6= 0),

and the solutions with ykmn(0) = 0 and y′kmn(0) = wkmn(0) are given by

ykmn(t) = wkmn(0)
λkmn

m
sin
( mt

λkmn

)
e−inteimt/λkmn , k 6= 0, m 6= 0.

If m = 0 and k 6= 0, then the solutions are yk0n(t) = wk0n(0) te−int. If k = 0, then
the solution is y000(t) = w000(0) t. (Of course, we will actually be interested in the real



16 DAVID G. EBIN, GERARD MISIO LEK, AND STEPHEN C. PRESTON

parts <(ykmn(t)Ukmn), but for the purpose of studying the zeroes, we only need to be
concerned with the amplitude of this complex expression.)

We see that the monoconjugate points occur at times t ∈ C, where

C =

{
jπ

∣∣∣∣λkmn

m

∣∣∣∣ ∣∣∣j ∈ N, k,m ∈ Z\{0}, n ∈ Z
}

.

All points contained in C are both monoconjugate and epiconjugate points. In the
simplest case n = 0, j = 1, k, m ∈ N, we have the monoconjugate points

τkm0 =
λkm0

m
=

π
√

α2
k00 + m2

m
,

since the boundary condition (4.43), with n = 0, ends up not depending on m. Thus
as m →∞, we see τkm0 → π, so that C is not discrete. Observe also that π /∈ C, since
for any k 6= 0, m 6= 0, n ∈ Z, the curl eigenvalue satisfies |λkmn| =

√
α2

kmn + m2 > m.
We will show that the range of the differential of the exponential map is not closed

at πV ; in other words, we will construct a sequence of Jacobi fields Y (M) such that

Y (M)(π) converges but the initial conditions W
(M)
o = ∇η′(0)Y

(M) do not converge.
First notice that the eigenfields Ukmn of curl are orthogonal in L2, since curl is

self-adjoint. We can generate the Sobolev topology by setting the Hs norm of any
W =

∑
kmn wkmnUkmn ∈ TidDs

µ(M) to be

〈〈W, W 〉〉Hs =
∑

k,m,n∈Z

(1 + λ2
kmn)s‖Ukmn‖2

L2|wkmn|2.

Fix an s, and consider the sequence

Wo
(M) =

M∑
m=1

1

‖U1m0‖L2

1

(1 + λ2
1m0)

s/2
U1m0.

This sequence does not converge in Hs as M →∞, since we have

‖W (M)
o ‖2

Hs = M.

On the other hand, the corresponding Jacobi field solution Y (M)(π) has squared Hs

norm given by

‖Y (M)(π)‖2
Hs =

M∑
m=1

λ2
1m0

m2
sin2

( πm

λm10

)
We estimate the size of the mth term, which looks, as m →∞, like

α2
100 + m2

m2
sin2

( πm√
α2

100 + m2

)
≈ π2α4

100

4m4
.

Thus the series converges by comparison to
∑

m m−4. So as M → ∞, the norm
‖Y (M)(π)‖Hs remains bounded and thus Y (M)(π) converges in Hs.

Thus the map Wo 7→ Y (π) is injective but not surjective, and thus cannot have
closed range. Thus nor does d expid(πV ), so it is not Fredholm. �
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The same technique can be used to prove that if t is any cluster point of the set
C, the differential of the exponential map will not be Fredholm at tV . It is not clear
whether there are any other cluster points besides the integer multiples of π. Observe
that in the proof we actually demonstrated that expid(πV ) was an epiconjugate point
but not a monoconjugate point. It is interesting that in this case expid(πV ) is also a
cut point, since expid(−πV ) = expid(πV ) (i.e., the rotation geodesic minimizes whether
one rotates clockwise or counterclockwise).
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