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Abstract In this article we introduce a family of elas-
tic metrics on the space of parametrized surfaces in 3D

space using a corresponding family of metrics on the

space of vector valued one-forms. We provide a numer-

ical framework for the computation of geodesics with

respect to these metrics. The family of metrics is invari-

ant under rigid motions and reparametrizations; hence

it induces a metric on the “shape space” of surfaces.

This new class of metrics generalizes a previously stud-

ied family of elastic metrics and includes in particular
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the Square Root Normal Field (SRNF) metric, which

has been proven successful in various applications. We

demonstrate our framework by showing several exam-

ples of geodesics and compare our results with earlier

results obtained from the SRNF framework.
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1 Introduction

Shape analysis of surfaces in R3 has been motivated by

many applications in bioinformatics, computer graphics

and medical imaging, see e.g., [19,22,2,14,16,32]. In

most applications the actual parametrization of the sur-

faces under consideration is unknown and one is only

able to observe the “shape” of the object, i.e., a priori the

point correspondences between the surfaces are unknown

and should be an output of the performed analysis. Fur-

thermore, we will often identify surfaces that only differ

by a rigid motion. Thus, we define the shape space of

surfaces as the quotient space of all parametrized sur-

faces modulo the group of reparametrizations and/or

the group of rigid motions. One goal in shape analysis

is to quantify the differences and find the optimal de-

formations between the given objects; see Figure 1 for

two examples of optimal deformations between distinct

surfaces.

The main challenge in the context of shape analy-

sis of surfaces consists in the registration problem, i.e.,

finding the (optimal) point correspondences between

distinct surfaces, which can then be used as the basis

for the resulting statistical analysis. In previous work,

the correspondence problem has often been solved in a

preprocessing step, which is then followed by an indepen-

dent statistical analysis of the resulting parametrized
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Fig. 1 Geodesics between shapes in the space of unparametrized surfaces Imm(S2,R3)/Diff+(S2) with respect to the split
metric (4) for a choice of coefficients (1, 1, 0.1, 0).

surfaces. This approach can yield several undesirable

consequences on the statistical analysis, see e.g., [29].

The goal of elastic shape analysis is to formulate this

problem in a unified framework: using a reparametriza-

tion invariant metric on the space of all parametrized

surfaces one then studies the induced Riemannian met-

ric on the quotient space. Using this approach, the point

correspondences and the resulting statistical analysis

can be performed in a consistent way.

In the past years several metrics and frameworks

have been proposed as potential approaches to this goal,

see e.g., [18,25,24,4,29,33]. In particular, a class of elas-

tic metrics has been proposed in [17], which is defined

as a weighted sum of three components that measure

the differences in shearing, stretching and bending of

the surface. This family of metrics is actually a subfam-

ily of the general class of reparameterization invariant

Sobolev metrics, as studied in [5,6,4]. It is also a natural

generalization of the family of elastic Ga,b-metrics on

the space of curves [26], which has been proven efficient

and successful in numerous shape analysis applications

[28,34,35,29,30,36,10,31].

To obtain a numerically efficient representation, Sri-

vastava et al. [28] introduced the so-called Square Root

Velocity Function (SRVF) for comparing curves. In this

framework, the space of curves endowed with the elastic

metric for a particular choice of coefficients is isomet-

ric to an L2-space, which makes the computation of

geodesics extremely easy and efficient. Motivated by

this progress, Jermyn et al. [18] introduced the Square
Root Normal Field (SRNF) representation for elastic

shape analysis of surfaces and showed that the L2-metric

on the space of SRNFs corresponds to one member of

a more general class of elastic metrics on the space of

surfaces. While it is computationally efficient, there are

several drawbacks to this approach: the SRNF metric

only consists of the last two terms of the general elastic

metric for surfaces and is thus highly degenerate; i.e.,

there exists a high-dimensional space of deformations

that has no cost in this framework1. Furthermore, the

1 See the article [20] for an example of a path of closed
surfaces that connects two distinct shapes, such that the
whole path has the same SRNF.

SRNF map is neither injective nor surjective, and its

image is not fully understood. In consequence there ex-

ists no analytic formula for geodesics in the image space

and geodesics are usually approximated by numerically

inverting the straight line between the given SRNFs,

where each inversion is calculated as the solution to an

optimization problem [25].

Contributions of this article: The purpose of the

present article is to introduce a numerical framework for

the computation of the geodesic initial and boundary
value problem with respect to a family of metrics that

contains the general elastic metric as a special case. The

framework complements [7] which defined, using vector
valued one-forms, a metric on the space of surfaces that

is invariant under rigid motions and reparametrizations.

It does not require a numerical inversion of the SRNF-

map and thus overcomes some of the aforementioned

difficulties. Furthermore, this framework will allow us

in the future to choose the constants of the metric in
a data driven way, which has potential importance in

many applications. See [23,3] for related considerations

regarding the choice of constants for the elastic metric

on the space of curves.

Acknowledgements: The authors thank Anuj Srivas-

tava and all the members of the Florida State statistical

shape analysis group for helpful discussions during the

preparation of this manuscript. In addition we are grate-

ful to Sebastian Kurtek and Alice Barbara Tumpach for

discussion about the implementation of the minimiza-

tion over the diffeomorphism group.

2 Mathematical Framework and Background

In this section we will give the formal definition of the

space of shapes and describe the general elastic metric.

Then we will introduce a new representation for the

elastic metric using vector valued one-forms, which will

still allow us to obtain an efficient discretization of the

geodesic boundary value problem.

From here on we will model a surface as an immersion

f from a model spaceM into R3, i.e., a smooth map from

M to R3 that has an injective tangent mapping. Here

M is a two-dimensional compact manifold encoding the
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topology of the objects under consideration. Typically,

choices of M include the two-sphere M = S2 or the

sheet M = [0, 1]2.

Denote by Imm(M,R3) the space of all immersions.

To define the space of shapes, we now consider the

actions of the group of rigid motions and the group

of diffeomorphisms on Imm(M,R3). The group of rigid

motions is given by the semidirect product of the group

of rotations and the group of translations, i.e., SO(3) n
R3, where SO(3) is the set of all rotation matrices. It

acts on Imm(M,R3) as follows:(
SO(3) nR3

)
× Imm(M,R3)→ Imm(M,R3)

((R, v), f) 7→ Rf + v.

Denote by Diff+(M) the group of diffeomorphisms that

preserve the orientation of M . The action of Diff+(M)

on Imm(M,R3) is given by composition from the right:

Imm(M,R3)×Diff+(M)→ Imm(M,R3)

(f, γ) 7→ f ◦ γ.

We say that two immersions f1 and f2 have the same

shape if they are in the same orbit of the action of

Diff+(M), or both actions depending on whether we

want to mod out rigid motions. The space of shapes can

then be defined as the quotient space:

S(M,R3) = Imm(M,R3)/G,

where G = Diff+(M) or G = Diff+(M)× (SO(3) nR3).

This quotient space has some mild singularities and

does not carry the structure of a smooth manifold but

only of an infinite dimensional orbifold [11]. However, for

the purpose of this article we can ignore these subtleties

and assume that we are always working away from the

singularities, which allows us to treat S(M,R3) as an
infinite dimensional manifold.

By endowing the space of immersions Imm(M,R3)

with a Riemannian metric that is invariant under the

actions of SO(3)nR3 and Diff+(M), the space of shapes

S(M,R3) becomes a Riemannian manifold (orbifold),

where the metric is induced by the Riemannian metric

on Imm(M,R3).

In the following we will denote by distImm the

geodesic distance function of a Riemannian metric on

the space of immersions Imm(M,R3) and by [f ] the

equivalence class of f under the action of G. Given two

surfaces f1 and f2, we can define the distance between

[f1] and [f2] as the infimum of the distance between the

orbits of f1 and f2 under the action of G. For example,

the distance function on the space of unparametrized

surfaces S = Imm(M,R3)/Diff+(M) can be defined as

follows:

distS([f1], [f2]) = inf
γ∈Diff+(M)

distImm(f1 ◦ γ, f2).

We will use this induced distance as our measure for com-

paring unparametrized surfaces. Given two parametrized

surfaces, to measure the similarity between them we will

need to find the optimal reparametrization in Diff+(M)

that realizes the infimum. If we also want to mod out

rigid motions and find the distance between two ele-

ments in the space of unparametrized surfaces modulo

rigid motions Imm(M,R3)/
(
Diff+(M)× SO(3) nR3

)
,

we will need to solve a joint optimization problem of

finding the best reparametrization, rotation and trans-

lation.

2.1 The General Elastic Metric and the SRNF

Framework

Jermyn et al. introduced in [18] the general elastic metric

which has the desired invariance properties under shape-

preserving deformations. To define this metric we first

introduce a transformation that maps an immersion

onto its induced surface metric and normal vector field:

Imm(M,R3) 7→ Met(M)× C∞(M,R3)

f →
(
g := gf , n := nf

)
,

where nf is the unit normal vector field to the surface

f , which is given in local coordinates by

n =
fx × fy
|fx × fy|

and where the surface metric is given by

g = f∗〈., .〉R3 = 〈Tf., Tf.〉R3 .

It is classical result in Riemannian geometry that any

surface can be reconstructed uniquely by these two

quantities [1]. Thus, this representation allows one to

define a Riemannian metric on the space of immersions

by describing it on the image Met(M) × C∞(M,R3).

The general elastic metric as introduced in [18] is defined

by:

Gg,n((δg, δn), (δg, δn))

= A

∫
M

tr(g−1δgg−1δg)µg +B

∫
M

tr(g−1δg)2µg

+ C

∫
M

〈δn, δn〉R3µg (1)

where A,B,C ≥ 0 are constants and where µg denotes

the induced volume density of the surface f .

Each of the three terms appearing in the metric (1)

has a natural geometric interpretation: the first term

penalizes local change in the metric (shearing), the sec-

ond term measures the change in the volume density
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(scaling) and the third term quantifies the change of the

normal vector (bending).

Instead of using the (g, n) representation for com-

paring surfaces, in the same paper [18] Jermyn et al.

introduced the SRNF framework, where a surface is

represented only as a rescaled normal vector field:

Q : Imm(M,R3)→ C∞(M,R3)

f(s) 7→
√
A(s)n(s),

where A(s) denotes the local area-multiplication factor,

which is given in local coordinates by A(s) = |fx(s)×
fy(s)|. After equipping the target space C∞(M,R3) with

the flat L2 metric the map Q becomes an infinitesimal

isometry, where the space Imm(M,R3) is equipped with

the elastic metricGA,B,C with A = 0, B = 1
16 and C = 1,

i.e., the pullback of the L2 metric on C∞(M,R3) along

the map Q is equal to the metric G0, 1
16 ,1. Note however

that the resulting metric is degenerate for this choice of

constants, i.e., there might exist deformation fields that

have no cost with respect to the metric. Furthermore,

given q ∈ C∞(M,R3) there may be either no preimage

Q−1(q) ∈ Imm(M,R3) of q or many preimages. Most

importantly the image of the space of immersions under

the SRNF map cannot be easily characterized and, so

far, it is not well understood.

Although the distance between two surfaces, which

is given by the L2 difference between their SRNFs, can
be easily calculated, finding the inversion of the linear

path between their SRNFs that realizes this distance

is not possible as the linear path will usually leave

the image of the SRNF-representation. In [25] Laga et

al. introduced a way to approximate the inversion of

arbitrary paths between SRNFs by formulating inversion

as an optimization problem. In practice, this has been

used to approximate geodesics, by numerically inverting

straight lines between the SRNFs. However, since the

image of the SRNF-map is not convex in L2 this method

will not yield geodesics with respect to the SRNF metric,

see Table 3.

2.2 Immersions and Vector Valued One-Forms

In the following we will introduce our framework for

comparing surfaces. Therefore let Ω1(M,R3) denote

the space of all smooth R3 valued one-forms on M

and Ω1
+(M,R3) denote the subset of Ω1(M,R3), which

contains all full-ranked one-forms on M . Given a metric

g on M , in a local chart with a field of orthonormal

bases, an element of Ω1
+(M,R3) can be represented as

a field of full-ranked 3 × 2 matrices. We consider the

differential as a mapping

d : Imm(M,R3)/trans→ Ω1
+(M,R3) (2)

f 7→ df .

The differential d as defined above is injective, but not

surjective. Furthermore, in contrast to the SRNF map-

pingQmentioned in Section 2.1, it is easy to characterize

the image of the differential d. The following theorem

contains this characterization and a result concerning

the manifold structure space of full-ranked one forms

Ω1
+(M,R3):

Theorem 1. The space of smooth full-ranked one-forms

Ω1
+(M,R3) is an open subset of an infinite dimensional

vector space of one-forms Ω1(M,R3) and thus it is an

infinite dimensional Fréchet manifold, where the tangent

space at each point is simply Ω1(M,R3).

Furthermore, the image of the differential d is the

space of all exact full-ranked one-forms, which is the

intersection of Ω1
+(M,R3) with a linear subspace of

Ω1(M,R3).

Proof. The proof of this result follows directly from the

definition of these spaces.

This theorem allows us to define a Riemannian met-

ric on these spaces as follows. Let α ∈ Ω1
+(M,R3) and

ξ ∈ TαΩ1
+(M,R3). For the volume form µ on M induced

by the metric g we let

Gα(ξ, ξ) =

∫
M

tr
(
ξx(αTxαx)−1ξTx

)√
det(αTxαx)µ.(3)

It is easy to see that the integrand is positive definite,

and thus the formula defines a non-degenerated Rieman-

nian metric. This metric does not depend on the choice

of orthonormal bases we choose and is actually indepen-
dent of the metric g on M , see [7] for more details. Thus

we can choose any convenient metric g on M , and use

it to calculate this metric on Ω1
+(M,R3).

Using the injection (2), we obtain a pullback metric

on the space Imm(M,R3) modulo translations and it

turns out that this metric is related to the full elastic

metric. The space of immersions equipped with this inner

product is an infinite dimensional Riemannian manifold.

It should be noted that, with respect to this metric,

Imm(M,R3)/trans is neither geodesically complete nor

geodesically convex. In addition, there exists no explicit

formula to calculate minimizing geodesics between two

given immersions f1 and f2. Instead we will rely on

numerical methods to minimize the path length over all

paths of immersions connecting the given immersions f1

and f2. Alternatively these minimizing deformations can

be found by solving the Lagrangian optimality condition

for the energy functional, called the geodesic equation.
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Although we will not follow this strategy we will present

this equation in Appendix A.

First, however, we will orthogonally decompose the

tangent space at α in a similar manner as in the defini-

tion of the elastic metric earlier. In the following we will

denote the Moore-Penrose inverse of α by α+, which is

defined by α+ = (αTα)−1αT where α is a 3× 2 matrix

of rank 2. Using this notation we let

ξ = ξm +
1

2
tr(α+ξ)α+ ξ⊥ + ξ0,

where

ξm =
1

2
α(αTα)−1(αT ξ + ξTα)− 1

2
tr(α+ξ)α

ξ⊥ = ξ − α(αTα)−1αT ξ

ξ0 =
1

2
α(αTα)−1(αT ξ − ξTα)

It is easy to check that these terms are orthogonal

with respect to the metric (3). We can now obtain a

family of metrics on Ω1
+(M,R3):

Ga,b,c,d
α (ξ, ξ)

= aGα(ξm, ξm) + bGα

(
1

2
tr(α+ξ)α,

1

2
tr(α+ξ)α

)
+ cGα(ξ⊥, ξ⊥) + dGα(ξ0, ξ0), (4)

where the first summand is measuring the deformation

of the metric (within the class of metrics with the same

volume form), the second summand is measuring the

deformation of the volume density, the third summand

is measuring the deformation of the normal vector. The

interpretation of the last summand is less intuitive: it

measures changes in the one-form that locally come from

rotations about the normal vector.

The following theorem shows the connection of our

split metric (4) with the elastic metric (1) on surfaces.

Theorem 2. If d = 0, then the pull-back of the split

metric (4) gives rise to the elastic metric (1) on the

space of immersions.

Proof. See Appendix B for a proof of this result.

In Figure 2, we show geodesics between two

parametrized cylinders with respect to the split metric

(4) for different choices of coefficients a, b, c and d. One

can see how the choice of coefficients affects the resulting

geodesic. Thus, in each specific application, we are now

able to adjust the coefficients of the metric in a data

driven way to obtain desired deformations between the

shapes under consideration.

Remark 1. In [7] we have presented a detailed study of

the metric (3) on the space Ω1
+(M,R3). In particular we

have obtained an explicit formula for the corresponding

geodesic initial value problem; in that situation geodesics

can be computed pointwise, so the problem reduces to a

finite-dimensional ODE which can be solved explicitly,

and gives the solution in the infinite-dimensional context

we are dealing with here.

The space of full-ranked exact one-forms

Ω1
+,ex(M,R3) is, however, a proper subspace of

the space of full-ranked one-forms Ω1
+(M,R3), and is

not a totally geodesic submanifold of Ω1
+(M,R3) with

respect to the metric (3). As the space of immersions

corresponds to the space of full-ranked exact one-forms

the obtained explicit formula for geodesics does not

directly help to calculate geodesics on the space of

immersions, which is the main goal of this article.

In order to solve the geodesic problem we will thus

introduce a discretization of the metric and solve the

geodesic matching problem using path-straightening

algorithms.

Note that the split metric (4) is defined on differen-

tials and thus is, by definition, independent of transla-

tions. To show the invariance of the split metric under

rigid motions and diffeomorphisms, we now consider the

action of the group of rotations SO(3) on Ω1
+(M,R3),

which is defined by pointwise left multiplication:

SO(3)×Ω1
+(M,R3)→ Ω1

+(M,R3)

(R,α) 7→ Rα,

where (Rα)x = Rαx; and the action of the group of dif-

feomorphisms Diff+(M) on Ω1
+(M,R3), which is defined

via pullback:

Ω1
+(M,R3)×Diff+(M)→ Ω1

+(M,R3)

(α,ϕ) 7→ ϕ∗α,

where (ϕ∗α)x = αϕ(x) ◦ dϕx. The following proposition

summarizes the most important invariances of the metric

on Ω1
+(M,R3):

Proposition 1. Let α ∈ Ω1
+(M,R3) and ζ, η ∈

TαΩ
1
+(M,R3).

1. The metric (4) is invariant under pointwise left mul-

tiplication with SO(3), i.e., if R ∈ SO(3), then

Gα(ζ, η) = GRα(Rζ,Rη)

2. The metric (4) is invariant under the right action of

the diffeomorphism group, i.e., for any ϕ ∈ Diff+(M)

we have

Gα(ζ, η) = Gϕ∗α(ϕ∗ζ, ϕ∗η).
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Fig. 2 Geodesics between two cylinders in the space of immersions Imm(M,R3) with respect to different choices of coefficients
(from top to bottom): (1, 1, 0, 1), (1, 0, 1, 1), (1, 1, 1, 0), (0, 1

2
, 1, 0).

Fig. 3 Geodesics between two cylinders in the space of unparametrized surfaces Imm(M,R3)/Diff+(M) with respect to
different choices of coefficients (from top to bottom): (1, 1, 0, 1), (1, 0, 1, 1), (1, 1, 1, 0), (0, 1

2
, 1, 0).

Proof. The proof of the proposition follows exactly as

for the metric (3), which can be found in [7].

The group of rotations SO(3) acts on the space of

immersions by left multiplication, which is the same

as it acts on the space of one forms. Thus, by the

first statement of Proposition 1, the pullback metric on

Imm(M,R3) is also invariant under the group of rigid

motions SO(3)nR3. For the standard action of Diff+(M)
by composition from the right on Imm(M,R3), the fol-

lowing commutative diagram illustrates that the pull-

back action of Diff+(M) on Ω1
+(M,R3) is compatible

with the action of Diff+(M) on Imm(M,R3):

f

action on Imm(M,R3)

��

d // df

action on Ω1
+(M,R3)

��

f ◦ ϕ d // ϕ∗df = df ◦ dϕ

Therefore, the second statement of Proposition 1 gives

the reparametrization invariance of the pullback metric

on the space Imm(M,R3).

Thus the metric on the space of immersions

Imm(M,R3) induces a metric on the space of un-

parametrized surfaces Imm(M,R3)/Diff+(M) and a

metric on the space of unparametrized surfaces modulo

rigid motions Imm(M,R3)/
(
Diff+(M)× SO(3) nR3

)
.

In Figure 3 we show geodesics between two cylinders

in the space Imm(M,R3)/Diff+(M) with respect to

the split metric (4) for different choices of coefficients

a, b, c and d. The corresponding geodesics in the space

Imm(M,R3)/
(
Diff+(M)× SO(3) nR3

)
are shown in

Figure 4.

3 A numerical framework for the general

elastic metric

In this section we will describe the discretization and

optimization procedure that we implemented to solve

the geodesic boundary value problem. From here on we
assume that M = S2 and use a spherical coordinate

system to represent an immersion f : S2 → R3 as a

function f : [0, 2π] × [0, π] → R3 such that f(0, φ) =

f(2π, φ), f(θ, 0) = f(0, 0) and f(θ, π) = f(0, π), see

Remark 2 below on how we obtain such (discrete)

parametrizations in practice from a triangulated surface.

Remark 2. We represent the surface of a given 3D

shape with its embedding on a sphere f : S2 → R3,
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Fig. 4 Geodesics between two cylinders in the space of unparametrized surfaces modulo rigid motions
Imm(M,R3)/ (Diff+(M)× SO(3) n R3) with respect to different choices of coefficients (from top to bottom): (1, 1, 0, 1),
(1, 0, 1, 1), (1, 1, 1, 0), (0, 1

2
, 1, 0). Note that the cylinders in the right are rotated in order to minimize energy beyond what is

possible in Figure 3, which leads to more extensive deformation as well. As compared to Figure 3 the shapes on the right are
rotated by θ = 1.54 and φ = 0.21 (row 1), θ = 1.56 and φ = 0.28 (row 2), θ = 1.58 and φ = 0.56 (row 3) and θ = 1.58 and
φ = 0.47 (row 4), where θ and φ are the rotation angles around the z-axis and y-axis. All angles are in radians.

which is always possible for genus-0 surfaces. In prac-

tice, methods such as conformal mapping introduce sig-

nificant distortions when dealing with complex shapes

that contain many elongated parts. Since the proposed

approach does not require the mapping to be conformal,

we adopt the approach of Praun and Hoppe [27], which

has been implemented by Kurtek et.al. [24]. The idea

is to progressively embed a surface on a sphere while

minimizing area distortion. The approach starts by re-

ducing the mesh, using progressive mesh simplification,

to a basic polyhedra that can be easily embedded on S2.

Then, it iteratively inserts vertices and embeds each new

vertex inside the spherical kernel of its one-ring neigh-

borhood while optimizing for the area distortion. Using

the implementation provided in [24], we reconstruct the

mesh up to 1500 vertices, which is sufficient for comput-
ing geodesics. This procedure produces spherical maps

that preserve important shape features as shown in all

of the examples in this paper. We want to remark here

that finding parameterizations of higher genus surfaces

is still an open problem. Since we are not aiming at

solving the parameterization problem, we focus in this

paper on genus-0 manifold surfaces only.

The identity immersion i : S2 → R3 induces the

spherical metric on S2, which will serve as a background

metric for the discretization; the vector fields

{
1

sinφ

∂

∂θ
,
∂

∂φ

}

form an orthonormal basis of the tangent space for

any (θ, φ) ∈ [0, 2π]× (0, π). With respect to this basis

and the standard basis on R3, the differential df of an

immersion f = (x, y, z)T can be represented by a field

of 3× 2 matrices:

df

(
1

sinφ

∂

∂θ
,
∂

∂φ

)
=


1

sinφ

∂x

∂θ
,
∂x

∂φ
1

sinφ

∂y

∂θ
,
∂y

∂φ
1

sinφ

∂z

∂θ
,
∂z

∂φ

 .

In the following we denote by ‖·‖f the norm induced

by the pullback of the split metric (4) and let u ∈
Tf Imm(S2,R3) be a tangent vector. Since u can be seen

as a function from S2 to R3, using this representation

the norm of u with respect to the split metric will be

given as follows:

‖u‖f =
[
Ga,b,c,d
df (du, du)

]1/2
.

3.1 Geodesics in the space of surfaces

We will now describe the solution of the boundary value

problem in the pre-shape space of all parametrized sur-

faces.

Remark 3. We should emphasize here that the space

of immersions with respect to the proposed family of

Riemannian metrics is not geodesically convex. Thus

the solution of the minimization problem might not exist

in the space of immersions but only in a larger space

of functions (including those with possibly degenerate

differential). In fact, for dimM ≥ 2, there exists no Rie-

mannian metric on the space of immersions for which

geodesic completeness or convexity results have been ob-

tained; in the case of immersed curves such results have

been achieved for metrics of order two or higher [9], but

it remains unknown for our higher dimensional situa-

tion.
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Given two parametrized surfaces f1 and f2 we can

discretize the linear path connecting f1 and f2 in T time

steps:

flin(ti) = (1− ti)f1 + tif2.

where ti = i/T, i = 0, . . . , T . The differential dflin is

then the linear path between df1 and df2, which stays

by definition in the space of exact one-forms for all

i = 0, . . . , T . Note that this path does not necessar-

ily stay in the space of full-ranked one-forms, e.g. if

df1 = −df2 for some x ∈ S2. However we did not en-

counter any problems with this possible degeneracy. To

solve the geodesic boundary value problem we will per-

turb f(t) in all possible directions that fix the end points
and that remain in the space of immersions. Since the

map d, as defined in equation (2), is injective, this is

equivalent to perturbing the differential df(t) in all pos-

sible directions in the space of exact one-forms that keep

the two boundary one-forms fixed.

To obtain a basis of perturbations in the space of

immersions, we use the fact that the set of spherical

harmonics in each component form a Hilbert basis of

L2(S2,R3). We truncate this basis at a chosen maximal

degree deg and denote the obtained set by {Si}. The

number of elements in this basis is L = 3((deg +1)2 −
1) (here we remove the spherical harmonic of degree

0 and order 0 since it is a constant function, which

corresponds to a pure translation). To calculate the

optimal deformation between two given surfaces we aim

to minimize the (discrete) path energy over all curves

of the form

f(t0) = f1, f(tT ) = f2 (5)

f(ti) = (1− ti)f1 + tif2 +

L∑
j=1

Coeff(j, i)Sj ,

where i = 1, . . . , T − 1 and Coeff is a L × (T − 1)

coefficient matrix.

The discrete energy functional F : RL×(T−1) → R is

then given by

F (Coeff) =

T∑
i=1

‖ft(ti−1)‖2f(ti−1)∆T (6)

where the norm ‖·‖ is induced by the pullback of the

split metric (4),

ft(ti−1) =
f(ti)− f(ti−1)

∆T
(7)

is the (discrete) derivative of f(t) at f(ti−1) and ∆T =
1
T is the width of a sub-interval. Alternatively one can

also discretize the derivative of f using the central dif-

ference for interior data points, which makes the energy

functional symmetric, but leads to slightly higher com-

putational cost. To find the optimal coefficient matrix

Coeff we employ a BFGS method, which is a quasi-

Newton method for solving unconstrained minimization

problems [13], as provided in the optimize package of

scipy. We calculate the gradient using automatic dif-

ferentiation in Pytorch, which leads to the algorithm

described in Alg.1. See [21] for more examples of apply-

ing tools of deep learning and in particular automatic

differentiation in shape and image analysis.

Algorithm 1 The matching problem for parametrized
surfaces
Input:

1) the source and target surfaces f1 and f2;
2) the coefficients (a, b, c, d) of the metric;
3) the number of time steps T ;
4) a basis {Si, i = 1, . . . , L} for the space of parametrized

surfaces.

Output:

1) the geodesic fgeo connecting f1 to f2;
2) the geodesic distance dist between f1, and f2;

1: Initialize Coeff = 0 and f(ti) by equation (5).
2: Compute ft(ti−1) by equation (7).
3: Define the functional F (Coeff) as in equation (6).
4: Minimize F using a BGFS-method, where the gradient of
F with respect to Coeff is caluclated using the automatic
differentiation package in Pytorch.

5: Set

fgeo(t0) = f1, fgeo(tT ) = f2

fgeo(ti) = (1− ti)f1 + tif2 +

L∑
j=1

Coeff(j, i)Sj

and dist =
√
F (Coeff).

6: return fgeo and dist.

3.2 Geodesics in the space of unparametrized surfaces

Now we present our algorithm for calculating

geodesics in the space of unparametrized surfaces

Imm(S2,R3)/Diff+(S2). The main difficulty for this

task is to find the optimal γ ∈ Diff+(S2) that realizes

the distance

distS([f1], [f2]) = inf
γ∈Diff+(S2)

distImm(f1 ◦ γ, f2),

where [f ] is the equivalence class of f under the action

of the group of orientation-preserving diffeomorphisms

Diff+(S2) and distS denotes the distance function on

the space Imm(S2,R3)/Diff+(S2) with respect to the

metric that is induced from the split metric (4).
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In order to practically perform the minimization

over the infinite dimensional space Diff+(S2) we have

to choose a suitable discretization of this group: Let Id

be the identity map from S2 to itself. The tangent space

TId Diff+(S2) is the set of all (smooth) vector fields on

S2. The set of gradient and skew gradient vector fields

of the set of spherical harmonics provides an orthogonal

basis for this tangent space – here orthogonal means

with respect to the standard L2 metric, see e.g. [22].

Normalizing these basis we obtain an orthonormal ba-

sis for the tangent space TId Diff+(S2). To choose a
finite dimensional discretization of the tangent space,

we truncate this basis at a maximal degree deg, then the

number of elements in this basis is L̄ = 2(deg + 1)2 − 2.

From here on we will denote this truncated basis by

{vi, i = 1, ..., L̄}. Let Xv = (Xv
1 , X

v
2 , . . . , X

v
L̄

) be the

coefficients of a vector field with respect to this basis

and consider the induced mapping

γ = Proj

Id +

L̄∑
k=1

Xv
kvk

 , (8)

where Proj(x) = x
|x| denotes the map that projects non-

zero vectors in R3 onto the unit sphere S2 ⊂ R3. The

following result gives an explicit bound on the size of Xv,

that ensures that the corresponding γ, defined by (8),

is a diffeomorphisms of S2.

Theorem 3. Let U =
∑L̄
k=1X

v
kvk be a vector field on

the sphere S2 and let γ = Proj (Id +tU) be the corre-

sponding map as defined in (8), for some real t. Then γ

is a diffeomorphism if

|t| < − 1

infp∈M λ−(∇U)
, (9)

where ∇U is the (1, 1) tensor field v 7→ ∇vU and

λ−(∇U) is the smaller of the two real eigenvalues of the

symmetrized matrix ∇U = 1
2

(
∇U + (∇U)T

)
.

Note, that ∇U is a tensor that for each point x ∈ S2

gives a linear transformation TxS
2 → TxS

2, which is

defined by ∇U(v) being the covariant derivative of U

in the direction v.

Proof. The proof of this result is postponed to Appendix

B. Note that since Tr(∇U) = divU , which integrates

to zero over the compact manifold M , we know that

λ−(∇U) is always negative somewhere; hence the bound

on |t| is some positive number.

We are now able to describe the discrete opti-

mization problem on the space of unparametrized sur-

faces, i.e., we aim to minimize the discrete functional

F̄ : RL̄+L×(T−2) → R given by

F̄ (Xv,Coeff) =

T∑
i=1

‖ft(ti−1)‖2f(ti−1)∆T, (10)

where the norm ‖·‖ is induced by the pullback of the split

metric (4), Coeff, Si, ∆T = 1
T are as in Subsection 3.1

and where the discrete curve f is now of the form

f(t0) = f1 ◦ γ, f(tT ) = f2 (11)

f(ti) = (1− ti)f1 + tif2 +

L∑
j=1

Coeff(j, i)Sj ,

and where the reparametrization γ is given by formula

(8) with coefficient vector Xv = (Xv
1 , X

v
2 , . . . , X

v
L̄

).

Remark 4 (Initialization over Diff+(S2)). When us-

ing a gradient based optimization method, it is always

an important issue to find a good initialization, as the

optimization procedure can get stuck in local minima

and is usually sensitive to this initialization. In order to

find a good initial guess for the optimal reparametriza-

tion of the surface f1, we first align the corresponding

SRNFs of the two boundary surfaces f1 and f2. This

seems a natural initialization for the (0, 1
2 , 1, 0) metric

as the L2-distance on the space of SRNFs is a first order

approximation of the geodesic distance of this metrics.

However, in all our experiments it turned out that this

initialization works well for other choices of constants as

well, as the optimal point correspondences for different

choices of constants, albeit different, are still similar

on a global scale. Furthermore, we note that any three

dimensional rotation can be seen as a diffeomorphism

of S2. We use this fact to first minimize only over this

finite dimensional subgroup of the infinite dimensional

reparametrization group. Finally, to initialize the op-

timization over this finite dimensional group, we first

consider the icosahedral group, which contains 60 orien-

tation preserving rotations denoted by hi, i = 1, . . . , 60,

as a finite subset of SO(3). We then choose the best

diffeomorphism among these 60 elements as our initial

guess.

In the following we will describe two algorithms for

calculating geodesics in the space of unparametrized

surfaces Imm(S2,R3): a joint optimization procedure

and a coordinate descent approach, where we minimize

alternating in the space of parametrized surfaces and

over the reparametrization group separately.

We will start by describing the joint optimization

procedure, which is analogous to the optimization for

parametrized surfaces with one caveat: since formula

(8) only leads to diffeomorphisms near the identity, i.e.,

reparametrizations that map points on S2 to nearby
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Fig. 5 Examples of boundary surfaces before and after the
optimization over the reparametrization group with respect to
the split (1, 1, 1, 0) metric. Here the second shape shows the
parametrization of the first boundary surface after composing
by the initial guess in the icosahedral group and the third
shape shows the final point correspondences after the full
optimization, where h̄ denotes the optimal reparametrization.
One can observe how the parametrization of the initial surface
successively better matches the parametrization of the target
surface (the color map represents the parametrization of the
surfaces).

points, we will describe large deformations between S2

as a composition of N such (small) deformations. This

will lead us to iteratively solve the joint optimization

problem. The corresponding algorithm is described in

Alg.2.

As an alternative to the joint optimization we will

present in the following a coordinate descent method,

where we separate the variables in the space of surfaces

from the variables that govern the reparametrization of

the initial surface, i.e., we alternate between calculat-

ing a discrete geodesic, denoted by fopt, between the

parametrized surfaces f1 and f2 in the space of im-

mersions Imm(S2,R3) and reparametrizing the initial

surface f̄ = f1. To update the reparametrization we

consider only the first two time points of fopt, i.e., f̄

and fopt(t1), and define the following functional

Fr(X
v) =

∥∥fopt(t1)− f̄ ◦ γ
∥∥2

f̄◦γ , (12)

where γ is given by formula (8) and Xv =

(Xv
1 , X

v
2 , . . . , X

v
L̄

). We can now employ a BFGS method

to find the optimal coefficient vector Xv
opt, compute γ

using formula (8), and then update f̄ = f̄ ◦ γ. Then

we repeat this process by recalculating the geodesic in

the space of parametrized surfaces (with the changed

initial surface f̄). The whole optimization process is

summarized in Alg. 3.

Algorithm 2 The joint optimization approach
Input:

1) the source and target surfaces f1 and f2;
2) the coefficients (a, b, c, d) of the metric;
3) the number of time steps T ;
4) bases {Si, i = 1, . . . , L} and {vi, i = 1, . . . , L̄} for the

space of parametrized surfaces and vector fields on S2

resp.;
5) the number N that describes the maximal amount of

small deformations used.

Output:

1) the geodesic fgeo connecting [f1] to [f2];
2) the geodesic distance dist between [f1] and [f2];

1: Initialize f̄ = f1, Coeff = 0
2: while k ≤ N do
3: Initialize γ by formula (8) with Xv = 0 and f(ti) by

equation (11).
4: Compute ft(ti−1) by equation (7).
5: Define the functional F̄ (Xv,Coeff) by (10) where the

discrete curve f is of the form

f(t0) = f̄ ◦ γ, f(tT ) = f2

f(ti) = (1− ti)f1 + tif2 +
L∑
j=1

Coeff(j, i)Sj ,

6: Minimize F̄ using a BFGS method, where the gradients
of F̄ with respect to Xv and Coeff are calculated using
the automatic differentiation package in Pytorch.

7: Compute the optimal γ using formula (8).
8: Update f̄ = f̄ ◦ γ.
9: k = k + 1

10: end while
11: Set

fgeo(t0) = f̄ , fgeo(tT ) = f2

fgeo(ti) = (1− ti)f1 + tif2 +
L∑
j=1

Coeff(j, i)Sj ,

and dist =
√
F̄ (Xv,Coeff).

12: return fgeo and dist

3.3 Geodesics in the space of unparametrized surfaces

modulo rigid motions

Note that the split metric (4) associates no cost to trans-

lation and thus the obtained geodesic is automatically in
the space of surfaces modulo translations. To calculate

the geodesic between two surfaces [f1] and [f2] in the

space of unparametrized surfaces modulo rigid motions

Imm(S2,R3)/
(
Diff+(S2)× SO(3) nR3

)
, we will need

to minimize in addition over the rotation group, i.e.,

solve the optimization problem on SO(3)×Diff+(S2):

distS([f1], [f2]) = inf
R∈SO(3)

γ∈Diff+(S2)

distImm(f1 ◦ γ,Rf2),

where [f ] is the equivalence class of f un-

der the actions of Diff+(S2) and SO(3) and
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Algorithm 3 The coordinate descent approach
Input:

1) the source and target surfaces f1 and f2;
2) the coefficients (a, b, c, d) of the metric;
3) the number of time steps T ;
4) bases {Si, i = 1, . . . , L} and {vi, i = 1, . . . , L̄} for the

space of parametrized surfaces and vector fields on S2

resp;
5) the number N that describes the maximal amount of

small deformations used.

Output:

1) the geodesic fgeo connecting [f1] to [f2];
2) the geodesic distance dist between [f1] and [f2];

1: Let f̄ = f1 and initialize Coeff = 0.
2: Choose a positive integer N .
3: while k ≤ N do
4: Define the functional F (Coeff) by (6) where the discrete

curve f is of the form

f(t0) = f̄ , f(tT ) = f2

f(ti) = (1− ti)f1 + tif2 +

L∑
j=1

Coeff(j, i)Sj ,

5: Minimize F
(

Coeff) using a BFGS method, where the
gradient of F with respect to Coeff is calculated using
the automatic differentiation package in Pytorch.

6: Calculate fopt(t1) =
∑L
i=1 Coeff(i, 1)Si.

7: Initialize Xv = 0 and γ by formula (8).
8: Define the functional Fr(Xv) by equation (12).
9: Minimize Fr using a BFGS method with gradient of

Fr with respect to Xv calculated using the automatic
differentiation package.

10: Compute γ using formula (8).
11: Update f̄ = f̄ ◦ γ.
12: k = k + 1
13: end while
14: Set

fgeo(t0) = f̄ , fgeo(tT ) = f2

fgeo(ti) = (1− ti)f1 + tif2 +

L∑
j=1

Coeff(j, i)Sj ,

and dist =
√
F (Coeff).

15: return fgeo and dist

distS denotes the distance function on the space

Imm(S2,R3)/
(
Diff+(S2)× SO(3) nR3

)
.

Let ‖·‖ ,Coeff, Si, ∆T be as in Subsection 3.1 and let

f̄ be the current parametrization of the first boundary

surface. It is known that the group of rotations SO(3) is a

three dimensional Lie group and the matrix exponential

exp from its Lie algebra so(3) is surjective. Since there

is an isomorphism between R3 and so(3), the discrete

optimization problem on the space of unparametrized

surfaces modulo rigid motions will be minimizing the

discrete functional F̃ : R3+L̄+L×(T−2) → R given by

F̃ (XR, Xv,Coeff) =

T∑
i=1

‖ft(ti−1)‖2fi−1
∆T,

where the discrete curve in this case is of the form

f(t0) = f̄ ◦ γ, f(tT ) = exp(XR)f2

f(ti) = (1− ti)f1 + tif(tT ) +

L∑
j=1

Coeff(j, i)Sj ,

i = 1, · · · , T − 1 and where the reparametrization γ

is given by formula (8) with coefficient vector Xv =

(Xv
1 , X

v
2 , . . . , X

v
L̄

). We will tackle this simpler (finite

dimensional) optimization problem using an analogous

approach as in the previous section and will thus omit

further details.

4 Experiments

In this section we will present examples of geodesics

as calculated using our optimization procedures. The
human body shapes have been kindly provided by Nil

Hasler [15] and the hand shape is taken from SHREC07

watertight models. All other shapes are are courtesy of

the TOSCA shape data base [8].

4.1 Geodesics and Karcher Mean

In Figure 8 we present examples of geodesics between

given surfaces in the space Imm(S2,R3)/Diff+(S2) with

respect to the split (1, 1, 0.1, 0) metric and the corre-

sponding evolutions of energies. In all our examples

we observed a good and relatively fast convergence

of the optimization procedure, and we present some

selected results of the resulting deformation and the

corresponding computation times in Table 1. In Fig-

ure 7 we present the Karcher mean of a family of cat

surfaces with respect to the split (1, 1, 0.1, 0) metric

in the space of unparametrized surfaces modulo rigid

motions Imm(S2,R3)/(Diff+(S2) × SO(3) nR3). One

can observe that the mean captures the overall charac-

teristics of the family of surfaces under consideration,

but simplifies some of the features that undergo high

variabilty. To calculate the Karcher mean we followed an

iterative algorithm as described e.g. in [12] in the context

of diffeomorphism based shape analysis. In this method

one arbitrarily orders the data points as f1, . . . , fn and

let q1 be the midpoint of the geodesic between f1 and

f2. Then one defines qi+1 by travelling until time 1
i+1

on the geodesic that connects qi−1 to fi+1 in time 1.

The approximation of the Karcher mean is then given
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Fig. 6 Example of a geodesic in several resolutions: 12× 25 (top), 25× 49 (middle) and 50× 99 (bottom) with respect to the
split (1, 1, 0.1, 0) metric in the space of unparametrized surfaces Imm(S2,R3)/Diff+(S2), where deg = 7, deg = 7 and T = 13.

by qn−1. We want to remark here, that this method de-

pends on the ordering of the data points (initialization)

and in future work we plan to further investigate this

and compare it to other Karcher mean algorithms, such
as directly minimizing the sum of squares of geodesic

distances. All results were obtained on a standard lap-

top without any parallelization or GPU-implementation,

which could certainly be used to obtain a significant

increase in speed.

Fig. 7 The Karcher mean (middle) of a set of shapes of cats in
the space Imm(S2,R3)/(Diff+(S2)×SO(3) n R3) with respect
to the split (1, 1, 0.1, 0) metric.

Remark 5. The results in Table 1 suggest that our

methods are well-suited for multiresolution methods, i.e.,

to solve the geodesic matching problem first on a coarser

resolution (in both time, space, and degree of spherical

harmonics) and then use an upsampled version of the

previously obtained solution as initial guess for solv-

ing a high resolution version of the matching problem.

Our numerical framework allows for these approaches

in all available parameters and, in all our experiments

this procedure seems to allow for as moderate improve-

ments in the speed of the optimization. See Figure 6

for an example of a multi-resolution geodesic in spatial

resolution.

Boundary Surfaces Resolution Iter RunTime

low 114 39.7s

middle 237 3min 3s

high 235 14min 2s

low 42 40.7s

middle 113 1min 35s

high 139 8min 25s

low 88 32.5s

middle 220 2min 22s

high 193 10min 27s

Table 1 Numerical results of matching surfaces with different
resolutions in time and space: low: 12 × 25, deg = deg = 5,
T = 5; middle: 25 × 49, deg = 7, deg = 8, T = 10; high:
50 × 99, deg = 9, deg = 11, T = 15. Here Iter denotes the
number of iterations until convergence in the optimization
process.

4.2 Comparison to the SRNF-framework

Finally, we aim to compare the results obtained with

our method to the results using the inversion of linear

paths in the SRNF-space. The SRNF metric corresponds

to the split metric (4) with constant (0, 1/2, 1, 0), see

Appendix B. To demonstrate this correspondence, we

consider 4 pairs of boundary surfaces. We calculated the

length of the linear path between each pair of surfaces

under the split (0, 1/2, 1, 0) and the length of the image

of the linear path under the SRNF framework. The

relative errors between the lengths for different time

step sizes are shown in Table 2 and demonstrate that

these two metrics indeed coincide.

Since the image of the SRNF map is not convex in

L2, the linear interpolation between two SRNFs may

not have a preimage under the SRNF map. Also, even

for functions that are in the image of SRNF map, the

inverse does not have an analytic expression; in fact,
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Fig. 8 Examples of geodesics w.r.t. to the (1, 1, 0.1, 0) metric in the space of shapes Imm(S2,R3)/Diff+(S2), where we choose
a resolution of 50 × 99, a maximal degree of spherical harmonics deg = deg = 7 and 13 timesteps, i.e., we search in an
approximately 2205 dimensional space. The corresponding energy evolution for each example is shown on the bottom from left
to right.

Boundary Surfaces Tstps Ll LL2 Relative Error

13 0.8917 0.8872 0.00502

20 0.8952 0.8908 0.00494

99 0.8952 0.8952 0.00002

13 0.7384 0.7350 0.00456

20 0.7372 0.7359 0.00169

99 0.7371 0.7367 0.00053

13 0.6722 0.6717 0.00072

20 0.6722 0.6720 0.00030

99 0.6723 0.6723 0.00002

13 0.9875 0.9853 0.00226

20 0.9874 0.9866 0.00084

99 0.9875 0.9875 0.00004

Table 2 Comparisons between the lengths of linear paths
with respect to the split (0, 1

2
, 1, 0) metric and the lengths of

the SRNF representations of the linear paths with respect to
the L2 metric. Ll: the length of linear path; LL2

: the length
of the SRNF representation of the linear path with respect to
the L2 metric.

such an expression does not exist in general, since the

SRNF map is not injective. As a way to overcome this

difficulty Laga et al. [25] introduced a numerical method

to calculate an approximated inversion of any path be-

tween two given SRNFs. In practice this has been used

to approximate the geodesic by inverting the linear

path between the given SRNFs. We want to remark

here that the algorithm of [25] could also be used to

invert a geodesic in the image of the SRNF map. How-

ever, calculating geodesics in the image of the SRNF

map is a non-trivial process, which to the best of our

knowledge has not yet been attempted. We would ex-

pect that this procedure would lead to minimizers that

recover the minimizers obtained in the present frame-

work. In Figure 9, we consider two pairs of surfaces and

calculate the geodesic between each pair of the bound-

ary surfaces under the split (0, 1/2, 1, 0) metric with

deg = deg = 7, T = 13 in the space of unparametrized

surfaces Imm(S2,R3)/Diff+(S2). The comparisons of

these geodesics with the approximated inversions of the

linear paths between the boundary surfaces are shown

in Figure 9. One can see that in the last row for the

geodesic between the human body surfaces, the arms are

shrinking at the beginning and then stretching, which

maybe not a desired deformation for some applications.

However, by adjusting the coefficients of our metric we

could obtain geodesics with the natural behavior, see

Figure 10 for geodesics with respect to different choices
of coefficients.
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Fig. 9 Comparisons of geodesics with respect to the split (0, 1
2
, 1, 0) metric and the approximated inversions of straight lines

under the SRNF framework. Row 1, 3: the approximated inversions under the SRNF framework; Row 2, 4: geodesics under the
split (0, 1

2
, 1, 0) metric in the space of parametrized surfaces.

Fig. 10 Geodesics between two human body surfaces in the space of unparametrized surfaces Imm(S2,R3)/Diff+(S2) with
respect to two different choices of coefficients (0, 1, 1, 0) (top) and (1, 1, 0.1, 0) (bottom). In particular in the deformation of the
arms one can observe the influence of the constants.

In Table 3 we compare the lengths of geodesics for

four pairs of surfaces in the space of parametrized sur-

faces Imm(S2,R3), the lengths of the approximated in-

versions (with 7 time steps) under the split (0, 1/2, 1, 0)

metric and the L2 differences between the SRNFs of the

boundary surfaces. One can see from the table that for

each pair of surfaces, the length of the geodesic is much
closer to the L2 difference than the length of the approx-

imated inversion of the straight line between the SRNFs

of the boundary surfaces. Note that the L2-difference

is a lower bound for the geodesic distance that will,

in general, be strictly smaller than the true geodesic

distance, as the image of the SNRF-representation is

not a totally geodesic (open) subspace of the space of

all L2-functions.

5 Conclusion

In this article we have introduced a family of elastic met-

rics on the space of parametrized surfaces in 3D space

using a corresponding family of metrics on the space

of vector valued one-forms. For this class of metrics we

have provided a numerical framework for the compu-

tation of geodesics both on the space of parametrized

and unparametrized surfaces. This new class of met-

rics generalizes a previously studied family of elastic
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Boundary Surfaces Ll Lg Li(7stps) L2 Diff

0.8932 0.7948 1.1442 0.6130

0.7380 0.7171 0.7919 0.6543

0.6723 0.5985 0.8393 0.5938

0.9875 0.7973 1.2159 0.7786

Table 3 The lengths of deformations with respect to the
(0, 1

2
, 1, 0) metric between boundary surfaces with the maximal

spherical harmonic degree of 7 and time step size of 25. Ll:
the length of the linear path between boundary surfaces; Lg:
the length of geodesic as calculate in our numerical framework;
Li: the length of approximated inversion from SRNF straight
line; L2-Diff: the L2 difference between the SRNFs of these
boundary surfaces.

metrics and includes, in particular, the Square Root
Normal Field (SRNF) metric, which has been proven

successful in various applications. In the numerical ex-

periment, provided in Section 4, we have demonstrated

our framework by showing several examples of geodesics

and compared our results with earlier results obtained
from the SRNF framework. Our framework does not

require a numerical inversion of the SRNF-map and

thus overcomes some of the difficulties of previous work.

Furthermore, it allows to choose the constants of the

metric in a data driven way, which has potential im-

portance in many applications. In future work we plan

to further demonstrate the viability of the proposed

method in applications to real data. In addition we are

currently working towards developing a generalization

of the SRNF-map that will allow us to approximate the

geodesic distance for our general class of metrics and

will thus speed up the computation by choosing a better

initial guess for the parametrization of the boundary

surface.

Appendix A The geodesic equation

In the following we give the geodesic equation on the

space of immersions Imm(M,R3) with respect to the

pullback of the metric (3) on the space of 1-forms. In

this Appendix, we will assume that the domain M is a

compact orientable surface without boundary, because

we will need to use the Hodge decomposition. We will

view α ∈ Ω1
+(M,R3) as a vector-valued 1-form with

components (α1, α2, α3), where each αi is a 1-form on M

in the usual sense. Then the metric (3) can be rewritten

as

Gα(ξ, ξ) =

∫
M

tr(ξΛαξ
T )ϕα µ

=

3∑
i=1

∫
M

〈ξix, Λαξix〉ϕα µ

where ξ = (ξ1, ξ2, ξ3) ∈ TαΩ1
+(M,R3), Λα = (αTα)−1

is the induced Riemannian metric on 1-forms on M , and

ϕα =
√

det (αTα) is the induced volume form on M .

As such all computations can be done one component

at a time.
If F = (f1, f2, f3) is a vector-valued function with

each f i : M → R real-valued, then β = dF is a vector-

valued 1-form with βi = df i. The Hodge decomposition

tells us that every 1-form ξ may be written as

ξ = df + γ,

where δγ = 0 and δ : Ω1(M,R) → C∞(M) is the

codifferential operator.

The space Imm(M,R3) is formally a submanifold of

Ω1
+(M,R3), and thus by general submanifold geometry

we know that the geodesic equation on Imm(M,R3) will

be given by

D

dt

d

dt
α = γ, α = dΦ, δγ = 0.

Since δγ = 0, we know that ?γ is an exact form, where

? denotes the Hodge star operator. Then there is a

function p, unique up to a constant, such that dp = ?γ.

We obtain

∆p = δdp = δ?γ = ?d

(
D

dt

d

dt
α

)
.

In coordinates (u, v) on M the operator ?d is given by:

?d(f du+ g dv) =
gu − fv
ϕ

,

where ϕ is the volume form on M . From the geodesic

equation on Ω1
+(M,R3) with respect to the metric (3),

as calculated in our previous paper [7], we know that

the covariant derivative is given by

D

dt

dα

dt
= αtt − αt(αTα)−1αTt α− αtα+αt + (αtα

+)Tαt

− 1
2 tr(αt(α

Tα)−1αTt )α+ tr(αtα
+)αt.

Since dαtt = 0, we obtain

∆p = ?d
(
−αt(αTα)−1αTt α

)
−αtα+αt + (αtα

+)Tαt

− 1
2 tr(αt(α

Tα)−1αTt )α+ tr(αtα
+)αt

)
.
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Let L = αtα
+. Applying the Hodge star operator to

both sides, we see that Φ is a geodesic on Imm(M,R3)

if and only if we have

?∆p = ? ? d(ΩdΦ) = dΩ ∧ dΦ

where Ω = LLT +L2−LTL+ 1
2 tr(LTL)− tr(L)L. Here

we emphasize that p and Φ are actually vector-valued

functions, so these computations are done component-

wise for each i ∈ {1, 2, 3}. In other words, we have

?∆pi =

3∑
j=1

dΩij ∧ dΦj , i ∈ {1, 2, 3}.

Appendix B Proofs

Proof of Theorem 2. In the following we prove the cor-

respondence between our split metric on the space

Ω1
+(M,R3) and the SRNF metric on the space of sur-

faces. Let M+(3, 2) be the space of 3× 2 matrices with

rank 2. Using the point-wise property of our metric we
will focus on the corresponding split metric on the matrix

space M+(3, 2). For a ∈M+(3, 2) and v ∈ TmM+(3, 2),

we decompose v into four parts

v = vm +
1

2
tr(a+v)a+ v⊥ + v0,

where

vm =
1

2
a(aTa)−1(aT v + vTa)− 1

2
tr(a+v)a

v⊥ = v − a(aTa)−1aT v

v0 =
1

2
a(aTa)−1(aT v − vTa).

The corresponding split metric on M+(3, 2) is then of

the form:

Ga,b,c,d
a (v, v)

= a〈vm, vm〉a + b

〈
1

2
tr(a+v)a,

1

2
tr(a+v)a

〉
a

+ c〈v⊥, v⊥〉a + d〈v0, v0〉a, (13)

Now consider the projection π : M+(3, 2) →
Sym+(2), a 7→ aTa. This projection is a Rie-

mannian submersion, where M+(3, 2) carries the metric

(13) with choices of constants (1, 1, 1, 1) and the space

Sym+(2) is equipped with the following metric:

〈h, k〉Sym
g =

1

4
tr(g−1hg−1k)

√
det(g).

The horizontal bundle with respect to the projection π

is given by

Ha = {u ∈M(3, 2) |ua+ ∈ Sym(n)}

and the differential dπ induces an isometry

dπa : Ha → Tπ(a) Sym+(m).

It is easy to check that vm and 1
2 tr(a+v)a are horizontal

vectors.

Let g = π(a) = aTa. By computation we have

tr(a+v) =
1

2
tr(g−1dπav)

and

dπa(vm) = aT vm + vTma = aT v + vTa− tr(a+v)aTa

= dπav −
1

2
tr
(
g−1dπav

)
g.

Therefore the first term in (13) becomes

〈vm, vm〉a
= 〈dπa(vm), dπa(vm)〉Sym

π(a)

=

〈
dπav −

1

2
tr
(
g−1dπav

)
g, dπav −

1

2
tr
(
g−1dπav

)
g

〉Sym

g

= 〈dπav, dπav〉Sym
g − tr

(
g−1dπav

)
〈dπav, g〉Sym

g

+
1

4
tr2
(
g−1dπav

)
〈g, g〉Sym

g

=
1

4
tr
(
g−1dπavg

−1dπav
)√

det(g)

− 1

8
tr2
(
g−1dπav

)√
det(g)

and the second term becomes〈
1

2
tr(a+v)a,

1

2
tr(a+v)a

〉
a

=
1

2
tr2(a+v)

√
det(aTa)

=
1

8
tr2(g−1dπav)

√
det(g).

For the third term in (13), we consider the corresponding

unit normal map on the space of matrices given by

n : M+(3, 2)→ R3

a 7→ a1 × a2

|a1 × a2|
=

a1 × a2√
det(aTa)

,

where a1 and a2 are the first and the second columns of

a, respectively. For any tangent vector u =
(
u1 u2

)
at

a, the differential of n at a is

dna(u) =
u1 × a2 + a1 × u2 − (a1 × a2) tr(a+u)√

det(aTa)
.

It is easy to check that aa+v is in the kernel of the

differential dna, i.e.,

dna(v) = dna(v⊥ + aa+v) = dna(v⊥).
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Note that tr(a+v⊥) = 0, aa+a1 = a1 and aa+a2 = a2.

Using the following identity for three dimensional vectors

b, c, d, e:

(b× c) · (d× e) = bT dcT e− bT ecT d

and the formula for the inverse of aTa:

(aTa)−1 =
1

det(aTa)

(
aT2 a2 −aT1 a2

aT1 a2 aT1 a1

)
,

we have

〈dnav, dnav〉R3 = 〈dnav⊥, dnav⊥〉R3

=
1

det(aTa)
〈v⊥1 × a2 + a1 × v⊥2 , v⊥1 × a2 + a1 × v⊥2 〉R3

=
1

det(aTa)

[ (
vT1 v1 − vT1 aa+v1

)
aT2 a2

− 2
(
vT1 v2 − vT1 aa+v2

)
aT1 a2 +

(
vT2 v2 − vT2 aa+v2

)
aT1 a1

]
,

where v⊥1 , v
⊥
2 are the first and the second columns of

v⊥ and v1, v2 are the first and the second columns of v,

respectively. It follows that〈
v⊥, v⊥

〉
a

√
det(aTa) = tr(v⊥(aTa)−1(v⊥)T ) det(aTa)

=
(
tr(v(aTa)−1vT )− tr(aa+v(aTa)−1vT )

)
det(aTa)

=
(
tr(vT v(aTa)−1)− tr(vTaa+v(aTa)−1)

)
det(aTa)

= tr

((
vT1 (I − aa+)v1 v

T
1 (I − aa+)v2

vT1 (I − aa+)v2 v
T
2 (I − aa+)v2

)(
aT2 a2 −aT1 a2

aT1 a2 aT1 a1

))
=
(
vT1 v1 − vT1 aa+v1

)
aT2 a2 − 2

(
vT1 v2 − vT1 aa+v2

)
aT1 a2

+
(
vT2 v2 − vT2 aa+v2

)
aT1 a1

=〈dnav, dnav〉R3 det(aTa),

that is, 〈
v⊥, v⊥

〉
a

= 〈dnav, dnav〉R3

√
det(g).

Therefore the split metric (13) onM+(3, 2) can be rewrit-

ten as

Ga,b,c,d
a (v, v)

=a

(
1

4
tr
(
g−1dπavg

−1dπav
)
− 1

8
tr2
(
g−1dπav

))√
det(g)

+
b

8
tr2
(
g−1dπav

)√
det(g) + c〈dnav, dnav〉R3

√
det(g)

+ d〈v0, v0〉a.

Now it is easy to see that the first three terms give rise

to the formula of the full elastic metric on the space

of surfaces for A = a/4, B = (b − a)/8, C = c and the

SRNF metric corresponds to the split metric (4) with

constants (0, 1
2 , 1, 0).

Proof of Theorem 3. We first perform the computation

in spherical coordinates (θ, φ) ∈ [0, 2π]× [0, π]. Denote

the usual spherical coordinate orthonormal basis by

e1 = 〈sinφ cos θ, sinφ sin θ, cosφ〉,
e2 = 〈cosφ cos θ, cosφ sin θ,− sinφ〉,
e3 = 〈− sin θ, cos θ, 0〉.

We have the following formulas for the partial deriva-

tives:

∂φe1 = e2, ∂φe2 = −e1, ∂φe3 = 0, (14)

∂θe1 = sinφe3, ∂θe2 = cosφe3,

∂θe3 = − sinφe1 − cosφe2.

We also note that the covariant derivatives are given by

∇e2e2 = 0, ∇e2 e3 = 0 (15)

∇e3e2 = cotφ e3, ∇e3e3 = − cotφ e2.

Write

U(θ, φ) = u(θ, φ)e2(θ, φ) + v(θ, φ)e3(θ, φ).

For a real parameter t, we consider the following map

W : S2 → R3 given in coordinates by

W (θ, φ) = e1(θ, φ) + tU(θ, φ)

= e1(θ, φ) + tu(θ, φ)e2(θ, φ) + tv(θ, φ)e3(θ, φ).

Then η = W/|W |.
Note that in order for η to be a diffeomorphism, we

require that the Jacobian determinant be nonzero; it is

given by

Jac(η) =
1

sinφ

∣∣∣∣∂η∂φ × ∂η

∂θ

∣∣∣∣ .
Observe that

ηφ =
1

|W |

(
Wφ −

W ·Wφ

|W |2
W

)
=

1

|W |
PW⊥(Wφ),

ηθ =
1

|W |

(
Wθ −

W ·Wθ

|W |2
W

)
=

1

|W |
PW⊥(Wθ).

Since ηφ and ηθ are both perpendicular to W , we know

that ηφ×ηθ is parallel to W ; thus we obtain the formula

Jac(η) =
1

sinφ|W |2
∣∣PW⊥(Wφ)× PW⊥(Wθ)

∣∣
=

1

sinφ|W |3
∣∣W · (PW⊥(Wφ)× PW⊥(Wθ)

)∣∣
=

1

sinφ|W |3
∣∣W · (Wφ ×Wθ

)∣∣ ,
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using the cyclic invariance of the scalar triple product

and the fact that W ×PW⊥(V ) = W ×V for any vector

V .

Since W = e1 +tU for the vector field U = ue2 +ve3,

it is straightforward to compute using (14)-(15) that

Wφ = e2 + tUφ = e2 + t∇e2U − tue1,

Wθ

sinφ
= e3 +

t

sinφ
Uθ = e3 + t∇e3U − tve1,

Let m1 = uφ,m2 = vφ,m3 = uθ−v cosφ
sinφ ,m4 = vθ+u cosφ

sinφ .

We have by (15) that

∇e2U = m1e2 +m2e3, ∇e3U = m3e2 +m4e3,

which we abbreviate by

M := ∇U =

(
m1 m2

m3 m4

)
.

Thus the Jacobian is nonzero if and only if the following

determinant is nonzero:

D =
∣∣W · (Wφ ×Wθ

)∣∣ =

∣∣∣∣∣∣
1 tu tv

−tu 1 + tm1 tm2

−tv tm3 1 + tm4

∣∣∣∣∣∣ .(16)

Expand the determinant (16) along the first column,

then it is given by

D = det(1 + tM) + t2〈JU, (1 + tM)JU〉,

where J =

(
0 −1

1 0

)
.

Let M = 1
2 (M +MT ) denote the symmetrization of

M , and let λ1 ≤ λ2 denote the real eigenvalues of M .

Then trM = trM and detM = detM + 1
4 (m2 −m3)2,

so that

det(1 + tM) ≥ det(1 + tM) = (1 + λ1t)(1 + λ2t).

Since J is a rotation, we have

〈JU, (1 + tM)JU〉 = 〈JU, (1 + tM)JU〉
≥ (1 + λ1t)|JU |2

= (1 + λ1t)|U |2.

Thus

D ≥ (1 + λ1t)(1 + λ2t+ |U |2t2).

For sufficiently small t, we know (1 + λ1t) is positive,

and since λ1 ≤ λ2, we obtain

D ≥ (1 + λ1t)
2

Thus 1 + λ1t > 0 is a sufficient condition for positivity

of D, and this happens as long as |t| < 1
|λ1| . It is easy

to compute that

λ1 =
m1 +m4 −

√
(m1 −m4)2 + (m2 +m3)2

2
.

In particular m1 + m4 = tr (∇U) = divU , and by the

divergence theorem, we know the integral of m1 +m4

over S2 is zero, and in particular m1 +m4 is either iden-

tically zero or changes sign on S2. Since t is nonnegative

we therefore are concerned about the most negative that

λ1(x) can be:

1 + λ1(x)t ≥ 1 + t inf
x∈S2

λ1(x) = 1− t sup
p∈S2

(−λ1(x)) ≥ 0,

which is equivalent to

t <
2

sup
p∈S2

−(m1 +m4) +
√

(m1 −m4)2 + (m2 +m3)2
.

This is clearly (9).
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