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RICCI CURVATURE FOR HYDRODYNAMICS ON THE SPHERE

LEANDRO LICHTENFELZ, KLAS MODIN, AND STEPHEN C. PRESTON

ABSTRACT. The geometric description of incompressible hydrodynamics, as geodesic motion on
the infinite-dimensional group of volume-preserving diffeomorphisms, enables notions of curvature
in the study of fluids in order to study stability. Formulas for Ricci curvature are often simpler
than those for sectional curvature, which typically takes both signs, but the drawback is that Ricci
curvature is rarely well-defined in infinite-dimensional spaces. Here we suggest a definition of Ricci
curvature in the case of two-dimensional hydrodynamics, based on the finite-dimensional Zeitlin
models arising in quantization theory, which gives a natural tool for renormalization. We pro-
vide formulae for the finite-dimensional approximations and give strong numerical evidence that
these converge in the infinite-dimensional limit, based in part on four new conjectured identities for
Wigner 65 symbols. The suggested limiting expression for (average) Ricci curvature is surprisingly
simple and demonstrates an average instability for high-frequency modes which helps explain long-
term numerical observations of spherical hydrodynamics due to mixing.
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The incompressible Euler equations describe the motion of an ideal, inviscid fluid on a Riemann-
ian manifold (M, g). If u denotes the time-dependent vector field on M representing the velocity
of the fluid, the Euler equations are

(1.1)

Ou + Vyu = —Vp,
divu = 0,
u(0) = ug

where V,u is the covariant derivative of u along itself and p is the pressure function.

1



2 LEANDRO LICHTENFELZ, KLAS MODIN, AND STEPHEN C. PRESTON

Arnold [1] reinterpreted the system (1.1) as geodesic equations on the infinite-dimensional Lie
group Diff ,(M) of volume-preserving diffeomorphisms of M, equipped with the right-invariant L?
Riemannian metric. Through this discovery, geometric concepts lend themselves to hydrodynamical
interpretations. In particular, since fluid trajectories are geodesics, positive curvature leads to
convergence of nearby flows, indicating stability, while negative curvature has the opposite effect,
leading to instability. Motivated by this perspective, Arnold computed sectional curvatures of
Diff (M) when M is the two-torus, and subsequent work extended these computations to various
settings, including both two- and three-dimensional manifolds M (see, e.g., [9, 19, 11, 18, 20]).
Collectively, these results show that sectional curvatures of Diff ,(M) often, but not always, turn
out negative.

Specifically for Diff , (S 2), which is the most important for studying large-scale weather, curvature
computations have been performed by many authors in terms of spherical harmonics (see Suri [22]
and references therein for a recent explication). Rouchon [19] showed that curvatures in sections
containing at least one rotation field are always nonnegative, but that for any other velocity field
there is a section containing it with negative curvature. The third author showed [18] the opposite,
that for every divergence-free velocity field on S2, there is always a section containing it with
positive curvature; this is false for most other surfaces. Lukatskii [10] considered the curvatures in
sections containing u = V- f for a function f(z) on S? and found that in the basis v, of spherical
harmonics, K (u,vy) — —f”(0)%/||ull3,, which is the closest result to the present study in the
literature and suggests the curvatures are “mostly negative” when considered in this basis. It is
not at all obvious whether such a result holds in a different basis. On the other hand Suri [21]
showed that almost every spherical harmonic flow has conjugate points along it, indicating existence
of many sections of positive curvature, often found in off-diagonal directions. Hence quantifying
the amount of positive or negative curvature is far from clear in this infinite-dimensional setting,
particularly in a basis-independent way. Ricci curvature makes this precise in an invariant way but
ordinarily only gives finite values in finite-dimensional manifolds’.

As further motivation, in the special case of two-dimensional ideal hydrodynamics, the scalar vor-
ticity field is advected by the geodesic path of diffeomorphisms. Onsager [16] predicted that regions
of equally signed vorticity tend to merge to form vortex condensates. However, since vorticity is
advected, the merging is not via diffusion, but via intricate thinning and folding called mizing. This
way, condensates of vorticity develop on large scales at the cost of increasing entanglement on small
scales. The long-time behavior of this dynamics comprises two-dimensional turbulence (cf. Bofetta
and Ecke [2]). But we still lack an “Arnold-like” geometric understanding of mixing and vortex
condensation, and here Ricci curvature may offer insights. Indeed, mixing can be interpreted as
sensitivity relative to initial data, which in turn is connected to the growth of Jacobi fields. More
precisely, Ricci curvature governs the evolution of infinitesimal volumes spanned by Jacobi fields,
in such a way that negative values accelerate their growth. In this sense, average Ricci curvature is
related to average mixing. Heuristically, we expect that mixing arises from exponential growth of
Jacobi fields, driven by negative curvature, with a Lyapunov exponent proportional to the square
root of the negative Ricci curvature.

In summary, there are compelling reasons to seek a well-defined Ricci tensor for Diff,(M), but
in order to do this rigorously it is necessary to view it as convergence of Ricci tensors of finite-
dimensional geometric approximations. In this paper, we introduce a notion of Ricci curvature,
through quantization, for Diff ,(M) when M is the two-sphere S?. Numerical computations suggest
that this quantity, defined as a renormalized series over Ricci curvatures in the quantized models,
not only converges to a negative value, in line with expectations from the aforementioned sectional
curvature computations, but is also given by a remarkably simple formula (Conjecture 2). Motivated

las a simple example, one can take the sphere of radius r in L2 (M), which has sectional curvature 1/r in any
plane. Thus, Ricci clearly diverges since there are infinitely many orthogonal planes.
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by the statistical long-time behaviour of hydrodynamics on the sphere, resulting in motion that
on the large scale is nearly steady up to rigid rotations®, we also compute the Ricci curvature
for a quantization model of the homogeneous space Diff,,(5%)/SO(3). This homogeneous space
is important due to the observation that long-term dynamics of 2D Euler appears to converge
to a system on SO(3) with high-frequency terms orthogonal to it fading into noise, suggesting a
uniformity of the behavior in the high-frequency quotient space.

The starting point for our definition is the Zeitlin model [24], a sequence of finite-dimensional
approximations of the group Diff, (S 2) of area-preserving diffeomorphisms of the sphere based on
a quantization scheme introduced by Hoppe [7]. In this model, the special unitary groups SU(N)
serve as finite-dimensional analogues of Diff M(SQ) when equipped with a particular right-invariant
metric, known as the Zeitlin metric. These groups capture the structure of, and converge to, the
area-preserving diffeomorphism group in the large-N limit; for the precise convergence statement
for Zeitlin’s model on the sphere, see [14].

Our main results begin with a structural theorem: the Ricci tensor of the Zeitlin metric in any
dimension is block diagonal with respect to a natural decomposition {Vg}éV: _11 of su(N) into irre-
ducible s0(3) modules, acting as a scalar multiple r,(N) of the identity on each subspace V,. We
derive exact formulas for the values 7,(N) and also determine the Ricci curvature of the homoge-
neous space SU(N)/SO(3), which corresponds to fluid motion modulo rigid rotations. Finally, we
analyze the asymptotic behavior of r¢(/N) as N — oo. This asymptotic analysis leads naturally to
our definition of averaged Ricci curvature for the infinite-dimensional limit. In addition it leads to
four new conjectured identities for Wigner 65 symbols for which there is strong numerical evidence.

We point out that the block Ricci result does not follow from the general theory of “nice” bases
for Lie groups (cf. [8]), but relies on the specific form of the Zeitlin metric, which is dictated by the
quantized Laplacian. In particular, one can check directly that there exist right-invariant metrics
on SU(N) near the Zeitlin metric which do not possess this property. On the other hand, general
properties of irreducible representations show that one should expect that the Ricci curvature, as
a quadratic form invariant under the isometric action of SO(3), should also be a multiple of the
metric on each subspace V; by Schur’s Lemma; see for example Park-Sakane [17] for a sketch of the
argument. Here we verify this statement and more importantly compute the multiples.

Concerning applications in two-dimensional hydrodynamics, our result on positivity of Ricci
curvature (see Corollary 1 below) in the lowest wavenumber eigenspace V; implies that increased
angular momentum on average has a stabilizing effect on the dynamics. By contrast, our conjecture
that the Ricci curvature is eventually negative (see Conjecture 2 below) in all higher eigenspaces
hints that on average the sectional curvature is indeed negative, as previously suggested in the
literature. As a whole, the results are compatible with mixing observed numerically, where the
large scales typically settle on a near global rotation (where Ricci is positive), whereas small scales
(where Ricci is conjectured negative) are fully mixed [13].

It is possible to carry out this construction for other closed surfaces, such as the torus. An
earlier approach, not based on quantization, was proposed by Lukatskii [9] for the flat torus T",
but without using quantized geometry and hence innately basis-dependent. An open problem is
thus to derive Ricci curvature as in this paper but for the flat torus using Zeitlin’s quantized model
for D,,(T?). Another is to extend the results to the axisymmetric 3D Euler equations on S, which
can also be addressed via quantization [12]. Ricci curvature was computed there only in the simplest
case N = 2, but for higher NV one may expect similar formulas as found here.

This paper is organized as follows. Section 2 contains an overview of our results, including some
background. Section 3 contains the computation of the Ricci tensor and the proof of Theorem 1.
In Section 4, we investigate the limiting behavior of Ricci curvature for large N, making use of

2These results are obtained in both numerical simulations [6, 13] and physical experiments [5].
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some new conjectured identities for Wigner 65 symbols. Finally, in Section 5 we determine the
Ricci curvature of the homogeneous space SU(N)/SO(3).

Acknowledgements: This work was supported by the Swedish Research Council (grant number
2022-03453), the Knut and Alice Wallenberg Foundation (grant numbers WAF2019.0201), and the
Goran Gustafsson Foundation for Research in Natural Sciences and Medicine. The computations
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Research Council through grant no. 2022-06725. The first author was supported by the A.J. Sterge
Faculty Fellowship. We also thank Akshay Venkatesh for helpful correspondence.

2. MAIN RESULTS

In this section, we state our main results, including only the minimal background needed for
the formulation of the theorems. A more detailed discussion of the quantization procedure and the
structure of the Zeitlin model is deferred to the next section.

2.1. Block-Einstein structure. The Lie algebra su(/N) admits a decomposition
(2.1) su(N)=Vi @ - ® Vn_1,

where each V; is an irreducible representation of so(3), has dimension 2¢ 4+ 1 and carries a distin-
guished basis {1y, : —¢ < m < £}, which can be thought of as a finite-dimensional truncation of
the classical spherical harmonics on S? (cf. [14], [25]).

The quantized Laplacian Ay : su(N) — su(/V) is defined so as to preserve this decomposition and
mimic the action of the standard Laplace-Beltrami operator on the two-sphere, assigning eigenvalue
—L(¢+1) to each V4. Concretely we take a representation of s0(3) by operators C;: su(N) — su(N)
satisfying [C;,C;j] = €;xCk, and define the Laplacian by Ay = >, CZ, verifying that it commutes
with each C;. We then construct the special basis Ty, satisfying AnTy, = —4(¢ + 1)1y, and
C3(Tym) = mTy, _p,, which uniquely determines the vectors up to scaling for each m € {—¢,...,¢}.
We consider two Riemannian metrics on SU(N): the bi-invariant metric and the Zeitlin metric,
the latter being only right-invariant. They are given at the tangent space to the identity by

(2.2) (u,v) = Tr(uTv), (bi-invariant metric)
1
(2.3) (u,v) = N Tr (UT(—AN)U), (Zeitlin metric)

for u,v € su(N). The basis {Ty,,} is scaled so it is orthonormal with respect to the bi-invariant
metric. Furthermore, for the Lie algebra structure, the usual matrix commutator is denoted [-,-].
However, in quantization theory one needs to work with the scaled bracket %[, -] where Ay =

2/v/N? — 1. The infinitesimal (right) adjoint action is therefore defined with respect to this scaled
Lie bracket, so that
ad,v = —i[u,fu].
N

The relevance of Zeitlin’s metric lies in the fact that its geodesics provide a finite-dimensional
approximation of hydrodynamics on the sphere, as explained later in the next section. Our first
theorem says that the Ricci curvature of Zeitlin’s metric (2.3) is a multiple of the identity when
restricted to each subspace V;, which means that the Zeitlin model is “block-Einstein.”

Theorem 1. The Ricci curvature of SU(N) under the Zeitlin metric (2.3) is block diagonal with
respect to the decomposition (2.1). That is, the Ricci tensor Ric acts as a scalar multiple of the
metric on each subspace Vy for £ < N: foru € V; and v € Vp we have

Ric(u,v) = re(N) (u,v).
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Furthermore, we have r¢(N) = ry(N)* — ry(N)~, where ry(N)* are both nonnegative and given
explicitly by

N—-1 2
N A , ¢ kK
(V) = Y (2% + 1)(2k +1>{N_1 L N_l} ,
3, k%:l AR AR 3 3 p)
(2 4) k+k'+¢ odd
' - N Nzl (A — Apr)? (%H)(%,H){ A }2
T = —a _— _ _ _ .
14 h%\f k7k/:1 )‘k)‘k”)\f N2 1 N2 1 N2 1
k+k'+¢ odd

Here, \j = i(i + 1), hy =2/VN? — 1 and {:::} denotes the Wigner 65 symbol.

For a detailed account of Wigner symbols, see [23]. The quotient space SU(N)/SO(3) has a
natural interpretation as the configuration space of fluid motion modulo rigid rotations. We also
determine the Ricci curvature of this quotient space explicitly, which turns out to be strictly larger
than the Ricci curvature of SU(N) by an amount that depends on the wavenumber, but not the
dimension N. Since we expect r4(N) to grow like N2 for fixed ¢ (see Theorem 3 below), the Ricci
curvature of the quotient behaves in essentially the same way as in SU(N) for large N.

Theorem 2. The Ricci tensor Ricp of the quotient space B = SU(N)/SO(3), where SU(N) is
equipped with the Zeitlin metric (2.3), acts as a scalar multiple of the metric on each subspace V
for2 << N —1: forueVy and v € Vy we have

(2.5) Ricg(u,v) = (Tg(N) + )i) (u,v)p

where {, )p is the quotient metric on B, and r¢(N) is as in Theorem 1.

Positivity of Ricci curvature in some special directions, and all dimensions, will follow easily from
the formulas in Theorem 1.

Corollary 1. For every N > 2, the Ricci curvature of the Zeitlin metric on SU(N) is strictly
positive in the subspace V7.

2.2. Conjectured identities and numerical results. To understand what happens in the
eigenspaces Vy for £ > 1 as N — oo, we must work with Wigner 65 symbols, whose explicit
combinatorial expressions are extremely long. In the course of computing Ricci curvature, we have
observed certain recurring patterns involving sums of these symbols, which led us to formulate some
new conjectural identities.

To begin, for fixed N, we introduce the abbreviated notation below for certain 65 symbols that
appear frequently throughout the paper:

ij i ] ¢ i
(2:6) Wit = {N—l NJ—I N—l} , Wi =
2 2 2

—
oL .
ks
DN
o
NN
——
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The following summation formulas are well known from the theory of angular momentum in quan-
tum mechanics, where 65 symbols play a fundamental role (see [23]).

N-1 » 1
2.7) ;;<z¢ +HW)? = =,
N-1
(2.8) D (=120 + W = ()N TIWY,
= N-1

(2.9) (—1)"(2i + YW, = (1) 550N,

g

We now list the identities observed in our computations, which seem to extend the above in a
natural way.

Conjecture 1. Forall1 < 5, < N — 1, we have

N—-1
(22—1— ) i0\2 1 .
2.10 Wi : 0),
N-1
(2.11) Xi(2i + 1) W2 = (=N + M)W,
z’:l
)19 pl 1A 2% 4 YW = (N2 = 1) (A + M) — 205N
( A ) ; V4 + N(N2 — 1) )
N-1 .
204+1 (1 NNy 2
(2.13) 2, (N + (=1) Wil ="

where \; = i(i + 1) as before and Hj = 1+1/2+ -+ 1/3 is the j™ harmonic number.

These identities have been numerically verified up to N = 2048, which already covers the range
relevant for practical simulations using the Zeitlin model. Note that since the square of a Wigner
65 symbol is a rational number, numerical verification is exact here.

For the values of N where Conjecture 1 holds, we are able to get a closed form expression for the
negative part of Ricci, ro(N)~, and an explicit upper bound for 7,(N)". If there were identities
like (2.10) involving (—1) or the case j = £, we would get an exact formula for 7,(N)*, but we
have not found these.

Theorem 3. Assuming the identities in Conjecture 1, the positive and negative parts of the Ricci
curvature in the V, subspace satisfy:

_ 2 _
Te(N)_:%}%Vl)ZQ(Hé—l)<N4 1),

re(N)Y < (4Hp + 20+ 1) <N24_ 1> .

(2.14)

Remarkably, this formula — derived as a complicated sum involving Wigner 65 symbols — factors
into a product of two terms, one depending only on ¢ and the other only on N.

In light of Theorem 3, it is natural to introduce the averaged Ricci curvatures, based on dividing
by dim(SU(N)) = N? — 1:

ro(N)
N2 -1’

ro(N)*®

(2.15) 7 (N) = o

T(N)* =
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Numerical computations up to N = 2048 indicate that 7;(N) is not only bounded in N, as expected

from Theorem 3, but in fact converges to the limit of 7y(IN)~ as N goes to infinity — see Figure 1
below. This is equivalent to the statement that 7,(N)™ — 0 as N — cc.

=1 15

?E(N)+< - 1.0
- 0.5

> — — 0.0

- —0.5

~F(N) <

-1.0
e : e L——L5
102 10°

matrix size N

FIGURE 1. Positive 74(IN)" and negative 7;(IN)~ parts of the average Ricci curvature
values in the Zeitlin model, for £ =1,...,23 and for matrix sizes N from 32 to 2048
(in log-scale). The negative part is independent of N, whereas the positive part
seemingly converge to zero.

500 A

1.0
400 -
< 0.5
5}
Jé 300 A
= - 0.0
5
CE 200
—0.5
100 -
—-1.0

200 400
matrix size N

FIGURE 2. Average Ricci curvature values 7;(N) in the Zeitlin model for varying
matrix sizes N. For a fixed ¢, the averaged Ricci curvature eventually becomes
negative as N grows, in accordance with Conjecture 2. On the other hand, as soon
as ¢ > N/3 the Ricci curvature in the Zeitlin model is positive. The slope 1/3 is not
clearly predicted even in our conjectured formulas, but is quite apparent graphically.
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/ N 3141567891011 |12|13|14|15|16
1 \p|P|P|P|P|P|P|P|P|P|P|P|P|P
2 |[P/IP/IPPINININ|N|N|N|N|N|N|N
3 P/PIPIPIPININ|IN|N|N|N|N|N
4 P/P/P|P|PI PN N|ININI N|N
) piP/P/P/P|P|P|N|N|N|N
6 p/P/P|P|P|P|P|P|P|N
7 pP/P|P|P|P|P|P|P
8 piP|P|P|P|P|P|P
9 p|P|P|P | P|P|P
10 P P|P|P|P|P
11 P|P|P|P|P
12 P|P|P|P
13 P|P|P
14 PP
15 P

The table above shows the sign of the Ricci curvature in the direction of each eigenspace V; for
SU(N), with P and N denoting positive and negative curvature, respectively. The pattern mirrors
the one observed in Figure 2, and persists for much higher ¢ and N. One can also observe the
transition pattern /N ~ 1/3 in this table.

Summarizing the above discussion and numerical results, we expect the following to hold.

Conjecture 2. For each fized ¢ > 1, the averaged Ricci curvature 7¢(N) of the Zeitlin metric on

SU(N) becomes negative for sufficiently large N, and in the limit

Hy—1
2 )

(2.16) To(N) = — as N — oo,

where Hy is the (™ harmonic number.

A possible strategy toward proving this conjecture begins with establishing the identities stated
in Conjecture 1 through combinatorial methods. Once these identities are proved, the asymptotic
behavior in Conjecture 2 would follow by deriving a sharper upper bound for r,(N)" in order to
prove that limy_,o0 7¢(N)™ = 0 for each £.

3. RICCI CURVATURE OF THE ZEITLIN METRIC

In this section, we begin by reviewing the quantization framework underlying the Zeitlin model.
Next, we derive a few lemmas that are useful for curvature computations and prove Theorem 1.

3.1. Quantization. The incompressible Euler equations can be viewed, following Arnold’s frame-
work, as geodesic equations on the infinite-dimensional Lie group DiffH(Sz) of area-preserving
diffeomorphisms of the sphere. The corresponding Lie algebra consists of divergence-free vector
fields, which may be identified with Hamiltonian vector fields on the two-sphere. Passing to the
vorticity formulation, one takes the curl of the first equation in (1.1), yielding a scalar equation for
the vorticity w = curl u:

(3.1) Ow + {,w} =0, A = w,

where v is the stream function, related to the velocity u through the skew-gradient u = V1), and
{:, -} denotes the Poisson bracket induced by the area form on the sphere. This formulation replaces
the Lie algebra Diff, ox(S?) of Hamiltonian vector fields with the Poisson algebra (C§°(5?),{-,-})

of smooth, mean-zero functions on S2.
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Quantization theory provides an approximation of this infinite-dimensional Poisson algebra by
a sequence of matrix Lie algebras su(NV), each equipped with a distinguished right-invariant met-
ric and scaled matrix commutators. Specifically, as N — oo, the algebras (su(N), %[, 1), with

hy = 2/v/N2 —1 and the metric gy in (2.3), converge weakly—via the L2-adjoint of a quanti-
zation operator Ty : C§°(S?) — su(IN)—to the Poisson algebra (C§°(S?),{,-}) (see Charles and
Polterovich [4]). This approximation is the Zeitlin model for the two-sphere. Zeitlin’s discretization
replaces the continuous vorticity equation (3.1) with a finite-dimensional analogue:

(3.2) W+ h[P W]=0, AyP=W,

with P,W curves in the Lie algebra su(N). The equations (3.2) retain the Lie-Poisson struc-
ture of the original system, and describe geodesics on SU(N) with respect to the right-invariant
Riemannian metric (2.3), derived from kinetic energy.

In what follows, we collect a few lemmas that will be used throughout the paper, in particular
in the proof of Theorem 1.

Lemma 1. The operator ad* defined by (adjv,w) = (v,ad,w) for all u,v,w € su(N) is given by

(3.3) ad*v = —A~tad,Av,

where A is the quantized Laplacian, defined relative to the quantization basis {Tpy} by

(3.4) ATy, = =00+ 1) Typ,.

Proof. A straightforward computation using bi-invariance of (-, -) and (u,v) = — 4 (u, Av). O

The weights ay relating the two metrics (2.3) and (2.2) are
0(l+1)

N
The first ingredient towards the proof of Theorem 1 is a formula for Ricci curvature in terms of ay.
Our starting point is Arnold’s sectional curvature formula for a left- or right-invariant metric on
any Lie group, which can be written in the form
tlladiv + adju + adyv||* — (adfv + adyv, ad,v) — (ad}u, ad}v)

lll[lvf* = (u, v)? '

Using (3.6), we can derive the following expression for Ricci curvature. A similar formula was

given in [8] in terms of an orthonormal basis, so we omit its proof.

(3.5) (Tym, Tom) = v (Tgm,Tgm), where ay =

(3.6) K(u,v) =

Lemma 2. For any vectors u € Vy and v € Vy, the Ricci curvature of (2.3) is given by

N—-1N-1

) — ! 2
(3.7) Ric(u,v) = — Y ) S 4%%, ~ %)y pad, Puad, P,
k=1 k'=1

3.2. Wigner symbols. Formula (3.7) depends on computing the traces of certain operators. On
SU(N), these traces can be computed directly in terms of the Wigner symbols that give the
structure constants relative to the special basis {7y, }. Following Zeitlin’s construction ([24], [25]),
we now recall the explicit form of these structure constants.

The commutator between Ty, and Ty, in su(N) is given by

N—-1 o
o'm/ (N)
(38) [Tgm,Tg/ / Z Z Cfmé’ (, TZ”m”
0=1 m!—=—p"

with structure constants

! , " ! f El E” E El e//
(3‘9) CEmKIWE/N) = SZ,E’,Z” (1 - (_1)£+€ + )(_1) 1 ( / //> {N—l N—-1 N-1¢(>

m o om m 2 2 2
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where:

(1) Sew e =20+ 120"+ 1/207 + 1, so this coefficient is never zero;
(2) (:::) denotes the Wigner 35 symbol;
(3) {:::} denotes the Wigner 65 symbol.

The Lie algebra su(V) is split into subspaces (only Vj is a Lie subalgebra) according to

Vp :=span {1y, : |Im| < {}, 1<¢<N-1

The coeflicients CfernE,N) in (3.9) are zero in the following special cases:

(1) If £4 ¢ 4+ ¢" is even; or
(2) If £,0',¢" cannot be the sides of a triangle; e.g., if |¢ — ¢'| > ¢;
(3) If m+m'+m” # 0.

The last two properties come from selection rules of the Wigner 3j symbols ([23]). Other zeros are
possible, since it is an open problem to parametrize all zeros of Wigner 6j-symbols. We now have
the necessary tools to prove Theorem 1.

Proof of Theorem 1. The key problem is to evaluate the trace term in formula (3.7). To do this, fix
k, k" and take the bases {Tkm }jm|<k Of Vi and {Tyy/ }jpy|<pr of Vir, orthonormal in the bi-invariant
metric (2.2). Then, for any u and v we have

k k
Tr Pkadqu/avak = Z (Tkm, adqu/adkam) = — Z (aduTkm, Pk/adkam)
m=—k m=—Fk
(3.10) = - Z Z aduTkmm Tkz’m’) (adkama Tk’m’)~
m=—km/=

Next, we specialize to basis vectors u = Ty, and v = Tp,s, orthonormal in the bi-invariant metric
(2.2), with |r] < £ and || < .

k K’
— By Tr Pyad, Pyad, Py = h% Z Z (adzy, Tiem, Tirm ) (ad 1y, , Thms Thrm )
m=—km/=—k’
k
= Z Z Z;cnmcfﬁf’r;vm
m=—km’/=
N (0 R KN 6 kWK
= Z Z Sekk'(l— - )HHk)(—l) +1 (T m m/>{N—1 N-1 N—1}><
m=—km/—— 2 2 2
Y /A T YA (VA S
SZ’,k,k’<1_(_1)Z+k+k)(_1) H (T/ m m/>{N—1 N-1 N—l}
2 2 2

= St Se g (1= (1)) (1 (_1)£’+k+k’> y

¢t kK 4 ¢k K\ (0 kK
{N—l N-1 N—l}{N—l — }Z Z <1" m m/> <7“/ m m/)-

2 2 2 2 ks —

Here we note that most of the terms in the structure constant CZ;}; do not depend on m or m/’,
so they can be pulled out of the summation, and we are left with a standard orthogonality result
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for the 3j-symbols (see [23]):

Ok RN k K\ Owb , ,
Z Z (r m m') <r’ m m'>_2€+1 itk — K| <l<k+k.

m=—km/=

Plugging this result in, we get

(3.11) —h?\/ Tr PkadTth/adTé,r,Pk = Oppr Ot 2€’+’ 1 (1 — (—1)é+k+k ) {Nl N—1 Nl} ,
2 2 2

which simplifies further to the statement

4k+ DK+ (¢ kK2
— TrPkadTgrPk/adTth = ( h)z( ) {N—l N—1 N—l}
N 2 2 2

if £+ k+ k' is odd, for any r with |r| < /.
Since the right-hand side of (3.11) vanishes whenever the indices in the top row of the 65 symbol
are even, we get from (3.7) the formula

. Oppr Oy -~ apoypr — (g — o 2 ¢ k k' 2
RIC(Tgr, Tg/,,,/) = h2 Z a( . ) (Qk + 1)(2k, + 1) N—1 N—1 N—1
N =1 Rk 2 2 2

l+k+k odd

Now for any vector u € Vp, we can write u = Ef:_e u, Ty, in terms of the basis Ty, which is
orthonormal in the bi-invariant metric. Thus the weighted metric will have (u,u) = ay (u,u) =
ay Zf-:—e u2, while the Ricci curvature will be

0 y4
Ric(u, u) Z Z wptiyr Ric(Tpp, Topr)

r=—f0r'=—/

2 n 2 — )2 7 N\ 2
Z“% >l pp e+ ) {h W i
= W kol —1 Q! 2 2 2

0+k+k odd

= 1¢(N) (u,u)

in each subspace V, where

n

_ 1 of — (o — ap)? , ¢ kK2
7e(N) =77 k%; Y (2k+1)(2k" +1) N;l N;l N2—1 )

L+k+k" odd

as desired. Note that the extra factor of oy in the denominator is a consequence of expressing the
Ricci curvature as a multiple of the weighted metric, not the bi-invariant metric.

Recalling that oy = A\¢/N for each ¢ in the Zeitlin metric (2.3), we can express this in terms of
the original parameters \; = ¢(¢ + 1) via

n

N A2 — (A, — Ap)? ¢ kK
3.12 ro(N) := — £ 2k + 1)(2K + 1 { _ v } .

0+k+k odd

Finally, note that from (3.12) we can split the Ricci curvature into a positive and a negative term
r¢(N) = r¢(N)*T —r¢(N)~ where ro(N)T and r,(N)~ are given in (2.4). This concludes the proof
of Theorem 1. O



12 LEANDRO LICHTENFELZ, KLAS MODIN, AND STEPHEN C. PRESTON

4. ASYMPTOTIC ANALYSIS AND CONJECTURED FORMULAS

We now turn to the asymptotic regime, with the goal of understanding the limiting behavior of
the Ricci eigenvalues r¢(N) as N — co. As in (2.6), we write:

» ; j / o (; N-1 N1

7 1

W] = N-—1 N-—1 N-—1 ) Wj = . Nzl Nzl
2 2 2

for these Wigner 65 symbols. Formula (2.7) immediately gives the upper bound

ije)2 1
(4.1) (Wiih)® < N@ITD

Remark 1. In the case where a + b+ ¢ is even, the asymptotic formula (see [3])

(4.2) ()* = 2(N — 1§(2£ +1) (C50)°

where Cf(())jo is the Clebsch-Gordan coeflicient, shows that as far as IV is concerned, the upper bound
(4.1) is essentially sharp. On the other hand, if i 4+ j + ¢ is odd, then the coefficients Cié(())jo vanish
and the proof of (4.2) given in [3] is no longer valid. Indeed, numerically it seems that a sharper
bound than (4.1) is possible in the case of i + j + £ odd, which would help with Conjecture 2, but

this requires exploiting this parity assumption somehow.

Concerning the sign of Ricci curvature, we first prove Corollary 1, which states that Ricci cur-
vature is always positive in the V; subspace.

Proof of Corollary 1. We first claim that the negative part of Ricci in the V; subspace, namely
r1 (N), is zero for every N. From Theorem 1, we have

N-—1 . .
__ N (N — Aj)2(2i+1)(25 + 1) i1 2
(4.3) ri(N)” = 2 Z BN (Wi~
,j=1
i+1+j odd

Due to selection rules, the upper row i, j, 1 of the 6 symbol W¥! must satisfy |i — j| < 1. At the
same time, our Ricci formula forces i + j + 1 to be odd, so that i 4+ j is even, which means that
only i = j is allowed in the sum for r; (N). Thus, (4.3) vanishes due to the (\; — \;)? term.

On the other hand, the positive part

N-1

N M(2i+1)(25+1 2
(a4 nw =g 3 REEE v
i+ii]:'1>dd

never vanishes, because in the special case i = j = 1, we have (cf. [23])

2

ij1\2 _
(4.5) V) = svve 1y

ensuring that the sum (4.4) is strictly positive. O
In the remainder of this section, we make use of the identities listed in Conjecture 1, and derive

the necessary estimates to prove Theorem 3. The proof is broken down into two parts: an upper
bound for 7,(N)* and an exact formula for ro(N)~.
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4.1. Upper bound for 7,(N)". We start with (2.4), estimating

N-1 -1

3 (26 +1)(2k + 1) (26 +1)(2k + 1)

4.6 N .+ N) = zék 2 < ilk\2

1o = X ywvam— ZZ v
i+k+€ odd

,_A

Therefore, by (2.10) we get

(4.7) hary (N) < Z NI )\Z(Qi ), + N(20+1) Z M(WM@)?

The partial fraction decomposition of the first sum in (4.7) is

Z Ae(2i+ 1) _§ S S S
it —C|(i+ €+ 1) —\itl+1 i—0 i i+l

1 1 1
+Z(z+€+1 e_z'_z'+1>

i=0+1
=2(Hp—1 +Hp+ Hpy1) — 1 — (Hop + Hopqq)
—(Hn+ Hn-1) + Hyypo+ Hy—p—1

< 4H,

in terms of the harmonic numbers H, = Zi:l k~1. Meanwhile the second sum is estimated roughly
using (2.7). Combining the two estimates gives

Wi (N) < 4Hy + 20+ 1.

We expect this is far from sharp, since numerically it approaches zero faster than this as N — oc;
see Figure 1. To proceed further we would need identities for the unknown terms

=
L
2

-1
(Wiék)z and Z 2k+ ch)?
dd

4.2. Formula for r, (N). Starting from the definition of r, (V) in (2.4),

n2, T =)@+ )RR+
(4.8) VAN = i;l Ai W
i+04+k odd

we expand the (\; — A\;)? term and split the above sum as

(4.9) (W2 =24 — 2B

N-1
(N —/\k) ( +1)(2k + 1)

i
i+é+k odd
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where
T @i+ D2k +1) T N@i+D(2k+1)
k i i i
A=Y " Witz =}~ X (Witky2,
ik=1 ! ik=1
(4 10) i+0+k odd i+0+k odd
’ N—-1
B := (20 + 1)(2k + 1) (W2,
i,k=1
i+0+k odd

We use the fact that (1 — (—1)T*+*) vanishes if and only if i +£+ k is odd to remove the oddness
constraint in the sum (4.10), and we get

N-1 i .
— (=) N (20 + 1) (2K + 1 :
i k=1 ‘
N-1,. N—-1 N—-1 N-1
2i+1 ; 1)Z+f+1 2i+1) :
— . D (k4 1) (W)LY (= " A (2K + 1) (WiF)2
=1 k=1 =1 k::l
LR 201 (N = D+ A — 20 +Nzl (DN @i+ DO+ A
N — A\ N(N2—1) — i v

using formulas (2.11) and (2.12) from Conjecture 1. Now we split each term of the sum into those
that involve ); in the numerator and those that do not.

N-1
1 — 2)\( 21+1 )\g
2A = 2 1)———"
Z 1+ + ; N N
N-1 N-1 i .
—1) N (2 4 1)\
H’£+N 2 1 W@ ( l Wf
+ ; i+ 1) W+ ; " !
N—
(4.11) I\ 1 - 2)\6 < + (= 1)z‘+£+NW¢>
-1
)N Z 20+ )W,
N2 —1-2) 2)\4Hg p
— -1 +N+1wf
N + N +(=1) 0

using (2.13) from Conjecture 1 along with the identity (2.9) in the form

N-1

> (=1)'(2i + DWW = =W,
i=1
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Now to evaluate B, notice that we do not need any of the conjectured identities, only the known
ones. We Write

2B = Z —1)THR) (20 4 1) (2 + 1) W)
N-1 N-1 N-1 N-1
= (22 + 1) Z(2k 4 1 Wzﬁk 2 + Z H—K—‘rl 22 + 1 Z 2k‘+ (Wzﬁk‘)
=1 k=1 i=1 k=1
N—-1 1 . N—1 ‘ A
=) (2i+1) (N (WZ€°)2> + ) (=) 2i+ 1) ((—1)N+1Wf = (W’fo)“’) ,
i=1 i=1

using formulas (2.7)—(2.8), correcting for the fact that those sums start at & = 0 rather than k£ = 1.
Using the identities (2.7)—(2.9), this becomes

(4.12) i=1 i=1

N?—1
— ~ + (—1)Z+N+1Wg.

Here the last sum vanishes since W¥*? cannot satisfy the triangular relation if (i + ¢) is odd.
Subtracting (4.12) from (4.11), we obtain

(4.13) hyAery (N) =24 — 2B = 2)\(H, — 1).
Final formula and estimate on r(N).
re(N) =1 (N) =y (N)

Putting everything together, we get

1
7(4Hg+2€+ 1-— 2Hg+2)
(4.14) h?\/
( —1)2H,+2¢0+3
1 .

The lower bound
(N2 = 1)(H, — 1)

2
can also be obtained by simply ignoring T‘Z_(N ). This concludes the proof of Theorem 3.

TZ(N) > —

5. THE HOMOGENEOUS SPACE SU(N)/SO(3)

This section is devoted to the full computation of Ricci curvature for the homogeneous space

U(N)/SO(3), leading to the proof of Theorem 2. As explained in the introduction, this quotient
space is natural from the point of view large scale, long-time behaviour of hydrodynamics on the
sphere, serving as a model for Diff,,(5%)/SO(3).

Let h = V;. This is a Lie subalgebra of su(N), corresponding to the subgroup SO(3) C SU(N).
In the Zeitlin metric, its orthogonal complement is

(5.1) hJ_:V2EB"'@VN_]_.
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The projection 7 : SU(N) — SU(N)/SO(3) is a Riemannian submersion, and by O’Neill’s for-
mulas, the sectional curvatures K¢ of the total space G = SU(N) and Kp of the base space
B = SU(N)/SO(3) are related by (see [15])

|AxY|?
X AY[]?
provided that X, Y are horizontal vectors, linearly independent so that the normalizing factor
X AY |2 = XPY]° - (X, )

is not zero. The tensor A is given by

(5.2) Kp(X,Y)=Kg(X,Y) +3

(5.3) AxY = %V(EXY)

where LxY is the Lie derivative of Y in the direction of X, and V is the projection onto the vertical
subspace V1. We begin by noting the following simplification, which will turn out to be very useful.

Lemma 3. Let Cf/;’ﬁ:lm, denote the structure constants as given in (3.9). Then, we have

) (Chtacn) () (B ) = o)

forall1 < ¢ < N —1 and |m| < {. Note that the right-hand side does not depend on m.
Proof. Starting from (3.9), first note that since ¢ =1 and ¢/ = ¢,

2
(5.5) (VR+ VRl + TVa +1(1 - (-1)*+1)) " = 1220+ 1)2
Next, we turn to the product of Wigner symbols

pm (€ €1 N
Imbm' m m' m" N2—1 N2—1 N2—1 )

both of which admit simple closed form expressions due to repeated indices and the presence of the
1 in the upper row. They are given by (see [23], in particular section 9.5.4 for the 65 symbol):

0 17 00 +1) ¢ 0 1\ (-m+D)(l+m)
Mol Nol Mol ™ N(N2—1)(20+ 1) m l1—-m —1) = 20(0+1)(20+1)
¢ 0 1\ m? ¢ ¢ 1\> _ (-m)(A+L+m)
m —m 0)  (L+1)20+1) m —1l-m 1) — 200+1)(20+1)
Note that the 3j symbols on the right column above vanish when m = —¢ (top) and m = ¢
(bottom), so that we can ignore those two exceptional cases. From this, we have
<D1,—1 )2: (—=m+1)(l+m) <D1,o )2: m?
tmbl=m) T 9N(N2 —1)(20 + 1)%’ brbmm) T N(N2 = 1)(20+1)%

(Dl,l

Lml,—1—m

)
)2 _ (—m)(1+L+m)
2N(N2 —1)(2¢+1)%
Therefore, the squares of the coefficients in (5.7) are
l—m+1)(l+m)  6(L—m+1)(L+m)
2N(N2 —1)(20+1)2 N(NZ2-1) ’

m2 12m?2

1,0 2 2 _
(Chmam) =120+ Ve = N1

<C1,1

lm,l,—m—1

Lml,1—m

(Cl’_l )2 = 12(20 + 1)

2 (l—m)1+L+m)  6(L—m)(1+L+m)
) =122 ) e e 1 = NN ST

Adding these up concludes the proof. O
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The next lemma is the main tool we need in order to compute the Ricci curvature of the quotient
space SU(N)/SO(3) using O’Neill’s formula (5.2).

Lemma 4. For any fized (¢,m) with 2 <{ < N —1 and —¢ < m < ¢, we have
Z Z o IAT,, Lo > _ 9
2 Ol A TP~ 200+ 1)

where in the above summation, we skip the term (¢',m’) = (¢, m), for which the summand on the
left is not well-defined.

Proof. We expand the Lie bracket of X = Ty, and Y = Ty, according to (3.9), but since we
are only interested in the vertical component, the condition ¢/ = 1 is imposed, which forces m” €
{—1,0,1}, and we get

1 1
Aty T = §V(adTng€/m’) = _W[Tf’maTK’m’]
(5.6) )
= T ohy (Ceme/ /Tt + Cpmprny T10 + Coprm, Tl,l)-

Selection rules for 35 symbols imply a dependence of ¢, m’ on ¢, m, so the only nonzero values are:

1 1,—-1
ATlmTevl_m = QEN Cf m,l,1— mTlvfl fOl“ m # _g’
_ 1 1,0
(5.7) Ary,, To—m = T 2hy Ce,m,z,—mTLO’
— 1 ~L1
ATngE,—l—m = _ﬁCZ,m,E,—m—lTlvl for m ?é L.

Recall that the {1y, } basis is orthonormal in the bi-invariant metric, but only orthogonal in the
Zeitlin metric (2.3), so we have

L+ )00 +1)
N2 '
In particular, ||T1,,||> = 2/N for |m| < 1. Thus, summing over all (¢, m/) # (¢,m) and using (5.7),

e A TermlI* = | Tewm || T [1* = for (¢,m) # (€', m).

l

v N—-1
Z z 3HAan@m |2 Z Z e T
‘Tgm/\Tg/ /” ,€_|_1 2 Ty L 0m/
3N? ol 10 ,
W(H A | +H04m“ Do+ [[OEL g r T

3N B 2 2 2
- s () + (@) + (o))
3N NZ—1120(0+1)
C202(0+1)2 4 N(N2-1)
9
200+ 1)’
by Lemma 3. O

The last ingredient we need is the following sum of sectional curvatures of SU(N).

Lemma 5. Forany2 </ < N —1 and —¢ < m < £, we have
3

. Ka(Tom. Tio) + K (T Ty 1) + Ke(Tym Ty 1) = ——>——.
(5.8) ¢(Tom,Tho) + Ka(Tym, T1,—1) + K (Tom, Th 1) 2T+
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Proof. Recall Arnold’s formula for sectional curvature of a Lie group in the form (3.6). We have
ad,v = —%[u,v] and adjv = %A‘l [u, Av], where A is the quantized Laplacian. For u = T7y,,/,
—1<m/ <1, and v = T},,, then in the Zeitlin metric we have:

(u,v) = 0; HuH2 =a; =2/N; ||vH2 =a;=/4l+1)/N,
adju = adjv =0,

1 1 ~4,—m
ad,v = adTlml Tom = N [Tﬂm, Tlm’] = WC TZ,—ma

(5.9) Imlm/
adjv = ad;“lm/ Ty = %A_I[Tlm’a ATym) = %Cf;;’?m To,—m = —%Clﬁ’;{;, To,—m;
2
1 A—1 l,—
adju = ady, Tiw = A7 [Tom, AT1py] = mcem{zﬂ Tt —m-
It follows from the third and fourth lines in (5.9) that
adjv + ad,v = ad}lm, Tom + adr,, , Tom = 0.
Thus, Arnold’s formula reduces to
1 lad%, Ti |
Ka(Ty, Tom) = ~ tm
Times i) = G P2 = (T Tor)?
N ladgy, Ti|?
4 260 +1
(5.10) (+1) )
N 2 £,—m
= cy ) LA+ 1
80(0+1) <e(£+ 1Ay fmlm) (1)
= o ()
202(0 + 1)213, \ " tmim’ ) -

Adding these up and using Lemma 3 gives

1 N 1 o 2
> KG(Tm',Tem):m Z (Cfmm'>

m/=—1 m/'=—1
B N 120064 1)
T 202(0+ 1)2h3 N(N? — 1)
3
2+ 1)
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Proof of Theorem 2. Let Ricp denote the Ricci curvature of the quotient space SU(N)/SO(3).
Summing over (¢, m') # (£,m) below, we get

n A
Rics(Tom, Tom) = 1 Tem|® > > Kp(Tom, Tom)
V=2 m/=—1
YR ( | Az, T |I?
-~ Kc(Tom, Tormy +3zm—>
N 8/22 mg ’ " ) HTfm A Tf/m’”2
RS 9\,
— Ke(Tem, Tormy _ L 4
=N Z Z (Toms Tormy ) +2N€(£+1) (Lemma 4)
0=2 m'=—t
N oo 9
. ¢
= RlC(Tgm,Tgm _N ; KG TErmTl,m/) + ﬁ
= Ric(Tim, Tim) — 55 + 50 (Lemma 5)
= Ric(Tom, Tom) = 537 + 537 emma 5
. 3
= RlC(Tgm, Tgm) N
Now, since Ric(Ty,, Tym) = 7e(N){Tym, Tym) by Theorem 1, we get
. 3 3
Ricp(Tom, Tem) = 1e(N) (Tom, Tem) + w7 = <W(N) + )\z> (Tem, Tem)-
]
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