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Abstract. We study solutions of the equation

gt − gtyy + 4g2 − 4ggyy = yggyyy − ygygyy, y ∈ R,

which arises by considering solutions of the Euler-Arnold equation on a contactomorphism
group when the stream function is of the form f (t, x, y, z) = zg(t, y). The equation is anal-
ogous to both the Camassa-Holm equation and the Proudman-Johnson equation. We write
the equation as an ODE in a Banach space to establish local existence, and we describe
conditions leading to global existence and conditions leading to blowup in finite time.

1. Introduction. In this brief note we study regularity of solutions to the Cauchy problemgt − gyyt + 4g2 − 4ggyy = yggyyy − ygygyy, (t, y) ∈ R+ × R.

g(0, y) = g0(y), y ∈ R.
(1)

We prove the following result.

Main Theorem. Let φ0(y) = g0(y) − g′′0 (y). Suppose g0 is C2 and φ0 satisfies the decay
condition φ0(y) = O(1/y2) as |y| → ∞. Then there is a T > 0 such that there exists a unique
solution of (1) on [0,T ) × R with g(t) ∈ C2 for each t. If φ0 (and hence g0) is nonnegative,
then solutions exist globally. If g0 is even and negative, then solutions blow up at some T
in the sense that g(t, y)→ −∞ as t ↗ T for every y ∈ R.

Equation (1) is a special case of the Euler-Arnold equation on the contactomorphism
group Diffθ(M):

mt + u(m) + (n + 2)λm = 0, (2)
where M is a Riemannian manifold of odd dimension 2n + 1 with a 1-form θ satisfying
θ ∧ (dθ)n , 0. Here f : M → R is a stream function, while u = S θ f is a contact vector field
(satisfying the condition that Luθ is proportional to θ); the field u is uniquely determined
by f via the condition f = θ(u). We denote by λ the function such that Luθ = λθ, and we
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write S̃ θ f = (S θ f , λ). A Riemannian metric on M determines a right-invariant Riemann-
ian metric on Diff(M) × C∞(M), which allows us to define m = S̃ θ

∗
S̃ θ f , which is called

the contact Laplacian. See [10] for the derivation and local well-posedness theory of this
equation when M is compact, along with other examples.

When n = 0 (so that M is R or S 1) and θ = dx, we have u = f ∂x, λ = fx, and m = f − fxx,
and equation (2) becomes the Camassa-Holm (CH) equation [4]

ft − ftxx + 3 f fx − 2 fx fxx − f fxxx = 0. (3)

Equation (2) can thus be considered a generalization of (3) to higher dimensions; it shares
some of the same conservation laws and also has features in common with hydrodynamics.
The fact that (3) is the Euler-Arnold equation of Diff(S 1) with right-invariant H1 metric is
due to Misiołek [16] and Kouranbaeva [13].

Equation (1) arises in the case where n = 1 and M = R3 (viewed as the Heisenberg
group) with the “standard” contact form θ = dz − y dx. Here u = − fy ∂x + ( fx + y fz) ∂y +

( f − y fy) ∂z and λ = fz. If the Riemannian metric is ds2 = dx2 + dy2 + (dz − y dx)2, the
natural left-invariant metric on the Heisenberg group which makes M a Sasakian manifold
(see Boyer [3]), we will have m = f − fyy − (1 + y2) fzz − 2y fxz − fxx. The ansatz

f (t, x, y, z) = zg(t, y), (4)

gives m = z(g − gyy), u = −zgy ∂x + yg ∂y + z(g − ygy) ∂z, and λ = zg, and equation (2)
reduces to (1). A similar ansatz in ideal hydrodynamics leads to the Proudman-Johnson
equation, which has been studied in [6, 17, 19, 9, 18, 5, 11]. The Proudman-Johnson
equation was originally derived from the incompressible Euler equations by considering
velocity fields of the form u(t, x, y) = ( f (t, x),−y fx(t, x)), also known as stagnation-point
similitude, which arise from a stream function ψ(t, x, y) = y f (t, x) on an infinitely long 2D
channel (x, y) ∈ [0, L] × R.

The outline of the paper is as follows. In §2 we establish some conservation laws and
a local existence result for (1); the results of [10] do not apply here since our M is not
compact, so we give an independent proof. In §3 we prove global existence of solutions
to (1) for a class of initial data satisfying a particular sign condition. Finally in §4 we
demonstrate the existence of solutions of (1) which blow up in finite time from smooth
initial data.

2. Local Existence. First we derive some preliminary results. Set

φ(t, y) = g(t, y) − gyy(t, y) (5)

and

φ0(y) = φ(0, y) = g0(y) − g′′0 (y), g0(y) = g(0, y). (6)

Analogous to the Camassa-Holm equation, we may refer to (5) as the momentum associated
to the velocity g. In terms of the momentum, equation (1) may be rewritten in the form

φt + ygφy =
(
ygy − 4g

)
φ. (7)

Note that we may determine g from φ using the explicit solution formula

g(t, y) =
1
2

∫ ∞

−∞

e−|y−y′ |φ(t, y′) dy′. (8)

The characteristics are given by the solution of the flow equation
∂γ

∂t
(t, y) = γ(t, y)g

(
t, γ(t, y)

)
, γ(0, y) = y, (9)
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and in terms of the flow γ we obtain a convenient formula for the momentum conserva-
tion law. This formula should be considered analogous to the momentum transport law
for Camassa-Holm and for the vorticity conservation law for the Euler equation of ideal
hydrodynamics, in the sense that they all express the Noetherian conservation law arising
from right-invariance of a Riemannian metric on a diffeomorphism group; see for example
Arnold-Khesin [1].

Proposition 1. If φ satisfies (7) and γ satisfies (9), then we have

φ
(
t, γ(t, y)

)
=
φ0(y)y5γy(t, y)

γ(t, y)5 . (10)

Proof. Using the chain rule, we have

∂

∂t
log φ

(
t, γ(t, y)

)
=
φt

(
t, γ(t, y)

)
+ γ(t, y)g

(
t, γ(t, y)

)
φy

(
t, γ(t, y)

)
φ
(
t, γ(t, y)

)
= γ(t, y)gy(t, γ(t, y)

)
− 4g

(
t, γ(t, y)

)
,

(11)

using (7). Differentiating (9) with respect to y we have

γty(t, y) = γy(t, y)g
(
t, γ(t, y)

)
+ γ(t, y)γy(t, y)gy

(
t, γ(t, y)

)
, (12)

which we can use to eliminate both g and gy in (11). We obtain

∂

∂t
log φ

(
t, γ(t, y)

)
=
γty(t, y)
γy(t, y)

− 5
γt(t, y)
γ(t, y)

,

which can be easily integrated to obtain (10). �

A simple consequence of Proposition 1 is the conservation of the sign of the momentum,
which is important for our global existence results.

Lemma 2.1. Suppose (1) has a solution on [0,T ) for some T > 0. Then the flow γ(t, y) is
a strictly increasing diffeomorphism of R with γ(t, 0) = 0 for all t ∈ [0,T ). Furthermore if
φ0(y) ≥ 0 for all y ∈ R, then φ(t, y) ≥ 0 and g(t, y) ≥ 0 for all t ∈ [0,T ) and y ∈ R. Similarly
if φ0(y) ≤ 0 for all y ∈ R, then φ(t, y) and g(t, y) are nonpositive.

Proof. From equation (12) we see that

γy(t, y) = exp
(∫ t

0
g
(
τ, γ(τ, y)

)
+ γ(τ, y)gy

(
τ, γ(τ, y)

)
dτ

)
, (13)

so that γy(t, y) > 0 for all t and y. Since γ(0, 0) = 0 we obviously have γ(t, 0) = 0 for all
time, and we conclude that γ(t, y) > 0 if y > 0 and γ(t, y) < 0 if y < 0. Formula (10) then
implies that φ

(
t, γ(t, y)

)
has the same sign as φ0(y) for every y ∈ R. If φ(t, y) ≥ 0 for all

y ∈ R, the explicit solution formula (8) shows that g(t, y) ≥ 0 as well. �

Another consequence of Proposition 1 is the local existence theorem, which we establish
by writing everything in terms of γ as a “particle trajectory equation” and using Picard
iteration, as in Chapter 4 of Majda-Bertozzi [14].

Theorem 2.2. Suppose g0 : R→ R is a C2 function such that φ0 = g0 − g′′0 satisfies

sup
y∈R

y2|φ0(y)| ≤ M for some M. (14)

Then there is a unique solution g of equation (1) defined on [0,T )×R for some T > 0 such
that g(t, y) is C2 in y for each t ∈ [0,T ).
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Proof. By formula (8) we have

g
(
t, γ(t, y)

)
= 1

2

∫ ∞

−∞

e−|γ(t,y)−y′ |φ(t, y′) dy′ = 1
2

∫ ∞

−∞

e−|γ(t,y)−γ(t,z)|φ
(
t, γ(t, z)

)
γz(t, z) dz. (15)

Using formula (10) and plugging this into (9), we obtain the differential equation

∂γ

∂t
(t, y) = 1

2γ(t, y)
∫ ∞

−∞

e−|γ(t,y)−γ(t,z)|φ0(z)
[

z
γ(t, z)

]5

γz(t, z)2 dz. (16)

We now view this as the equation

dγ
dt

= F
(
γ(t)

)
, γ(0) = y 7→ y (17)

on a certain open subset of a Banach space, where the function F is given by

F(γ) = y 7→ 1
2γ(y)

∫ ∞

−∞

e−|γ(y)−γ(z)|φ0(z)
[

z
γ(z)

]5

γ′(z)2 dz. (18)

Define a Banach space B by

B =
{
γ : R→ R

∣∣∣∣ γ(0) = 0 and sup
y∈R
|γ′(y)| < ∞

}
,

with norm ‖γ‖ = supy∈R|γ
′(y)|. For numbers a and b satisfying 0 < a < 1 < b, let U denote

the open subset U = {γ ∈ B
∣∣∣ a < γ′(y) < b ∀ y ∈ R}. Clearly U contains the identity, which

is the initial condition for (17). Our goal is to show that F is Lipschitz on U, and we do
this by showing that F has a uniformly bounded derivative on U.

If v ∈ B, we easily compute that

[DFγ(v)](y) = 1
2

∫ ∞

−∞

e−|γ(y)−γ(z)|ζ(z)
[
v(y) −

5v(z)
γ(z)

+
2v′(z)
γ′(z)

+ γ(y) sgn (y − z)[v(z) − v(y)]
]

dz.

(19)

where
ζ(z) = φ0(z)[z/γ(z)]5γ′(z)2. (20)

Writing w(y) = [DFγ(v)](y), we just need to show that |w′(y)| is bounded. The computation
of w′ is tedious but straightforward. Using |v′(y)| ≤ c and a ≤ γ′(y) ≤ b, we obtain the
estimate

|w′(y)| ≤
b2c
2a6

∫ ∞

−∞

e−a|y−z|φ0(z)
[
a(1 + 3b|y| + b2y2) + (1 + b|y|)(ab|z| + 5b + 2a)

]
dz.

Now by assumption we have |φ0(z)| ≤ M′/(1 + |z|)2 for some constant M′, and so we have

|w′(y)| ≤ C1(1 + |y|)2
∫ ∞

−∞

e−a|y−z| dz
(1 + |z|)2 + C2(1 + |y|)

∫ ∞

−∞

e−a|y−z| dz
1 + |z|

. (21)

The right side of (21) is bounded, for we can break it up into terms that have finite limits
as |y| → ∞, as follows:

lim
|y|→∞

∫ y
−∞

eazψ(z) dz

eayψ(y)
= lim
|y|→∞

eayψ(y)
eay(ψ′(y) + aψ(y))

=
1
a

by L’Hopital’s rule since ψ′(y)/ψ(y)→ 0 for ψ(y) = (1 + |y|)−k when k = 1 or k = 2. Hence
DFγ is a bounded linear operator in B whenever γ ∈ U, and thus F is Lipschitz on U by the
Mean Value Theorem. By Picard’s Theorem [12], there is a unique solution for possibly
short time with γ(0) the identity. �
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Next we establish the non-existence of breaking wave solutions to (1) for initial data g0
such that φ0 . 0 does not change sign. Recall that the wave breaking phenomenon for a
nonlinear wave equation is the existence of a blowup time T such that |gy(t, y∗)| → ∞ as
t → T for some y∗ while |g(t, y∗)| remains bounded.

Lemma 2.3. Let T > 0 denote the maximal life-span of g. If g0(y) is such that φ0(y) =

g0(y) − g′′0 (y) does not change sign, then |gy(t, y)| ≤ |g(t, y)| for all t ∈ [0,T ) and y ∈ R.
Hence no singularity in the form of wave breaking can occur on (0,T ].

Proof. Writing formula (8) in the form

g(t, y) = 1
2 e−y

∫ y

−∞

ey′φ(t, y′) dy′ + 1
2 ey

∫ ∞

y
e−y′φ(t, y′) dy′,

it is easy to check that

g(t, y)2 − gy(t, y)2 =

(∫ y

−∞

ey′φ(t, y′) dy′
) (∫ ∞

y
e−y′φ(t, y′) dy′

)
. (22)

As a result, if φ0 never changes sign, then by Lemma 2.1 we know that φ is either non-
negative or nonpositive for all (t, y) ∈ [0,T )×R. Hence the right side of (22) is nonnegative
and we have the bound |gy(t, y)| ≤ |g(t, y)| for all y. �

For the Camassa-Holm equation (3), it is known [7, 15] that if the initial momentum
does not change sign, then the solution of the equation is global in time. For equation (1),
we will see that even when the sign of the momentum is assumed constant, the behavior
may be very different depending on whether it is positive or negative.

3. Global Existence. In this section we study global existence of certain solutions to (1).
Theorem 3.1 below establishes global existence in time of solutions to (1) arising from
initial data g0 such that φ0 is nonnegative.

Proposition 2. Suppose g is a solution of (1) with initial condition φ0 satisfying the decay
condition (14). Then ∫

R

φ(t, y) dy ≤
∫
R

φ0(y) dy, t ∈ [0,T ). (23)

Proof. We first observe that by equation (10), if φ0 satisfies the decay condition then so
does φ(t, y) for any y. Using (5) we may write (1) as

φt + 4gφ = y∂y

(
ggyy − g2

y

)
. (24)

Integrating the right side of (24) and using the decay condition to eliminate boundary terms,
we obtain ∫

R

y∂y

(
ggyy − g2

y

)
dy = 2

∫
R

g2
y dy, (25)

which then yields

d
dt

∫
R

g dy = −2
(
2
∫
R

g2 dy +

∫
R

g2
y dy

)
< 0. (26)

The result follows using the fact that
∫
R
φ dy =

∫
R

g dy. �
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Amongst other conserved quantities, the integral of the momentum φ associated to the
Camassa-Holm equation is known to be conserved [7]. The same is true in general for
equation (2) on a compact manifold, but not in this case since the equation really “lives”
on R3. Essentially what is happening is that the solutions of the form (4) are not well-
behaved since for example they have infinite energy. The same type of phenomenon appears
when solving the Euler equation of ideal hydrodynamics: in two dimensions finite-energy
solutions exist globally [2], but there are infinite-energy solutions of the form (4) which
can blow up in finite time. See for instance [6, 18] and references therein.

Theorem 3.1. Suppose φ0 satisfies the decay condition (14) and φ0(y) ≥ 0 for all y ∈ R.
Then the solution g of (1) with initial data g0 exists globally in time.

Proof. By the general theory of ODEs in Banach spaces (see e.g. [12]), the only way a
solution of γ′(t) = F(γ(t)) can blow up in finite time is if it leaves all of the bounded sets on
which F is Lipschitz. Recall that we established the Lipschitz property under the condition
that a ≤ γy(t, y) ≤ b for some constants a and b satisfying 0 < a < 1 < b, so we will have
global existence as long as γy(t, y) does not approach either zero or infinity in finite time.

From (13) we see that a uniform bound on both g and gy is sufficient to control γy. By
Lemma 2.1 we know that g(t, y) ≥ 0 and φ(t, y) ≥ 0 for all t and y. Using this and the decay
condition (14) to ensure that φ0 is in L1, (23) implies that

‖φ(t)‖L1 ≤ ‖φ0‖L1 < ∞, t ∈ [0,T ). (27)

Using (8) we obtain

|g(t, y)| ≤ 1
2

∫ ∞

−∞

|φ(t, y)| dy = 1
2‖φ(t)‖L1 ≤ 1

2‖φ0‖L1 , (28)

from which we conclude by Lemma 2.3 that gy is uniformly bounded, and thus no blowup
can occur. �

4. Blowup. Constantin-Escher [7, 8] showed that solutions of the Camassa-Holm equation
(3) cannot persist globally in time if the initial data f0 is odd and satisfies f ′0(0) < 0. Further,
they derived an upper bound, T ( f0) = 1/2| f ′0(0)|, for the maximal time of existence of
solutions. Theorem 4.1 below establishes the existence of solutions to (1) which blow up
in finite time from initial data g0 that is both symmetric about y = 0 and satisfies g0(0) < 0.
Although singularities may form in (1) from nonpositive initial data1, we note that solutions
of (1) seem to retain a few properties that are inherent to the blowup mechanism of (3). For
instance, an upper bound for the maximal time of existence of a solution to (1) is, analogous
to that of (3), given by 1/

√
6|g0(0)|. Here g0(0) < 0 serves as analogue to the Camassa-

Holm condition f ′0(0) < 0 and blowup, in both cases, is to negative infinity. Moreover, in
[8] it was shown that if the Camassa-Holm initial profile f0 is even instead of odd, with
f ′0(0) negative enough, then fx(t, 0) can still diverge to negative infinity. A main difference
between the qualitative behavior of blowup solutions to (1) and (3) is established in the
second part of Theorem 4.1. More particularly, since (1) preserves the symmetry of the
initial condition, for φ0 both symmetric and nonpositive we show that solutions of (1) will
actually diverge everywhere on R.

Theorem 4.1. Suppose g is a solution of (1) with initial condition φ0 = g0 − g′′0 satisfying
the decay condition (14). Furthermore, assume g0 is even through y = 0 and g0(0) < 0.
Then g(t, 0) → −∞ as t ↗ T ≤ 1/

(√
6|g0(0)|

)
. Additionally, if g0 is such that φ0 ≤ 0, then

as t ↗ T we have g(t, y)→ −∞ for all y ∈ R.

1A blowup feature that solutions to equations (1) and (3) do not share.
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Proof. Suppose g0 is even through y = 0 and g0(0) < 0; let T > 0 denote the maximal
life-span of g. Observe that (1) may be written as

gt(t, y) = −g(t, y)2 − yg(t, y)gy(t, y) − p ∗
[
4g2

y + 3g2 + y∂y

(
2g2

y −
1
2

g2
)]

(29)

for p(y) = 1
2 e−|y|. Integrating the last term in the bracket by parts, setting y = 0, and using

symmetry of g about y = 0 then yields

gt(t, 0) = −g(t, 0)2 − 1
2

∫ ∞

0

(
4g2

s + 7g2 + 4sg2
s − sg2

)
e−sds (30)

for all t ∈ (0,T ). Now set

g(t, y) = ey/2h(t, y) for y ≥ 0 (31)

and note that vanishing of ye−yg(t, y)2 as y → ∞ implies the same for yh(t, y)2. Using (31)
on (30) we obtain

gt(t, 0) = −g(t, 0)2 − 2
∫ ∞

0

(
2h2 + h2

s + sh2
s + hhs + shhs

)
ds. (32)

Integrating the last two terms in (32) by parts and using the above decay condition of h now
implies

gt(t, 0) = −2
∫ ∞

0
h2

s ds − 3
∫ ∞

0
h2 ds − 2

∫ ∞

0
sh2

s ds

≤ 2
√

6
∫ ∞

0
hhs ds − 2

∫ ∞

0
sh2

s ds

≤ −
√

6g(t, 0)2,

(33)

from which we conclude that g(t, 0)→ −∞ as t ↗ T ≤ 1/
(√

6|g0(0)|
)
.

Now suppose φ0(y) ≤ 0. Then Lemma 2.1 and the bound |gy(t, y)| ≤ |g(t, y)|, which was
established in the proof of Lemma 2.3, imply that

|g(t, 0)|e−y ≤ |g(t, y)| ≤ |g(t, 0)|ey, y ≥ 0, t ∈ [0,T ). (34)

Letting t ↗ T in (34) we see that g(t, y) → −∞ for all y ≥ 0. Symmetry of g about y = 0
then yields our result for all y ∈ R.

�

REFERENCES

[1] V.I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, New York 1998.
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