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Abstract. In this article we introduce a diffeomorphism-invariant met-
ric on the space of vector valued one-forms. The particular choice of
metric is motivated by potential future applications in the field of func-
tional data and shape analysis and by connections to the Ebin-metric on
the space of all Riemannian metrics. In the present work we calculate
the geodesic equations and obtain an explicit formula for the solutions
to the corresponding initial value problem. Using this we show that it is
a geodesically and metrically incomplete space and study the existence
of totally geodesic subspaces. Furthermore, we calculate the sectional
curvature and observe that, depending on the dimension of the base
manifold and the target space, it either has a definite sign or admits
both signs.

1. Introduction

Motivated by applications in the field of mathematical shape analysis we
introduce a diffeomorphism-invariant metric on the space of full-ranked R𝑛-
valued one-forms Ω1

+(𝑀,R𝑛), where 𝑀 is a 𝑚-dimensional compact mani-
fold and 𝑚 ≤ 𝑛. The definition of our metric will not include any derivatives
of the tangent vectors. For this reason we call the metric an 𝐿2-type metric,
which however differs, due to the appearance of the foot point 𝛼, from the
standard 𝐿2-metric. The main reason for introducing this particular depen-
dence on the foot point is the invariance of the resulting metric under the
action of the diffeomorphism group Diff(𝑀), see Lemma 4.1.

Contributions of the article. In this article we will initiate a detailed
study of the induced geometry of the proposed Riemannian metric. The
point-wise nature of the metric will allow us to reduce many of the investi-
gations of the metric to the study of a finite dimensional space of matrices.
Using this we are able to obtain explicit formulas for geodesics and curva-
ture. Our main results of the article are summarized in the Theorem below:

Theorem 1.1. The geodesic equation on the space of full ranked, vector
valued one-forms Ω1

+(𝑀,R𝑛) has an explicit, analytic solution formula as
presented in Theorem 3.6. Depending on the values of 𝑚 and 𝑛 the sectional
curvature is either sign-definite or admits both signs. Furthermore the metric
is linked via a Riemannian submersion to the Ebin metric on the space of
all Riemannian metrics.

Date: January 7, 2019.
Key words and phrases. Space of Riemannian metrics, Ebin metric, Sectional Curva-

ture, Shape analysis.

1



2 MARTIN BAUER, ERIC KLASSEN, STEPHEN C. PRESTON, AND ZHE SU

As a consequence of the explicit formula for geodesics we will obtain
the metric and geodesic incompleteness of the space Ω1

+(𝑀,R𝑛). For the
finite-dimensional space of matrices we will characterize its metric comple-
tion, which consists of a quotient space of matrices, where two matrices are
identified if they have less than full rank. In future work, we plan to use
this charaterization to determine the metric completion of the space of full
ranked one-forms, using a similar strategy as in [12]. Finally, in Section 5,
we will discuss potential applications in the field of shape analysis.

Background and motivation. In the following we will further motivate
the study of this metric from two different angles.

Connections to shape analysis. The field of functional data analysis is con-
cerned with describing and comparing data, where each data point can be a
function [31, 33, 15, 4]. In this context the difficulties lie both in the infinite
dimensionality as well as in the non-linearity of the involved spaces. Infi-
nite dimensional Riemannian geometry has proven to provide the necessary
tools to tackle some of the problems and applications in this field. A space
that is of particular interest in this area of research is the space of (un-
parametrized) curves or surfaces, which appears e.g., in the study of human
organs, trajectory detection, body motions, or in general computer graphics
applications. In order to obtain a Riemannian framework on the space of
unparametrized surfaces (curves resp.), one needs to consider metrics on the
space of parametrized surfaces (curves resp.) that are invariant with respect
to the reparametrization group [26, 23].

Given a parametrized surface (curve resp.) 𝑓 : 𝑀 → R𝑛, we can view 𝑑𝑓
as a full-ranked one-form. Hence, one can construct invariant Riemannian
metrics on the space parametrized surfaces (curves resp.) as the pullback of
invariant Riemannian metrics on the space of full-ranked one-forms, which
puts us directly in the setup of this article. A similar strategy has proven ex-
tremely efficient for shape analysis of unparametrized curves and has yielded
to the so-called SRV-framework [23, 3]. For surfaces the situation is more
intricate. A generalization of the SRV-framework has been proposed in [24].
This framework, called the square root normal field (SRNF), has proved
successful in applications but has severe mathematical limitations. The rep-
resentation proposed in the current article will allow us to obtain a better
mathematical understanding of the properties of the induced metric on the
space of surfaces. The main reason is the simpler characterization of the
image of the map 𝑓 ↦→ 𝑑𝑓 , as compared to the SRNF. In fact we obtain the
isometric immersion:

Imm(𝑀,R𝑛) −→ Ω1
+,ex(𝑀,R𝑛) ⊂ Ω1

+(𝑀,R𝑛) ,

where Ω1
+,ex(𝑀,R𝑛) denotes the subset of exact one-forms (assuming that

the topology of 𝑀 is sufficiently simple). The present article will focus
mainly on the geometry on the larger space of all full-ranked one-forms;
we plan to investigate the submanifold geometry of the space of exact one-
forms in a future application-oriented article. This strategy is similar to that
of Ebin-Marsden [17], who considered the 𝐿2-geometry of Diff(𝑀) where
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Figure 1. A geodesic in the space of regular curves modulo
translations with respect to the Younes-metric (5.2), a special
case of our metric.

Figure 2. A geodesic in the space of surfaces modulo trans-
lations with respect to the generalized Ebin metric (4.1).

all the geometry may be done point-wise, then considered the submani-
fold of volume-preserving diffeomorphisms under the induced metric (where
geodesics describe ideal fluid motion).

In Figures 1, 2, and 5 one can see examples of geodesics in the space
of immersions, equipped with the pull-back of the generalized Ebin metric
studied in this article. The depicted examples are results from preliminary
work that will be further developed in the future.

Connections to the Ebin-metric on the space of all Riemannian metrics.
Another motivation for the present article can be found in the connection
of the proposed metric to the Ebin metric on the space of all Riemannian
metrics, which has been introduced by Ebin [16]; see also the article of De
Witt [14]. Motivated by applications in Teichmüller theory, Kähler geometry
and mathematical statistics, the geometry of this metric has been studied
in detail by Clarke, Freed, Groisser, Michor and others [21, 19, 9, 12, 11,
10, 6]. The proposed metric is closely related to the Ebin metric as they are
connected via the Riemannian submersion:

Ω1
+(𝑀,R𝑛) → Met(𝑀), 𝛼 ↦→ 𝛼𝑇𝛼;

see Section 4.1 for more details. Even more, the proposed metric shares
many of the geometric features of the original Ebin metric; e.g. positive
geodesic distance, existence of explicit solutions to the geodesic equation
and geodesic and metric incompleteness. On the other hand, we will see
that the sectional curvature can admit both signs, which is in stark contrast
to the Ebin metric on the space of Riemannian metrics, which always has
negative curvature.

2. Notation

2.1. Spaces of matrices. In large parts of the article the pointwise na-
ture of the metric will allow us to reduce the analysis to the study of a
corresponding Riemannian metric on a finite dimensional space of matrices.
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Therefore we introduce, for 𝑚 ≤ 𝑛 ∈ N, the space of all full rank 𝑛 × 𝑚
matrices:

𝑀+(𝑛,𝑚) :=
{︀
𝑎 ∈ R𝑛×𝑚| rank(𝑎) = 𝑚

}︀
.

The space 𝑀+(𝑛,𝑚) is an open subset of the vector space of all 𝑛 ×𝑚-
matrices 𝑀(𝑛,𝑚) and is thus a manifold of dimension 𝑛×𝑚. The full-rank
condition on the elements of 𝑀+(𝑛,𝑚) allows us to consider the Moore-
Penrose pseudo inverse 𝑎+ of a matrix 𝑎 ∈ 𝑀+(𝑛,𝑚), which is defined by
𝑎+ = (𝑎𝑇𝑎)−1𝑎𝑇 . The most important property of 𝑎+ is 𝑎+𝑎 = 𝐼𝑚×𝑚, i.e.,
𝑎+ is a left-inverse. Here 𝐼𝑚×𝑚 denotes the 𝑚 × 𝑚 identity matric. In
general when lower-case 𝑢 is an 𝑛×𝑚 matrix, we will use upper-case 𝑈 to
denote the 𝑛× 𝑛 square matrix 𝑈 = 𝑢𝑎+.

Related to the space of full rank 𝑛 ×𝑚 matrices is the space of positive
definite symmetric 𝑚×𝑚-matrices:

Sym+(𝑚) :=
{︀
𝑎 ∈ 𝑀(𝑚,𝑚) : 𝑎𝑇 = 𝑎 and 𝑎 is positive definite

}︀
.

Similarly to the space of all full rank 𝑛 ×𝑚 matrices, the space Sym+(𝑚)
is a manifold as it is an open subset of a vector space, namely of the space
of all symmetric 𝑚×𝑚-matrices Sym(𝑚).

In the remainder of the article we will also use the group of all invertible
𝑚-dimensional matrices GL(𝑚), the groups of special orthogonal matrices
SO(𝑛) and SO(𝑚) and orthogonal matrices O(𝑛) and O(𝑚).

2.2. Spaces of one forms, diffeomorphisms and Riemannian met-
rics. Suppose 𝑀 is a compact 𝑚-dimensional manifold 𝑀 and recall that
𝑚 ≤ 𝑛. Let Ω1(𝑀,R𝑛) denote the space of smooth R𝑛-valued one-forms
on 𝑀 . Recall that an R𝑛-valued one-form 𝛼 on 𝑀 is a choice, for each
𝑥 ∈ 𝑀 , of a linear transformation 𝛼(𝑥) : 𝑇𝑥𝑀 → R𝑛 that varies smoothly
with 𝑥 ∈ 𝑀 . Note that Ω1(𝑀,R𝑛) is – with the usual addition and scalar
multiplication on R𝑛 – an infinite dimensional vector space. If 𝛼(𝑥) is injec-
tive for all 𝑥 ∈ 𝑀 , we say that 𝛼 is a full-ranked one-form and we denote by
Ω1
+(𝑀,R𝑛) the space of full-ranked one-forms. We immediately obtain the

following result concerning the manifold structure of Ω1
+(𝑀,R𝑛):

Lemma 2.1. The space of all full-ranked one-forms Ω1
+(𝑀,R𝑛) is a smooth

Fréchet manifold with tangent space the space of all one-forms Ω1(𝑀,R𝑛).

Proof. By definition we have Ω1
+(𝑀,R𝑛) ⊂ Ω1(𝑀,R𝑛). The full-rank con-

dition is an open condition and thus Ω1
+(𝑀,R𝑛) is an open subset of an

infinite dimensional vector space, which concludes the result. �

Related to this space is the infinite dimensional manifold of all smooth
Riemannian metrics Met(𝑀). For an overview on different Riemannian
structures on this space and in particular to the Ebin metric we refer to the
vast literature, see e.g., [21, 19, 9, 12, 11, 10, 6].

On both of the spaces we consider the action of the diffeomorphism group

Diff(𝑀) :=
{︀
𝜙 ∈ 𝐶∞(𝑀,𝑀)| 𝜙 is bijective and 𝜙−1 ∈ 𝐶∞(𝑀,𝑀)

}︀
via pullback:

Ω1
+(𝑀,R𝑛) × Diff(𝑀) ↦→ Ω1(𝑀,R𝑛), (𝛼,𝜙) → 𝜙*𝛼(𝑥) = 𝛼(𝜙(𝑥)) ∘ 𝑑𝜙(𝑥) ,

Met(𝑀) × Diff(𝑀) ↦→ Met(𝑀), (𝑔, 𝜙) → 𝜙*𝑔(𝑥) = 𝑑𝜙𝑇 (𝑥)𝑔(𝜙(𝑥))𝑑𝜙(𝑥) .
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3. A Riemannian metric on the space of full rank
𝑛×𝑚-matrices

The main results of this article will be concerned with a diffeomorphism-
invariant Riemannian metric on an infinite dimensional manifold of map-
pings, as introduced in the introduction (4.1). The pointwise nature of the
metric will allow us to reduce many aspects of the study of the corresponding
geometry to the study of a corresponding metric on a (finite dimensional)
manifold of matrices, which will be the object of interest in the follow-
ing section. Therefore we consider the space of full rank 𝑛 × 𝑚 matrices
𝑀+(𝑛,𝑚) with 𝑚 ≤ 𝑛 as introduced in Section 2.1. For 𝑎 ∈ 𝑀+(𝑛,𝑚) and
𝑢, 𝑣 ∈ 𝑇𝑎𝑀+(𝑛,𝑚) we define the Riemannian metric:

⟨𝑢, 𝑣⟩𝑎 = tr(𝑢(𝑎𝑇𝑎)−1𝑣𝑇 )
√︁

det(𝑎𝑇𝑎).(3.1)

Using the Moore-Penrose inverse 𝑎+ = (𝑎𝑇𝑎)−1𝑎𝑇 of 𝑎 ∈ 𝑀+(𝑛,𝑚), we
obtain an alternative formula for the metric that will turn out to be useful
later:

⟨𝑢, 𝑣⟩𝑎 = tr(𝑈𝑉 𝑇 )
√︁

det(𝑎𝑇𝑎), 𝑈 = 𝑢𝑎+, 𝑉 = 𝑣𝑎+.

As a first result we will describe a series of invariance properties of the
Riemannian metric that will be of importance in the remainder of the article:

Lemma 3.1. Let 𝑎 ∈ 𝑀+(𝑛,𝑚) and 𝑢, 𝑣 ∈ 𝑇𝑎𝑀+(𝑛,𝑚).

(1) The metric (3.1) is invariant under the left action of the orthogonal
group:

⟨𝑧𝑢, 𝑧𝑣⟩𝑧𝑎 = ⟨𝑢, 𝑣⟩𝑎 for 𝑧 ∈ O(𝑛);

(2) The metric (3.1) satisfies the following transformation rule under
the right action of the group of invertible matrices:

⟨𝑢𝑐, 𝑣𝑐⟩𝑎𝑐 = ⟨𝑢, 𝑣⟩𝑎| det(𝑐)| for 𝑐 ∈ GL(𝑚);

(3) The metric (3.1) is invariant under the right action of the group of
determinant one or minus one matrices:

⟨𝑢𝑐, 𝑣𝑐⟩𝑎𝑐 = ⟨𝑢, 𝑣⟩𝑎 for 𝑐 ∈ GL(𝑚), det(𝑐) = ±1;

Proof. The proof consists of elementary matrix operations. For 𝑧 ∈ O(𝑛)
we have

⟨𝑧𝑢, 𝑧𝑣⟩𝑧𝑎 = tr(𝑧𝑢(𝑎𝑇 𝑧𝑇 𝑧𝑎)−1𝑣𝑇 𝑧𝑇 )
√︁

det(𝑎𝑇𝑎)

= tr(𝑢(𝑎𝑇𝑎)−1𝑣𝑇 )
√︁

det(𝑎𝑇𝑎) = ⟨𝑢, 𝑣⟩𝑎,

which proves the invariance under the action of O(𝑛). To see the second
property we calculate for 𝑐 ∈ GL(𝑚):

⟨𝑢𝑐, 𝑣𝑐⟩𝑎𝑐 = tr(𝑢𝑐(𝑐𝑇𝑎𝑇𝑎𝑐)−1𝑐𝑇 𝑣)
√︁

det(𝑐𝑇𝑎𝑇𝑎𝑐)

= tr(𝑢𝑐𝑐−1(𝑎𝑇𝑎)−1(𝑐𝑇 )−1𝑐𝑇 𝑣)
√︁

det(𝑎𝑇𝑎)|det(𝑐)|
= ⟨𝑢, 𝑣⟩𝑎|det(𝑐)|.

The third statement follows immediately from the second one, which con-
cludes the proof. �
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3.1. The space of symmetric 𝑚 × 𝑚-matrices. In this section we will
describe the relation of our metric to a well-studied Riemannian metric on
the space of symmetric matrices. Therefore we recall the definition of the
finite dimensional version of the Ebin-metric, as studied by [19, 9]:

⟨ℎ, 𝑘⟩Sym𝑔 =
1

4
tr(ℎ𝑔−1𝑘𝑔−1)

√︀
det(𝑔),(3.2)

where 𝑔 ∈ Sym+(𝑚) and ℎ, 𝑘 ∈ 𝑇𝑔 Sym+(𝑚) = Sym(𝑚). Our main result
in this section will show that the projection

(3.3) 𝜋 : 𝑀+(𝑛,𝑚) → Sym+(𝑚), 𝑎 ↦→ 𝑎𝑇𝑎

is a Riemannian submersion, where the spaces are equipped with their re-
spective Riemannian metrics.

Note that O(𝑛) acts by left multiplication on 𝑀+(𝑛,𝑚). The following
proposition tells us that the orbits under this action are precisely the fibers
of the map 𝜋 : 𝑀+(𝑛,𝑚) → Sym+(𝑚) defined earlier.

Proposition 3.2. Let 𝑎, 𝑏 ∈ 𝑀+(𝑛,𝑚). Then 𝑎𝑇𝑎 = 𝑏𝑇 𝑏 if and only if there
is 𝑧 ∈ O(𝑛) such that 𝑎 = 𝑧𝑏.

Proof. It is easy to see that if 𝑎 = 𝑧𝑏 for some 𝑧 ∈ O(𝑛), then

𝑎𝑇𝑎 = (𝑧𝑏)𝑇 𝑧𝑏 = 𝑏𝑇 𝑧𝑇 𝑧𝑏 = 𝑏𝑇 𝑏.

Conversely, denote by 𝑝 ∈ Sym+(𝑚) the positive definite symmetric square

root of 𝑎𝑇𝑎. Then we have

𝑎𝑇𝑎 = 𝑏𝑇 𝑏 = 𝑝2 =
(︀
𝑝 0

)︀(︂𝑝
0

)︂
, where 𝑝 =

(︂
𝑝
0

)︂
∈ 𝑀+(𝑛,𝑚).

It is enough to show that there is 𝑧 ∈ O(𝑛) such that 𝑎 = 𝑧𝑝. Let 𝑧1 = 𝑎𝑝−1.
We have

𝑧𝑇1 𝑧1 = 𝑝−1𝑎𝑇𝑎𝑝−1 = 𝐼𝑚×𝑚,

which means that the columns in 𝑧1 form a set of orthonormal vectors in
R𝑛. Let 𝑧2 be an 𝑛 × (𝑛 −𝑚) matrix whose columns form an orthonormal
basis of the orthogonal complement of the span of the columns of 𝑧1. Let
𝑧 =

(︀
𝑧1 𝑧2

)︀
. Then 𝑎 = 𝑧1𝑝 =

(︀
𝑧1 𝑧2

)︀
𝑝 = 𝑧𝑝. Now the conclusion follows

by using

𝑧𝑇 𝑧 =

(︂
𝑧𝑇1
𝑧𝑇2

)︂(︀
𝑧1 𝑧2

)︀
=

(︂
𝑧𝑇1 𝑧1 𝑧𝑇1 𝑧2
𝑧𝑇2 𝑧1 𝑧𝑇2 𝑧2

)︂
= 𝐼𝑛×𝑛.

�

Proposition 3.2 implies that 𝜋 induces a diffeomorphism

(3.4) O(𝑛)∖𝑀+(𝑛,𝑚) ∼= Sym+(𝑚),

where O(𝑛)∖𝑀+(𝑛,𝑚) denotes the space of orbits under the 𝑂(𝑛) action.
Furthermore, for any 𝑎 ∈ 𝑀+(𝑛,𝑚) we obtain a (non-unique) decomposition

𝑎 = 𝑧

(︂
𝑠

0(𝑛−𝑚)×𝑚

)︂
, with 𝑧 ∈ O(𝑛), and 𝑠 ∈ Sym+(𝑚) .

In the following theorem we describe the corresponding Riemannian sub-
mersion picture:
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Theorem 3.3. The mapping 𝜋 : 𝑀+(𝑛,𝑚) → Sym+(𝑚) is a Riemannian
submersion, where 𝑀+(𝑛,𝑚) is equipped with the metric (3.1) and where
Sym+(𝑚) carries the metric (3.2). The corresponding vertical and horizontal
bundles are given by:

𝒱𝑎 = {𝑢 ∈ 𝑀+(𝑛,𝑚) |𝑢 = 𝑋𝑎,𝑋 ∈ so(𝑛)}
ℋ𝑎 = {𝑣 ∈ 𝑀+(𝑛,𝑚) | 𝑣𝑎+ ∈ Sym(𝑛)}.

Proof. In the following we identify the space of all symmetric matrices
Sym+(𝑚) with the quotient space O(𝑛)∖𝑀+(𝑛,𝑚). The Riemannian metric
on 𝑀+(𝑛,𝑚) descends to a Riemannian metric on the quotient space due
to the invariance under the left action of O(𝑛). To determine the induced
metric on the quotient space we need to calculate the vertical and horizontal
bundle.

It is immediate that the vertical bundle of 𝜋 at 𝑎 ∈ 𝑀+(𝑛,𝑚) consists
of all matrices 𝑢 such that 𝑢 = 𝑋𝑎 with 𝑋 ∈ so(𝑛). A matrix 𝑣 is in the
horizontal bundle if it is orthogonal to all elements in the vertical bundle.

Letting 𝑉 = 𝑣𝑎+, we obtain

0 = ⟨𝑋𝑎, 𝑣⟩𝑎 = tr(𝑋𝑎(𝑎𝑇𝑎)−1𝑣𝑇 )
√︁

det(𝑎𝑇𝑎)

= tr(𝑋𝑉 𝑇 )
√︁

det(𝑎𝑇𝑎).

for all 𝑋 ∈ so(𝑛). It follows that 𝑉 has to be a symmetric matrix, proving
the expressions for the vertical and horizontal bundles given in the statement
of the Theorem.

To show that the differential 𝑑𝜋𝑎 induces an isometry ℋ𝑎 → 𝑇𝜋(𝑎) Sym+(𝑚)
we calculate

𝑑𝜋𝑎(𝑣) = 𝑎𝑇 𝑣 + 𝑣𝑇𝑎.

For a horizontal tangent vector 𝑣 we have

⟨𝑑𝜋𝑎(𝑣), 𝑑𝜋𝑎(𝑣)⟩Sym𝜋(𝑎)

=
1

4
tr((𝑎𝑇𝑎)−1(𝑣𝑇𝑎 + 𝑎𝑇 𝑣)(𝑎𝑇𝑎)−1(𝑣𝑇𝑎 + 𝑎𝑇 𝑣))

√︁
det(𝑎𝑇𝑎)

=
1

2
tr((𝑎𝑇𝑎)−1𝑣𝑇𝑎(𝑎𝑇𝑎)−1𝑣𝑇𝑎)

√︁
det(𝑎𝑇𝑎)

+
1

2
tr((𝑎𝑇𝑎)−1𝑣𝑇𝑎(𝑎𝑇𝑎)−1𝑎𝑇 𝑣)

√︁
det(𝑎𝑇𝑎)

Using the cyclic permutation property of the trace and the fact that 𝑉 = 𝑣𝑎+

is symmetric we obtain

tr((𝑎𝑇𝑎)−1𝑣𝑇𝑎(𝑎𝑇𝑎)−1𝑣𝑇𝑎)
√︁

det(𝑎𝑇𝑎)

= tr(𝑎(𝑎𝑇𝑎)−1𝑣𝑇𝑎(𝑎𝑇𝑎)−1𝑣𝑇 )
√︁

det(𝑎𝑇𝑎)

= tr(𝑉 𝑇𝑉 𝑇 )
√︁

det(𝑎𝑇𝑎) = tr(𝑉 𝑉 𝑇 )
√︁

det(𝑎𝑇𝑎) = ⟨𝑣, 𝑣⟩𝑎.

A similar calculation for the second term shows the statement. �
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3.2. The Geodesic Equation. In this section we will present the geodesic
equation of the Riemannian metric 3.1 and derive an explicit solution for-
mula.

Theorem 3.4. The geodesic equation on 𝑀+(𝑛,𝑚) with respect to the met-
ric (3.1) is given by

(3.5)
𝑎𝑡𝑡 =𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡 𝑎 + 𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇𝑎𝑡 − 𝑎(𝑎𝑇𝑎)−1𝑎𝑇𝑡 𝑎𝑡

+
1

2
tr
(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡
)︀
𝑎− tr

(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇
)︀
𝑎𝑡.

Proof. Let 𝑎(𝑡) be a smooth curve in 𝑀+(𝑛,𝑚) defined on the unit interval
𝐼 = [0, 1] and 𝛿𝑎 be a smooth variation of 𝑎 that vanishes at the endpoints
𝑡 = 0 and 𝑡 = 1. The energy of 𝑎 in 𝑀+(𝑛,𝑚) is given by

𝐸(𝑎) =

∫︁
𝐼
⟨𝑎𝑡, 𝑎𝑡⟩𝑎𝑑𝑡

=

∫︁
𝐼

tr(𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇𝑡 )

√︁
det(𝑎𝑇𝑎)𝑑𝑡.

The directional derivative of the energy function 𝐸 at 𝑎 in the direction of
𝛿𝑎 can be calculated as:

𝛿𝐸(𝑎)(𝛿𝑎) = 𝛿

(︂∫︁
𝐼

tr
(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡
)︀√︁

det(𝑎𝑇𝑎)𝑑𝑡

)︂
(𝛿𝑎)

= 2

∫︁
𝐼

tr
(︀
(𝛿𝑎)𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡
)︀√︁

det(𝑎𝑇𝑎)𝑑𝑡

− 2

∫︁
𝐼

tr
(︀
𝑎𝑡(𝑎

𝑇𝑎)−1(𝛿𝑎)𝑇𝑎(𝑎𝑇𝑎)−1𝑎𝑇𝑡
)︀√︁

det(𝑎𝑇𝑎)𝑑𝑡

+

∫︁
𝐼

tr
(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡
)︀
𝛿

(︂√︁
det(𝑎𝑇𝑎)

)︂
𝑑𝑡.

Note that for any smooth matrix function 𝐵 : R → GL(𝑚) we have

𝑑

𝑑𝑡
det𝐵 = tr

(︀
𝐵𝑡𝐵

−1
)︀

det𝐵;
𝑑

𝑑𝑡
𝐵−1 = −𝐵−1𝐵𝑡𝐵

−1.

Using integration by parts and the above formulas we obtain

𝛿𝐸(𝑎)(𝛿𝑎) =

∫︁
𝐼
⟨𝒯 (𝑎), 𝛿𝑎⟩𝑎𝑑𝑡,

where

𝒯 (𝑎) = −2 tr
(︀
𝑎𝑇𝑎𝑡(𝑎

𝑇𝑎)−1
)︀
𝑎𝑡 − 2𝑎𝑡𝑡 + 2𝑎𝑡(𝑎

𝑇𝑎)−1(𝑎𝑇𝑎)𝑡

− 2𝑎(𝑎𝑇𝑎)−1(𝑎𝑡)
𝑇𝑎𝑡 + tr

(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡
)︀
𝑎.

Now the result follows, since 𝑎 is a geodesic if and only if 𝒯 (𝑎) = 0. �

Using the Moore-Penrose inverse 𝑎+ = (𝑎𝑇𝑎)−1𝑎𝑇 a simpler form of the
geodesic equation can be obtained:

Lemma 3.5. Let 𝐿 = 𝑎𝑡𝑎
+. Then 𝑎 is a geodesic if and only if 𝐿 satisfies

the equation:

𝐿𝑡 + tr(𝐿)𝐿 + (𝐿𝑇𝐿− 𝐿𝐿𝑇 ) − 1

2
tr(𝐿𝑇𝐿)𝑎𝑎+ = 0(3.6)
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Figure 3. Geodesics in the space 𝑀+(3, 2). The matrices
are visualized via their action on the unit rectangle. Note,
that the geodesic in the right figure leaves the space of full-
ranked matrices in the middle of the geodesic.

Proof. We have

𝐿𝑡 = (𝑎𝑡𝑎
+)𝑡 = 𝑎𝑡𝑡𝑎

+ + 𝑎𝑡
(︀
(𝑎𝑇𝑎)−1𝑎𝑇

)︀
𝑡

= 𝑎𝑡𝑡𝑎
+ − 𝑎𝑡(𝑎

𝑇𝑎)−1(𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡)(𝑎
𝑇𝑎)−1𝑎𝑇 + 𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡

= 𝑎𝑡𝑡𝑎
+ − 𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡 𝑎𝑎
+ − 𝐿2 + 𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡 .

Now equation (3.6) is obtained by inserting the expression of 𝑎𝑡𝑡 in (3.5). �

This form of the geodesic equation allows us to obtain an analytic formula
for the solution of the geodesic initial value problem, which constitutes the
first of the main results of this article:

Theorem 3.6. Let 𝛿 = tr(𝐿𝑇𝐿) and 𝜏 = tr(𝐿). The solution of (3.5) with
initial values 𝑎(0) and 𝐿(0) = 𝑎𝑡(0)𝑎(0)+ is given by

(3.7) 𝑎(𝑡) = 𝑓(𝑡)1/𝑚𝑒−𝑠(𝑡)𝜔0𝑎(0)𝑒𝑠(𝑡)𝑃0 ,

where

𝑓(𝑡) =
𝑚𝛿(0)

4
𝑡2 + 𝜏(0)𝑡 + 1, 𝑠(𝑡) =

∫︁ 𝑇

0

𝑑𝜎

𝑓(𝜎)
,

𝜔0 = 𝐿𝑇 (0) − 𝐿(0), 𝑃0 = (𝑎(0)𝑇𝑎(0))−1(𝑎𝑡(0)𝑇𝑎(0)) − 𝜏(0)

𝑚
𝐼𝑚×𝑚,

and 𝐼𝑚×𝑚 is the 𝑚×𝑚 identity matrix .

Proof. This result can be shown by a direct calculation, substituting our
solution formula into the geodesic equation. We can easily compute for
example that

𝐿(𝑡) =
1

𝑓(𝑡)
𝑒−𝑠(𝑡)𝜔0

(︂
𝑓 ′(𝑡)

𝑚
𝑎0 − 𝜔0𝑎0 + 𝑎0𝑃0

)︂
𝑎+0 𝑒

𝑠𝜔0 ,

and from here verify the formula (3.6). A more instructive proof of this
result, along the lines of Freed-Groisser [19] is presented in the Appendix A.

�

In Figure 3 one can see a visualization of a geodesic in the space 𝑀+(3, 2),
where we visualize the matrices via their action on the unit rectangle. As
a direct consequence we obtain the following result concerning the incom-
pleteness of 𝑀+(𝑛,𝑚):
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Corollary 3.7. For any initial conditions 𝑎(0) = 𝑎0 and 𝑎𝑡(0) with 𝐿0 =
𝑎𝑡(0)𝑎+0 , the geodesic 𝑎(𝑡) in 𝑀+(𝑛,𝑚) exists for all time 𝑡 ≥ 0 if and only if
𝑎𝑡(0) is not a constant multiple 𝑐 of 𝑎0 for some 𝑐 < 0. If 𝑎𝑡(0) is a negative
multiple of 𝑎0, then the geodesic reaches the zero matrix at time 𝑇 = 2

|𝑐|𝑚 .

Proof. Note that 𝐿0 = 𝑎𝑡(0)𝑎+0 = 𝑎𝑡(0)𝑎+0 𝑎0𝑎
+
0 = 𝐿0𝑎0𝑎

+
0 . Using Cauchy-

Schwarz inequality we have

(tr(𝐿0))
2 = (tr(𝐿0𝑎0𝑎

+
0 ))2 ≤ tr(𝐿0𝐿

𝑇
0 ) tr(𝑎0𝑎

+
0 (𝑎0𝑎

+
0 )𝑇 )

= tr(𝐿0𝐿
𝑇
0 ) tr(𝑎0𝑎

+
0 𝑎0𝑎

+
0 ) = tr(𝐿0𝐿

𝑇
0 ) tr(𝑎0𝑎

+
0 )

= 𝑚 tr(𝐿0𝐿
𝑇
0 ).

Then we conclude that 𝜏20 ≤ 𝑚𝛿0 with 𝜏0 = 𝜏(0) and 𝛿0 = 𝛿(0) in the
notation of Theorem 3.6, and the only way the equality holds is if there is a
number 𝑐 such that 𝐿0 = 𝑎𝑡(0)𝑎+0 = 𝑎0𝑎

+
0 , i.e., 𝑎𝑡(0) = 𝑐𝑎0. Thus if 𝑎𝑡(0) is

not a multiple of 𝑎0, we must have 𝜏20 < 𝑚𝛿0, and therefore

𝑓(𝑡) = 𝜖2𝑡2+(1+1
2𝜏0𝑡)

2, 𝑠(𝑡) =
1

𝜖
arctan

(︂
2𝜖𝑡

2 + 𝜏0𝑡

)︂
, 𝜖 =

√︁
𝑚𝛿0 − 𝜏20 .

Thus 𝑓(𝑡) is never zero and 𝑠(𝑡) is well-defined for all 𝑡 > 0.
On the other hand, if 𝑎𝑡(0) = 𝑐𝑎0, then 𝑚𝛿0 = 𝜏20 and 𝜏0 = 𝑐𝑚, and we

have

𝑓(𝑡) = (1 + 𝑐𝑚𝑡
2 )2, 𝑠(𝑡) =

2𝑡

2 + 𝑐𝑚𝑡
.

Hence 𝑓(𝑡) approaches zero in finite time, and as it does, 𝑠(𝑡) approaches
positive infinity. Note however that in this case 𝜔0 = 0, and

𝑃0 = 𝑐(𝑎𝑇0 𝑎0)
−1(𝑎𝑇0 𝑎0) −

𝜏0
𝑚
𝐼𝑚 = 𝑐𝐼𝑚 − 𝑐𝐼𝑚 = 0.

Thus the solution formula (3.7) becomes

𝑎(𝑡) = (1 + 𝑐𝑚𝑡
2 )2/𝑚𝑎0,

and the result follows. �

3.3. Totally Geodesic Subspaces. In this section we will study two fam-
ilies of totally geodesic subspaces of the space 𝑀+(𝑛,𝑚):

Theorem 3.8. The following spaces are totally geodesic subspaces of 𝑀+(𝑛,𝑚)
with respect to the metric (3.1):

(1) the space Scal(𝑏) := {𝜆𝑏|𝜆 ∈ R>0}, where 𝑏 is any fixed element of
𝑀+(𝑛,𝑚);

(2) the space GL(𝑚), where elements in GL(𝑚) are extended to 𝑛 ×𝑚
matrices by zeros.

Proof. The first result follows directly from the last sentence of the proof of
Corollary 3.7.

To prove that each component of GL(𝑚) is a totally geodesic submanifold,
consider the map 𝑀+(𝑛,𝑚) → 𝑀+(𝑛,𝑚) defined by 𝑎 ↦→ 𝐽𝑎, where 𝐽 is the
matrix given in block diagonal form by

𝐽 =

(︂
𝐼𝑚×𝑚 0𝑚×(𝑛−𝑚)

0(𝑛−𝑚)×𝑚 −𝐼(𝑛−𝑚)×(𝑛−𝑚)

)︂
.
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We know that this map is an isometry by the first invariance proved in
Lemma 3.1, since 𝐽 ∈ O(𝑛). Clearly, its fixed point set is GL(𝑚). It is well
known that each component of the fixed point set of any set of isometries is
a totally geodesic submanifold – see, for example [29, Proposition 24]. This
proves that each component of GL(𝑚) is a totally geodesic submanifold.

�

3.4. The Riemannian Curvature. In this part we will calculate the Rie-
mannian curvatures of the metric (3.1). We will then show that the sectional
curvature admits in general both signs. There exists, however, an interesting
subspace where the curvature is negative. In addition we will see, that for
the special case 𝑚 = 1 all sectional curvatures are non-negative.

To calculate the Riemannian curvature tensor we use the following cur-
vature formula, which is true in local coordinates

𝑅𝑎(𝑢, 𝑣)𝑤

= −𝑑Γ𝑎(𝑢)(𝑣, 𝑤) + 𝑑Γ𝑎(𝑣)(𝑢,𝑤) + Γ𝑎(𝑢,Γ𝑎(𝑣, 𝑤)) − Γ𝑎(𝑣,Γ𝑎(𝑢,𝑤)),

here Γ : 𝑀+(𝑛,𝑚) × 𝑇𝑀+(𝑛,𝑚) × 𝑇𝑀+(𝑛,𝑚) → 𝑇𝑀+(𝑛,𝑚) denotes the
Christoffel symbols of the metric. Since 𝑀+(𝑛,𝑚) is an open subset of the
vector space of all matrices 𝑀(𝑛,𝑚) we have a global chart and thus we
can obtain the formula of the Christoffel symbol by symmentrization of the
geodesic equation 𝑎𝑡𝑡 = Γ𝑎(𝑎𝑡, 𝑎𝑡). Using formula (3.5) we thus get:

Γ𝑎(𝑢, 𝑣) =
1

2

(︀
𝑢(𝑎𝑇𝑎)−1𝑣𝑇𝑎 + 𝑣(𝑎𝑇𝑎)−1𝑢𝑇𝑎 + 𝑢𝑎+𝑣 + 𝑣𝑎+𝑢− (𝑢𝑎+)𝑇 𝑣

− (𝑣𝑎+)𝑇𝑢 + tr(𝑢(𝑎𝑇𝑎)−1𝑣𝑇 )𝑎− tr(𝑢𝑎+)𝑣 − tr(𝑣𝑎+)𝑢
)︀
.

From here it is a straightforward calculation to obtain the formula for the
Riemannian curvature:

Lemma 3.9. Using the notation 𝑈 = 𝑢𝑎+, 𝑉 = 𝑣𝑎+,𝑊 = 𝑤𝑎+ the Rie-
mannian curvature of 𝑀+(𝑛,𝑚) is given by

4𝑅𝑎(𝑢, 𝑣)𝑤𝑎+

= [𝑉,𝑈𝑇 ]𝑊 𝑇𝑎𝑎+ + 𝑊 [𝑈𝑇 , 𝑉 𝑇 ]𝑎𝑎+ + 𝑊𝑈𝑉 𝑇𝑎𝑎+ + 𝑊 𝑇𝑈𝑉 𝑇𝑎𝑎+

+ 𝑈𝑊𝑉 𝑇𝑎𝑎+ − [𝑈, 𝑉 𝑇 ]𝑊 𝑇𝑎𝑎+ −𝑊𝑉 𝑈𝑇𝑎𝑎+ −𝑊 𝑇𝑉 𝑈𝑇𝑎𝑎+

− 𝑉𝑊𝑈𝑇𝑎𝑎+ + 2𝑉 𝑈𝑇𝑎𝑎+𝑊 + 𝑊𝑈𝑇𝑎𝑎+𝑉 + 𝑉𝑊 𝑇𝑎𝑎+𝑈

− 2𝑈𝑉 𝑇𝑎𝑎+𝑊 −𝑊𝑉 𝑇𝑎𝑎+𝑈 − 𝑈𝑊 𝑇𝑎𝑎+𝑉 + 2𝑎𝑎+𝑉 𝑈𝑇𝑊

+ 𝑎𝑎+𝑉𝑊 𝑇𝑈 + 𝑎𝑎+𝑊𝑈𝑇𝑉 − 2𝑎𝑎+𝑈𝑉 𝑇𝑊 − 𝑎𝑎+𝑈𝑊 𝑇𝑉

− 𝑎𝑎+𝑊𝑉 𝑇𝑈 + [[𝑉,𝑈 ],𝑊 ] + [𝑉 𝑇 , 𝑈𝑇 ]𝑊 + 2𝑈𝑊 𝑇𝑉

+ 2𝑈𝑉 𝑇𝑊 + 𝑉 𝑇𝑈𝑊 + 𝑊 𝑇𝑈𝑇𝑉 + 𝑉 𝑇𝑊𝑈 − 2𝑉𝑊 𝑇𝑈

− 2𝑉 𝑈𝑇𝑊 − 𝑈𝑇𝑉𝑊 −𝑊 𝑇𝑉 𝑇𝑈 − 𝑈𝑇𝑊𝑉

+ tr(𝑉𝑊 𝑇 ) tr(𝑈)𝑎𝑎+ − tr(𝑉 ) tr(𝑊𝑈𝑇 )𝑎𝑎+ + 𝑚 tr(𝑈𝑊 𝑇 )𝑉

−𝑚 tr(𝑉𝑊 𝑇 )𝑈 + tr(𝑊 ) tr(𝑉 )𝑈 − tr(𝑊 ) tr(𝑈)𝑉
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Furthermore, if any of the tangent vectors of 𝑢, 𝑣, 𝑤, 𝑠 is of the form 𝜆𝑎 for
𝜆 ∈ R, then

⟨𝑅𝑎(𝑢, 𝑣)𝑤, 𝑠⟩𝑎 = 0.

Proof. The proof is a very long, but basic computation using the curvature
formula

𝑅(𝑢, 𝑣)𝑤 = −𝑑Γ(𝑢)(𝑣, 𝑤) + 𝑑Γ(𝑣)(𝑢,𝑤) + Γ(𝑢,Γ(𝑣, 𝑤)) − Γ(𝑣,Γ(𝑢,𝑤)),

and the differential of the Christoffel symbol

2𝑑Γ(𝑢)(𝑣, 𝑤)𝑎+

= − 𝑉 𝑈𝑇𝑊 𝑇𝑎𝑎+ − 𝑉 𝑈𝑊 𝑇𝑎𝑎+ + 𝑉𝑊 𝑇𝑈 −𝑊𝑈𝑇𝑉 𝑇𝑎𝑎+

−𝑊𝑈𝑉 𝑇𝑎𝑎+ + 𝑊𝑉 𝑇𝑈 − 𝑉 𝑈𝑇𝑎𝑎+𝑊 − 𝑉 𝑈𝑊 + 𝑉 𝑈𝑇𝑊

−𝑊𝑈𝑇𝑎𝑎+𝑉 −𝑊𝑈𝑉 + 𝑊𝑈𝑇𝑉 + 𝑎𝑎+𝑈𝑉 𝑇𝑊 + 𝑈𝑇𝑉 𝑇𝑊

− 𝑈𝑉 𝑇𝑊 + 𝑎𝑎+𝑈𝑊 𝑇𝑉 + 𝑈𝑇𝑊 𝑇𝑉 − 𝑈𝑊 𝑇𝑉 − tr(𝑉 𝑈𝑇𝑊 𝑇 )𝑎𝑎+

− tr(𝑉 𝑈𝑊 𝑇 )𝑎𝑎+ + tr(𝑉𝑊 𝑇 )𝑈 + tr(𝑉 𝑈𝑇𝑎𝑎+)𝑊 + tr(𝑉 𝑈)𝑊

− tr(𝑉 𝑈𝑇 )𝑊 + tr(𝑊𝑈𝑇𝑎𝑎+)𝑉 + tr(𝑊𝑈)𝑉 − tr(𝑊𝑈𝑇 )𝑉.

�

In the following we will decompose the tangent space of the space 𝑀+(𝑛,𝑚)
in a scaling part – i.e., changing only the determinant of the linear mapping
– and the complement. Therefore we recall that any square matrix 𝑈 can
be decomposed into a traceless part and a remainder as follows:

𝑈 = 𝑈 − tr(𝑈)

𝑚
𝑎𝑎+ +

tr(𝑈)

𝑚
𝑎𝑎+ := 𝑈0 +

tr(𝑈)

𝑚
𝑎𝑎+.

Analogously we define for a non-square matrix 𝑢 ∈ 𝑇𝑎𝑀+(𝑛,𝑚) the decom-
position

𝑢 = 𝑢− tr(𝑢𝑎+)

𝑚
𝑎 +

tr(𝑢𝑎+)

𝑚
𝑎 := 𝑢0 +

tr(𝑢𝑎+)

𝑚
𝑎.

We will call 𝑢0 the traceless part and tr(𝑢𝑎+)
𝑚 𝑎 to be the pure trace part

of 𝑢. It is easy to see that 𝑈0 = 𝑢0𝑎
+. We have seen in Lemma 3.9 that

the curvature tensor vanishes if pure trace directions are involved. As a
consequence the sectional curvature will only depend on the traceless part
of the tangent vectors 𝑢 and 𝑣:

Theorem 3.10. The sectional curvature of 𝑀+(𝑛,𝑚) at 𝑎 is given by

4𝒦𝑎(𝑢, 𝑣)/
√︁

det(𝑎𝑇𝑎) = 4⟨𝑅(𝑢, 𝑣)𝑣, 𝑢⟩𝑎/
√︁

det(𝑎𝑇𝑎)

=2 tr([𝑉0, 𝑈0][𝑉
𝑇
0 , 𝑈0]) + 2 tr([𝑉0, 𝑈

𝑇
0 ][𝑉0, 𝑈0]) + 2 tr(𝑉0𝑈0𝑉

𝑇
0 𝑈𝑇

0 )

+ tr(𝑉0𝑉
𝑇
0 𝑈𝑇

0 𝑈0) − 4 tr(𝑉0𝑉0𝑈
𝑇
0 𝑈

𝑇
0 ) + 4 tr(𝑉0𝑈

𝑇
0 𝑈0𝑉

𝑇
0 )

+ tr(𝑉 𝑇
0 𝑉0𝑈0𝑈

𝑇
0 ) − 2 tr(𝑉0𝑉

𝑇
0 𝑈0𝑈

𝑇
0 ) − 2 tr(𝑉0𝑈

𝑇
0 𝑉0𝑈

𝑇
0 )

+ 6 tr(𝑉0𝑈
𝑇
0 𝑉0𝑈

𝑇
0 𝑎𝑎

+) − 3 tr(𝑉0𝑈
𝑇
0 𝑈0𝑉

𝑇
0 𝑎𝑎+) − 3 tr(𝑈0𝑉

𝑇
0 𝑉0𝑈

𝑇
0 𝑎𝑎

+)

−𝑚 tr(𝑉0𝑉
𝑇
0 ) tr(𝑈0𝑈

𝑇
0 ) + 𝑚(tr(𝑈0𝑉

𝑇
0 ))2,
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Figure 4. Histogram plots demonstrating the scarcity of
positive sectional curvature: 𝑥-axis: value of the sectional
curvature; 𝑦-axis: number of 2-planes that attained this
value. Left figure: 𝑚 = 2, 𝑛 = 3. Percentage of positive
sectional curvature: zero. Middle figure: 𝑚 = 2 , 𝑛 = 4.
Percentage of positive sectional curvature: 3.041%. Right
figure: 𝑚 = 3 , 𝑛 = 5. Percentage of positive sectional cur-
vature: 0.007%. The figures have been created in MATLAB
using 107 runs with random matrices for each choice of 𝑚
and 𝑛.

where 𝑢, 𝑣 ∈ 𝑇𝑎𝑀+(𝑛,𝑚) are orthonormal with respect to the metric (3.1),
𝑈0, 𝑉0 are the traceless parts of 𝑈 = 𝑢𝑎+ and 𝑉 = 𝑣𝑎+, respectively. Fur-
thermore, we have:

(1) For tangent vector 𝑢, 𝑣 that are a pure trace direction the sectional
curvature is zero.

(2) If 𝑚 ≥ 2 and 𝑢, 𝑣 ∈ 𝑇𝑎𝑀+(𝑛,𝑚) such that 𝑈 = 𝑢𝑎+ and 𝑉 = 𝑣𝑎+

are symmetric – i.e., for horizontal tangent vectors with respect to
the projection (3.3) – the sectional curvature is negative.

(3) If 𝑚 = 1 then all sectional curvatures are non-negative and they
vanish identically for 𝑛 = 𝑚 + 1 = 2.

(4) If 𝑚 ∈ {2, 3} and 𝑛 ≥ 𝑚 + 2 then the sectional curvature admits
always both signs.

Remark 3.11 (Open cases and conjecture). Using extensive testing with
random matrices in MATLAB we did not find any positive sectional curva-
tures for any of the open cases, i.e. for 𝑚 > 3 and for 𝑚 = {2, 3}, 𝑛 = 𝑚+1.
This leads us to the conjecture that the sectional curvature is negative in
these cases. In Figure 4 we show histogram plots of our random-matrix ex-
periments, that also demonstrate the scarcity of positive sectional curvature
in the case 𝑚 = {2, 3} and 𝑛 ≥ 𝑚 + 2.

Proof of Theorem 3.10. The formula for 𝒦 at 𝑎 ∈ 𝑀+(𝑛,𝑚) can be obtained
by direct computation. For orthonormal 𝑢 and 𝑣 we have

𝒦𝑎(𝑢, 𝑣) = ⟨𝑅𝑎(𝑢, 𝑣)𝑣, 𝑢⟩𝑎 = ⟨𝑅𝑎(𝑢0, 𝑣0)𝑣0, 𝑢0⟩𝑎,

where the second equality is obtained by Lemma 3.9.
Statement (1) follows directly from the curvature formula. To see (2) we

calculate

4⟨𝑅(𝑢, 𝑣)𝑣, 𝑢⟩𝑎/
√︁

det(𝑎𝑇𝑎)
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= 14(tr(𝑈0𝑉0𝑈0𝑉0) − tr(𝑈0𝑈0𝑉0𝑉0))

+ 𝑚 tr(𝑈0𝑉0) tr(𝑉0𝑈0) −𝑚 tr(𝑈0𝑈0) tr(𝑉0𝑉0)

= 7 tr
(︀
[𝑈0, 𝑉0]

2
)︀

+ 𝑚
(︁

(tr(𝑈0𝑉0))
2 − tr(𝑈2

0 ) tr(𝑉 2
0 )
)︁
.

Note that 𝑈, 𝑉 being symmetric implies that 𝑈0, 𝑉0 are symmetric. Thus
their commutator is antisymmetric and then tr

(︀
[𝑈0, 𝑉0]

2
)︀
≤ 0. In addition,

by the Cauchy-Schwarz inequality we have

(tr(𝑈0𝑉0))
2 =

(︀
tr(𝑈0𝑉

𝑇
0 )
)︀2 ≤ tr(𝑈0𝑈

𝑇
0 ) tr(𝑉0𝑉

𝑇
0 ) = tr(𝑈2

0 ) tr(𝑉 2
0 ).

Therefore, 𝒦𝑎(𝑢, 𝑣) ≤ 0. Note, that we needed 𝑚 ≥ 2 to construct two
linear independent tangent vectors 𝑢 and 𝑣 with 𝑈 and 𝑉 being symmetric.

For point (3) we first observe the simplified formula for the sectional
curvature in the situation 𝑚 = 1:

𝒦𝑎(𝑢, 𝑣) =
3

4
(𝑎𝑇𝑎)−2

(︁
−(𝑣𝑇𝑎)2 − (𝑢𝑇𝑎)2 + (𝑎𝑇𝑎)3/2

)︁
(3.8)

where 𝑢, 𝑣 ∈ 𝑇𝑎𝑀+(𝑛, 1) are orthonormal vectors with respect to the metric
(3.1). If 𝑛 = 2 in addition we have at each point 𝑎 ∈ 𝑀+(2, 1) only one
2-dim tangent plane. Let 𝑢, 𝑣 ∈ 𝑀+(2, 1) be a pair of orthonormal tangent
vectors respect to the metric (3.1) such that 𝑢 is in the direction of 𝑎. Then

we have 𝑢 = (𝑎𝑇𝑎)−1/4𝑎 and 𝑣𝑇𝑎 = 0. Thus by formula 3.8 the sectional
curvature vanishes.

To show the positivity for general 𝑛, we consider an orthonormal basis
{𝑒𝑖} of 𝑇𝑎𝑀+(𝑛, 1), such that 𝑒1 = (𝑎𝑇𝑎)−1/4𝑎. Expressing orthonormal
𝑢 and 𝑣 in this basis we have 𝑢 =

∑︀
𝑖 𝑢𝑖𝑒𝑖 and 𝑣 =

∑︀
𝑖 𝑣𝑖𝑒𝑖, where the

coefficients satisfy
∑︀

𝑖 𝑢
2
𝑖 =

∑︀
𝑖 𝑣

2
𝑖 = 1 and

∑︀
𝑖 𝑢𝑖𝑣𝑖 = 0. Note, that since

𝑎𝑇𝑎 is a positive scalar, the orthogonality with respect to the Riemannian
metric implies that the vectors 𝑒𝑖 are orthogonal with respect to the standard
euclidean scalar product, i.e., 𝑒𝑇𝑖 𝑒𝑗 = 0 if 𝑖 ̸= 𝑗. Using formula (3.8) we then
obtain

4

3
(𝑎𝑇𝑎)1/2𝒦𝑎(𝑢, 𝑣) = (𝑎𝑇𝑎)−3/2

(︁
−(𝑣𝑇𝑎)2 − (𝑢𝑇𝑎)2 + (𝑎𝑇𝑎)3/2

)︁
=
(︀
−𝑣21 − 𝑢21 + 1

)︀
=
∑︁
𝑖

𝑢2𝑖
∑︁
𝑖

𝑣2𝑖 − 𝑢21
∑︁
𝑖

𝑣2𝑖 − 𝑣21
∑︁
𝑖

𝑢2𝑖

= −𝑢21𝑣
2
1 +

∑︁
𝑖>1,𝑗>1

𝑢2𝑖 𝑣
2
𝑗

Using the orthogonality of 𝑢 and 𝑣 we have 𝑢1𝑣1 = −
∑︀

𝑖>1 𝑢𝑖𝑣𝑖 and thus

4

3
(𝑎𝑇𝑎)1/2𝒦𝑎(𝑢, 𝑣) = −

(︃∑︁
𝑖>1

𝑢𝑖𝑣𝑖

)︃2

+
∑︁

𝑖>1,𝑗>1

𝑢2𝑖 𝑣
2
𝑗

= −2
∑︁

𝑖 ̸=𝑗,𝑖>1,𝑗>1

𝑢𝑖𝑣𝑖𝑢𝑗𝑣𝑗 +
∑︁

𝑖 ̸=𝑗,𝑖>1,𝑗>1

𝑢2𝑖 𝑣
2
𝑗

=
∑︁

𝑖 ̸=𝑗,𝑖>1,𝑗>1

(𝑢𝑖𝑣𝑗 − 𝑢𝑗𝑣𝑖)
2 ≥ 0,

which proves point (3).
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Finally for statement (4), i.e., 𝑚 ∈ 2, 3 and 𝑛 ≥ 𝑚 + 2, we let

𝑎 =

(︂
Id𝑚×𝑚

0(𝑛−𝑚)×𝑚

)︂
, 𝑢 =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , 𝑣 =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 0
0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

where Id𝑚×𝑚 denotes the 𝑚×𝑚 identity matrix and 0(𝑛−𝑚)×𝑚 the (𝑛−𝑚)×
𝑚 zero matrix. It is easy to check that 𝑢 and 𝑣 are orthonormal tangent
vectors at 𝑎 with respect to the metric (3.1). Plugging 𝑎 and 𝑢, 𝑣 into the
formula of the sectional curvature we obtain

𝒦𝑎(𝑢, 𝑣) = 4 −𝑚,

which proves the last statement. �

3.5. The metric completion. In Corollary 3.7 we have seen that 𝑀+(𝑚,𝑛)
with the metric (3.1) is geodesically incomplete. By the theorem of Hopf-
Rinow that implies that the corresponding metric space is also metrically
incomplete. In this section we will study its metric completion. For tech-
nical reasons we will restrict ourself to the case 𝑛 > 𝑚, as the space
𝑀+(𝑚,𝑚) = Gl(𝑚) is not connected and thus one would have to study
the completion of each of the two connected components separately. To
keep the presentation simple we will not treat this special case.

We first recall the formula for the geodesic distance function on 𝑀+(𝑛,𝑚)
with respect to the metric (3.1):

dist𝑛×𝑚(𝑎0, 𝑎1) = inf
𝑎

{︁
𝐿(𝑎) =

∫︁
𝐼
‖𝑎𝑡‖𝑎𝑑𝑡

⃒⃒⃒
𝑎 : [0, 1] → 𝑀+(𝑛,𝑚)(3.9)

is piecewise differentiable with 𝑎(0) = 𝑎0, 𝑎(1) = 𝑎1

}︁
,

where the norm ‖ · ‖ is induced by the metric (3.1) on 𝑀+(𝑛,𝑚). We first
calculate an upper bound for the geodesic distance:

Lemma 3.12. Let 𝑎, 𝑏 ∈ 𝑀+(𝑛,𝑚) with 𝑛 > 𝑚. Then

dist𝑛×𝑚(𝑎, 𝑏) ≤ 2√
𝑚

(︂
4

√︁
det(𝑎𝑇𝑎) + 4

√︁
det(𝑏𝑇 𝑏)

)︂
.

Proof. Let 𝑎, 𝑏 ∈ 𝑀+(𝑛,𝑚). Using the invariance properties of the metric –
c.f. item (2) in Lemma 3.1 – we observe that the geodesic distance between
scaled versions of the matrices 𝑎 and 𝑏 can be made arbitrary small, i.e.,
dist𝑛×𝑚(𝛿𝑎, 𝛿𝑏) ≤ 𝜖 for 𝛿 > 0 sufficiently small.

We will now calculate an upper bound for the geodesic distance between a
matrix to a scaled version of the same matrix. Therefore let 𝑎1 ∈ 𝑀+(𝑛,𝑚).
We consider the path 𝑎(𝑡) = (1 − 𝑡)𝑎1 for 𝑡 ∈ (0, 1 − 𝛿). Using 𝑎𝑡(𝑡) = −𝑎1
we calculate

dist𝑛×𝑚(𝑎1, 𝛿𝑎1) ≤
∫︁ 1−𝛿

0
‖𝑎𝑡(𝑡)‖𝑎(𝑡)𝑑𝑡 ≤

∫︁ 1

0
‖𝑎𝑡(𝑡)‖𝑎(𝑡)𝑑𝑡

=

∫︁ 1

0

(︂
tr
(︁
𝑎𝑡
(︀
𝑎𝑇 (𝑡)𝑎(𝑡)

)︀−1
𝑎𝑇𝑡

)︁√︁
det(𝑎𝑇 (𝑡)𝑎(𝑡))

)︂1/2

𝑑𝑡
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=

∫︁ 1

0

(︂
𝑚𝑡𝑚−2

√︁
det(𝑎𝑇1 𝑎1)

)︂1/2

𝑑𝑡 =
2√
𝑚

4

√︁
det(𝑎𝑇1 𝑎1).

Now the statement follows from the triangle inequality:

dist𝑛×𝑚(𝑎, 𝑏) ≤dist𝑛×𝑚(𝑎, 𝛿𝑎) + dist𝑛×𝑚(𝛿𝑎, 𝛿𝑏) + dist𝑛×𝑚(𝛿𝑏, 𝑏)

=
2√
𝑚

(︂
4

√︁
det(𝑎𝑇𝑎) + 4

√︁
det(𝑏𝑇 𝑏)

)︂
+ 𝜖 ,

which proves the result. �

Using this result we are able to characterize the metric completion of
𝑀+(𝑛,𝑚):

Theorem 3.13. Let 𝑛 > 𝑚. The metric completion of the space 𝑀+(𝑛,𝑚)
with respect to the geodesic distance (3.9) is given by 𝑀(𝑛,𝑚)/ ∼ where
𝑎 ∼ 𝑏 if rank(𝑎) < 𝑚 and rank(𝑏) < 𝑚.

Proof. In the following let {𝑎𝑘} and {𝑏𝑘} be Cauchy sequences with respect
to the geodesic distance function dist𝑛×𝑚. First we consider the case that
det(𝑎𝑇𝑘 𝑎𝑘) → 0 and det(𝑏𝑇𝑘 𝑏𝑘) → 0 as 𝑘 goes to infinity. By Lemma 3.12
we have dist𝑛×𝑚(𝑎𝑘, 𝑏𝑘) → 0 and thus any two such sequences are identified
with each other in the metric completion. This new point corresponds to
the concatenation of all matrices with non-maximal rank.

It remains to consider the case in which det(𝑎𝑇𝑘 𝑎𝑘) ̸→ 0 as 𝑘 → ∞. In

this case, there exists an 𝜂 > 0 and 𝐾0 ∈ N such that det(𝑎𝑇𝑘 𝑎𝑘) > 𝜂 for all
𝑘 > 𝐾0. By the identification (3.4) we write 𝑎𝑘 = 𝑧𝑘𝑠𝑘 with 𝑧𝑘 ∈ O(𝑛) and
𝑠𝑘 ∈ Sym+(𝑚) (extended to a 𝑛 × 𝑚 matrix with zeros). We will view 𝑠𝑘
both as an 𝑛×𝑚 and as an 𝑚×𝑚 matrix, depending on which form is more
convenient for our purposes. Since O(𝑛) is compact we can always pass to
a convergent subsequence and using the left invariance of the Riemannian
metric (and thus of the induced geodesic distance function) we may assume
that this limit is the identity matrix, i.e., lim𝑘→∞ 𝑧𝑘 = 𝐼𝑛×𝑛. It remains to
show that 𝑠𝑘 converges. Since 𝑎𝑘 is a Cauchy sequence we have

𝜖 > dist𝑛×𝑚(𝑧𝑘𝑠𝑘, 𝑧𝑙𝑠𝑙) = dist𝑛×𝑚(𝑠𝑘, 𝑧
𝑇
𝑘 𝑧𝑙𝑠𝑙) ≥ inf

𝑧∈O(𝑛)
dist𝑛×𝑚(𝑠𝑘, 𝑧𝑠𝑙).

The mapping 𝜋(𝑎) = 𝑎𝑇𝑎 is a Riemannian submersion onto the space of
symmetric matrices with the metric (3.2) and thus the last expression is
equal to the geodesic distance induced by (3.2) of 𝑠𝑇𝑘 𝑠𝑘 and 𝑠𝑇𝑙 𝑠𝑙. Thus we

have shown that 𝑠𝑇𝑘 𝑠𝑘 ∈ Sym+(𝑚) is a Cauchy sequence with respect to the
geodesic distance of the metric (3.2). By a result of Clarke [12, Proposition
4.11] and the assumption on the determinant there exists a constant 𝐶 such
that (𝑠𝑇𝑘 𝑠𝑘)𝑖𝑗 ≤ 𝐶 for all 𝑘 > 𝐾0. It follows that

(𝑠𝑇𝑘 𝑠𝑘)𝑗𝑗 =
∑︁
𝑖

(𝑠𝑘)𝑗𝑖 (𝑠𝑘)𝑗𝑖 ≤ 𝐶

and thus |(𝑠𝑘)𝑗𝑖 | ≤
√
𝐶. Therefore 𝑠𝑘 is in a bounded and closed subset of

R𝑚×𝑚 and thus, by taking a further subsequence, we can conclude that 𝑠𝑘
converges to a unique element 𝑠 ∈ Sym+(𝑚). �



THE SPACE OF FULL-RANKED ONE-FORMS 17

Remark 3.14 (The space of symmetric matrices (revisited)). Using the
Riemannian submersion structure as described in Section 3.1 to study the
geometry of the space of symmetric matrices 3.2, one can regain several
classical results of [19, 21, 12, 16], including the solution formula for the
geodesic equation and the non-positivity of the sectional curvature. We will
present the alternative derivation of these results in Appendix B.

4. The generalized Ebin metric

The Riemannian metric that we will define on Ω1
+(𝑀,R𝑛) does not depend

on a metric on 𝑀 . However, we will start by putting a metric on 𝑀 , use it
in our definition of a metric on Ω1

+(𝑀,R𝑛), and then prove that the latter
is actually independent of the former!

So, begin by assuming that 𝑀 is endowed with a Riemannian metric 𝑔.
Associated to 𝑔 is a volume form 𝜇𝑔 on 𝑀 . Suppose that 𝛼 ∈ Ω1

+(𝑀,R𝑛),
and 𝜁, 𝜂 ∈ 𝑇𝛼Ω1

+(𝑀,R𝑛) = Ω1(𝑀,R𝑛).
We now define a function 𝐹𝑔 : 𝑀 → R. Given 𝑥 ∈ 𝑀 , choose an or-

thonormal basis for 𝑇𝑥𝑀 with respect to 𝑔. With respect to this basis (and
the standard basis for R𝑛), 𝛼(𝑥), 𝜁(𝑥), and 𝜂(𝑥) are represented by 𝑛 ×𝑚
matrices, say 𝑎, 𝑢 and 𝑣, respectively. We then define

𝐹𝑔(𝑥) = ⟨𝑢, 𝑣⟩𝑎 = tr
(︀
𝑢(𝑎𝑇𝑎)−1𝑣𝑇

)︀√︁
det(𝑎𝑇𝑎),

as motivated by equation 3.1 on 𝑀+(𝑛,𝑚). Here are two facts about 𝐹𝑔:

(1) The value of 𝐹𝑔(𝑥) does not depend on the choice of orthonormal
basis at 𝑥. This follows from the third invariance of Lemma 3.1,
since the change of basis matrix between two orthonormal bases has
determinant ±1.

(2) The function 𝐹𝑔 is smooth. This follows since we can choose a
smooth field of orthonormal bases on a neighborhood of 𝑥 in 𝑀 .

We now define our Riemannian metric 𝐺 on Ω1
+(𝑀,R𝑛):

(4.1) 𝐺𝛼(𝜁, 𝜂) =

∫︁
𝑀

𝐹𝑔𝜇𝑔

We will sometimes write this metric simply as

𝐺𝛼(𝜁, 𝜂) =

∫︁
𝑀

tr
(︀
𝜁 (𝛼𝑇𝛼)−1𝜂𝑇

)︀√︁
det (𝛼𝑇𝛼) 𝜇𝑔 ,

where it is understood that 𝛼, 𝜁, and 𝜂 are replaced by their matrices with
respect to orthonormal bases.

We will now show that 𝐺 is actually independent of which metric 𝑔 we
choose on 𝑀 . Suppose we have two metrics 𝑔1 and 𝑔2 on 𝑀 . Fix a point
𝑥 ∈ 𝑀 , and choose two bases of 𝑇𝑥𝑀 , one orthonormal with respect to 𝑔1
and one with respect to 𝑔2. Denote by 𝑐 the 𝑚×𝑚 change of basis matrix
between these bases. Then it’s easy to see that 𝜇𝑔1 = | det 𝑐|𝜇𝑔2 . Hence by
the second invariance of Lemma 3.1, 𝐹𝑔1𝜇𝑔1 = 𝐹𝑔2𝜇𝑔2 . Since this is true for
every 𝑥, it follows that the metric defined in equation 4.1 is independent of
𝑔. The following lemma gives two important invariances of our metric 𝐺 on
Ω1
+(𝑀,R𝑛).

Lemma 4.1. Let 𝛼 ∈ Ω1
+(𝑀,R𝑛) and 𝜁, 𝜂 ∈ 𝑇𝛼Ω1

+(𝑀,R𝑛).
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(1) The metric (4.1) is invariant under point wise left multiplication with
𝑂(𝑛), i.e., let 𝑧(𝑥) ∈ O(𝑛) for each 𝑥 ∈ 𝑀 . Then

𝐺𝛼(𝜁, 𝜂) = 𝐺𝑧𝛼(𝑧𝜁, 𝑧𝜂)

(2) The metric (4.1) is invariant under the right action of the diffeo-
morphism group, i.e., for any 𝜙 ∈ Diff(𝑀) we have

𝐺𝛼(𝜁, 𝜂) = 𝐺𝜙*𝛼(𝜙*𝜁, 𝜙*𝜂)

Proof. The proof of the first invariance property is the same as for the finite
dimensional metric on 𝑀+(𝑛,𝑚) from Lemma 3.1. For the second invariance
property we calculate

𝐺𝜙*𝛼(𝜙*𝜁, 𝜙*𝜂) =

∫︁
𝑀

tr
(︀
𝜙*𝜁 ((𝜙*𝛼)𝑇𝜙*𝛼)−1(𝜙*𝜂)𝑇

)︀√︁
det ((𝜙*𝛼)𝑇𝜙*𝛼) 𝜇

=

∫︁
𝑀

tr
(︀
𝜁 ∘ 𝜙 ((𝛼 ∘ 𝜙)𝑇𝛼 ∘ 𝜙)−1(𝜂 ∘ 𝜙)𝑇

)︀√︁
det ((𝛼 ∘ 𝜙)𝑇𝛼 ∘ 𝜙) det(𝑑𝜙) 𝜇

= 𝐺𝛼(𝜁, 𝜂) �

4.1. Connection to the Ebin metric. In this section we will show that
the metric defined in (4.1) on the space Ω1

+(𝑀,R𝑛) is connected to the
Ebin metric on the space of Riemannian metrics Met(𝑀) on 𝑀 . This will
be a consequence of the previous result for the finite dimensional spaces of
matrices and the point-wise nature of the metric. The main difficulty in the
infinite-dimensional situation is proving the surjectivity of the projection
map.

Following [16] we will first recall the definition of the Ebin metric. The
space of Riemannian metrics Met(𝑀) is a open subset of the space of all
smooth symmetric (0, 2) tensor fields on 𝑀 , denoted by Γ(𝑆2𝑇 *𝑀), and thus
the tangent space at each element 𝑔 is Γ(𝑆2𝑇 *𝑀) itself. Let 𝑔 ∈ Met(𝑀)
and ℎ, 𝑘 ∈ 𝑇𝑔Met(𝑀) = Γ(𝑆2𝑇 *𝑀). Fix 𝑥 ∈ 𝑀 and choose a basis of 𝑇𝑥𝑀 ,
with respect to this basis 𝑔(𝑥), ℎ(𝑥), 𝑘(𝑥) can be represented as symmetric
𝑚×𝑚 matrices. We can then introduce the metric via

(ℎ, 𝑘)𝑔 =
1

4

∫︁
𝑀

tr(ℎ𝑔−1𝑘𝑔−1)𝜇𝑔,(4.2)

where 𝑔, ℎ, 𝑘 can be interpreted either as tensor fields on 𝑀 or as the corre-
sponding 𝑚×𝑚 matrices with respect to the bases and 𝜇𝑔 =

√︀
det(𝑔)𝑑𝑥 is

the volume form induced by 𝑔. It is easy to see that this metric is indepen-
dent of the choice of the basis at 𝑥 and it is equal to the Ebin metric on 𝑀
(up to a constant).

Recall that in Section 3.1 we have shown that the mapping 𝜋 : 𝑀+(𝑛,𝑚) →
Sym+(𝑀), 𝜋(𝑎) ↦→ 𝑎𝑇𝑎 is a Riemannian submersion, where the metric on
𝑀+(𝑛,𝑚) is given by (3.1) and the metric on Sym+(𝑚) is given by (3.2).
Similarly, we can define a mapping

𝜋̃ : Ω1
+(𝑀,R𝑛) → Met(𝑀), 𝛼(𝑥) → 𝛼𝑇 (𝑥)𝛼(𝑥)(4.3)

and we have the following theorem:

Theorem 4.2. Let 𝑀 and 𝑛 be such that there exists at least one full-
ranked R𝑛 valued one-form on 𝑀 , i.e., Ω1

+(𝑀,R𝑛) ̸= ∅. Then the mapping
𝜋̃ : Ω1

+(𝑀,R𝑛) → Met(𝑀) is a Riemannian submersion, where Ω1
+(𝑀,R𝑛)
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is equipped with the metric (4.1) and Met(𝑀) carries the multiple of the
Ebin metric, as defined in (4.2).

Proof. We first need to show that 𝜋 is a surjective map, i.e., given 𝑔 ∈
Met(𝑀) we need to construct 𝛽(𝑥) ∈ Ω1

+(𝑀,R𝑛) with 𝜋(𝛽) = 𝑔. Therefore
let 𝛼0 ∈ Ω1

+(𝑀,R𝑛) be any fixed full-ranked one-form and let 𝑔0 be the Rie-
mannian metric induced by 𝛼0 via pulling back the Euclidean scalar product,
see (4.3). Choose now a basis 𝑣1, . . . , 𝑣𝑚 for 𝑇𝑥𝑀 that is orthonormal w.r.t.
𝑔0 and at the same time orthogonal with respect to 𝑔. Then we can define
a new linear transformation 𝛽 : 𝑇𝑥𝑀 → R𝑛 by 𝛽(𝑣𝑖) =

√︀
𝑔(𝑣𝑖, 𝑣𝑖)𝛼(𝑣𝑖). By

construction 𝛽𝑇 (𝑣𝑖)𝛽(𝑣𝑖) = 𝑔(𝑣𝑖, 𝑣𝑖).
To prove that 𝛽 is independent of the choice of bases, we choose another

basis 𝑢1, · · · , 𝑢𝑚 for 𝑇𝑥𝑀 that is orthonormal w.r.t 𝑔0 and orthogonal w.r.t
to 𝑔. Denote by 𝐴 the 𝑚×𝑚 change of basis matrix between these two bases
{𝑣𝑖} and {𝑢𝑗}. It follows immediately that 𝐴 is an orthogonal matrix. Since
{𝑣𝑖} is an orthogonal basis for 𝑇𝑥𝑀 , using Einstein summation notation we
have

𝑔(𝑢𝑗 , 𝑢𝑗) = 𝑔(𝐴𝑠
𝑗𝑣𝑠, 𝐴

𝑇
𝑗 𝑣𝑡) = (𝐴𝑖

𝑗)
2𝑔(𝑣𝑖, 𝑣𝑖).

By the definition of the positive definite square root of a matrix, we also
have √︁

𝑔(𝑢𝑗 , 𝑢𝑗) =(𝐴𝑖
𝑗)

2
√︀

𝑔(𝑣𝑖, 𝑣𝑖).

Note that {𝑣𝑖} is also orthonormal w.r.t to 𝑔0. Thus

𝛽(𝑢𝑗) =𝛽(𝐴𝑖
𝑗𝑣𝑖) = 𝐴𝑖

𝑗

√︀
𝑔(𝑣𝑖, 𝑣𝑖)𝛼(𝑣𝑖) = 𝐴𝑖

𝑗(𝐴
𝑇
𝑖 )2
√︀
𝑔(𝑢𝑡, 𝑢𝑡)𝛼(𝐴𝑠

𝑖𝑢𝑠)

=
√︁
𝑔(𝑢𝑗 , 𝑢𝑗)𝛼(𝑢𝑗)

𝛽(𝑢𝑗)
𝑇𝛽(𝑢𝑗) =𝛽(𝐴𝑠

𝑗𝑣𝑠)
𝑇𝛽(𝐴𝑇

𝑗 𝑣𝑡) = (𝐴𝑖
𝑗)

2𝛽(𝑣𝑖)
𝑇𝛽(𝑣𝑖) = (𝐴𝑖

𝑗)
2𝑔(𝑣𝑖, 𝑣𝑖) = 𝑔(𝑢𝑗 , 𝑢𝑗).

It follows that 𝜋(𝛽) = 𝑔. Since the metric on Ω1
+(𝑀,R𝑛) and the metric on

Met(𝑀) are both point-wise, the remainder of the result is now an immediate
consequence of Theorem 3.3. �

4.2. A product structure for the space of one-forms. We begin this
section by fixing a volume form 𝜇 on 𝑀 . Whenever we refer to a matrix
operation on a 1-form (e.g., trace or transpose), it is assumed that we have
expressed that form locally as a matrix field, using a basis of the tangent
space that has unit volume with respect to 𝜇.

Following the work of [19] we will decompose the space of 1-forms as the
product of the space of volume forms on 𝑀 with the space of 1-forms that
induce the fixed volume form 𝜇, i.e., Ω1

+(𝑀,R𝑛) ≡ Vol(𝑀) × Ω1
𝜇(𝑀,R𝑛),

where Ω1
𝜇(𝑀,R𝑛) denotes the set of all 1-forms such that det

(︀
𝛼𝑇𝛼

)︀
= 1.

A straight-forward calculation shows that the tangent space of Ω1
𝜇(𝑀,R𝑛)

consists of all tangent vectors ℎ ∈ 𝑇𝛼Ω1
𝜇(𝑀,R𝑛) such that tr(𝛼+ℎ) = 0 with

𝛼+ = (𝛼𝑇𝛼)𝛼𝑇 being the Moore-Penrose pseudo-inverse. In the following
lemma we calculate the formula of the metric in this product decomposition:
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Lemma 4.3. In the identification Ω1
+(𝑀,R𝑛) ≡ Vol(𝑀) × Ω1

𝜇(𝑀,R𝑛) the
metric (4.1) takes the form

𝐺̄(𝜌,𝛽) ((𝜈1, ℎ1), (𝜈2, ℎ2)) =

∫︁
𝑀

tr
(︀
ℎ1 (𝛽𝑇𝛽)−1ℎ𝑇2

)︀
𝜌𝜇 +

1

𝑚2

∫︁
𝑀

𝜈1
𝜌

𝜈2
𝜌
𝜌𝜇

The metric 𝐺̄ is not a product metric, since the foot-point volume density 𝜌
appears in both terms above. Note, however, that the decomposition of the
tangent space into directions tangent to Vol(𝑀) and directions tangent to
Ω𝜇(𝑀,R𝑛) are orthogonal to each other with respect to the metric 𝐺̄.

Proof. We first construct a bijection from Vol(𝑀)×Ω1
𝜇(𝑀,R𝑛) to the space

of full-ranked one-forms. Therefore we let

Φ(𝛼) := (𝜌, 𝛽) =

(︂√︁
det(𝛼𝑇𝛼), 𝜌−1/𝑚𝛼

)︂
Φ−1(𝜌, 𝛽) := 𝜌1/𝑚𝛽 .

To see that this mapping has the required properties, we calculate√︁
det(𝛽𝑇𝛽) = 𝜌−1

√︁
det(𝛼𝑇𝛼) = 1 .

To calculate the induced metric on the product we have to calculate the
variation of the inverse mapping. We have

𝑑Φ−1(𝜌, 𝛽)(𝜈, ℎ) = 𝜌1/𝑚ℎ +
1

𝑚
𝜌1/𝑚−1𝜈𝛽

Thus we obtain the formula of the metric on the product space:

𝐺̄(𝜌,𝛽) ((𝜈1, ℎ1), (𝜈2, ℎ2))

= 𝐺Φ−1(𝜌,𝛽)

(︀
𝑑Φ−1(𝜌, 𝛽)(𝜈1, ℎ1), 𝑑Φ−1(𝜌, 𝛽)(𝜈2, ℎ2)

)︀
= 𝐺𝜌1/𝑚𝛽

(︂
𝜌1/𝑚ℎ1 +

1

𝑚
𝜌1/𝑚−1𝜈1𝛽, 𝜌

1/𝑚ℎ2 +
1

𝑚
𝜌1/𝑚−1𝜈2𝛽

)︂
=

∫︁
𝑀

tr
(︀
ℎ1 (𝛽𝑇𝛽)−1ℎ𝑇2

)︀
𝜌𝜇 +

1

𝑚2

∫︁
𝑀

𝜈1
𝜌

𝜈2
𝜌
𝜌𝜇

+
𝑣2
𝑚

∫︁
𝑀

tr
(︀
ℎ1 (𝛽𝑇𝛽)−1𝛽𝑇

)︀
𝜇 +

𝑣1
𝑚

∫︁
𝑀

tr
(︀
𝛽 (𝛽𝑇𝛽)−1ℎ𝑇2

)︀
𝜇

Now the result follows since any tangent vector ℎ to Ω1
𝜇 satisfies

tr
(︀
ℎ (𝛽𝑇𝛽)−1𝛽𝑇

)︀
= 0.

Note that, by standard properties of the trace, this also shows that last term
vanishes. �

Remark 4.4. If one restricts the metric to the space of volume forms
Vol(𝑀) one obtains the Fisher-Rao metric. For this metric the geometry is
well-studied and completely understood, see e.g. [20, 22]. Furthermore, it
has been shown that the Fisher-Rao metric is the unique Riemannian metric
on the space of volume densities that is invariant under the action of the
diffeomorphism group [1, 5, 8].



THE SPACE OF FULL-RANKED ONE-FORMS 21

4.3. The geodesic distance. Any Riemannian metric (on a finite or in-
finite dimensional manifold) gives rise to a (pseudo) distance on the man-
ifold, the geodesic distance. In finite dimensions this distance function is
always a true metric, i.e., symmetric, satisfies the triangle inequality and
non-degenerate. In infinite dimensions it has been shown that the third
property might fail, see [18, 25, 2, 7]. In this section we will observe that the
geodesic distance function of the metric (4.1) can be written as an integral
over the geodesic distance function of a finite dimensional space of matrices
and thus we will obtain the non-degeneracy of the geodesic distance on the
infinite dimensional space of all full ranked one-forms. This is essentially the
same proof as for the Ebin-metric on the space of all Riemannian metrics;
see the work of Clarke [11].

To formulate this result we recall the finite dimensional Riemannian met-
ric on the space 𝑀+(𝑛,𝑚):

⟨𝑢, 𝑣⟩𝑎 = tr
(︀
𝑢 (𝑎𝑇𝑎)−1𝑣𝑇

)︀√︁
det (𝑎𝑇𝑎) .

Furthermore we denote the corresponding geodesic distance by dist𝑛×𝑚(·, ·).
Note that dist𝑛×𝑚 is non-degenerate as the space of 𝑛×𝑚 matrices is finite
dimensional.

With this notation we immediately obtain the following result concerning
the geodesic distance on the infinite dimensional manifold of all full-ranked
one-forms:

Theorem 4.5. The geodesic distance on the manifold Ω1
+(𝑀,R𝑛) is non-

degenerate and satisfies

(4.4) distΩ
1
+(𝛼, 𝛽) ≥

∫︁
𝑀

dist𝑛×𝑚(𝛼(𝑥), 𝛽(𝑥)) 𝜇 .

Proof. To prove this result we only need to show the inequality (4.4). The
non-degeneracy of the geodesic distance follows then directly from the non-
degeneracy of the geodesic distance on finite dimensional manifolds and the
face that two distinct elements of Ω1

+(𝑀,R𝑛) have to differ on a set of
positive measure. The proof of the above inequality is exactly the same as
in [11, Thm. 2.1] �

Remark 4.6. For the Ebin metric on the space of all Riemannian metrics
it has been shown that the analogue of the inequality (4.4) is actually an
equality, i.e., that

distMet(𝛼, 𝛽) =

∫︁
𝑀

dist𝑚×𝑚(𝛼(𝑥), 𝛽(𝑥)) 𝜇 .

It is easy to show this result by allowing paths of one-forms that are only
of class 𝐿2 in 𝑥 ∈ 𝑀 . Therefore one simply chooses for each 𝑥 ∈ 𝑀 a short
path in the finite dimensional manifold R𝑚×𝑚, which immediately yields
the equality. Here a short path means a path of matrices 𝑎(𝑡) such that
len(𝑎(𝑡)) ≤ dist𝑚×𝑚(𝑎(0), 𝑎(1)) + 𝜖 for some 𝜖 > 0. To prove the result in
the smooth category is much harder. We believe, however, that a similar
analysis as in [11] might be used to obtain this result. We leave this question
open for future research.
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4.4. Geodesics and curvature. The point-wise nature of the metric will
allow us to directly use our results for the space of matrices to obtain the
following result concerning geodesics and curvature, c.f. [27, 13].

Theorem 4.7. The geodesic equation of the generalized Ebin metric on
the space of full-ranked one-forms decouples in space and time. Thus for
each 𝑥 ∈ 𝑀 it is given by the ODE (3.5) with explicit solution as presented
in Theorem 3.6. Similarly, the sectional curvature is simply the integral
over the pointwise sectional curvatures and thus the statements on sign-
definiteness of Theorem 3.10 hold also in this infinite dimensional situation.

4.5. On totally geodesic subspaces. In this section we will show that
the space Ω1

+(𝑀,R𝑛) contains two remarkable totally geodesic subspaces.
To understand one of these subspaces, we need some preliminaries. Let
Gr(𝑚,𝑛) denote the Grassmannian manifold of all 𝑚-dimensional linear
subspaces of R𝑛. Define a map

𝑊 : Ω1
+(𝑀,R𝑛) → 𝐶∞(𝑀,Gr(𝑚,𝑛))

by

𝑊 (𝛼)(𝑥) = 𝛼(𝑇𝑥𝑀).

Let 𝜉 denote the canonical 𝑚-plane bundle over Gr(𝑚,𝑛). Given 𝑓 ∈
𝐶∞(𝑀,Gr(𝑚,𝑛)), it is easy to see that 𝑓 ∈ 𝑊 (Ω1

+(𝑀,R𝑛)) if and only
if 𝑇𝑀 ∼= 𝑓*(𝜉). This is because 𝑊 (𝛼) = 𝑓 if and only if 𝛼 is a bundle
isomorphism 𝑇𝑀 → 𝑓*(𝜉).

Theorem 4.8. The following spaces are totally geodesic subspaces of the
space Ω1

+(𝑀,R𝑛) equipped with the generalized Ebin metric:

(1) any one-dimensional space of scalings 𝒜 := {𝑡𝛼0 | 𝑡 ∈ R>0}, where
𝛼0 is a fixed element of Ω1

+(𝑀,R𝑛),

(2) the space ℬ :=
{︀
𝛼 ∈ Ω1

+(𝑀,R𝑛)|𝑊 (𝛼) = 𝑓0
}︀
, where 𝑓0 is any fixed

element of 𝐶∞(𝑀,Gr(𝑚,𝑛)). (Note that this space is empty unless
𝑇𝑀 ∼= 𝑓*

0 (𝜉), by the remark just above this Lemma).

Proof. Here we use the point-wise nature of the metric (4.1) on the space
Ω1
+(𝑀,R𝑛). Let 𝑥 ∈ 𝑀 and {𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑚} be an orthonormal basis of

𝑇𝑥𝑀 . Choosing the standard basis for R𝑛, (1) follows immediately from the
first statement of Theorem 3.8.

Now we prove (2), i.e., the space ℬ is a totally geodesic subspace. Since
𝛼 is a bundle isomorphism 𝑇𝑀 → 𝑓*(𝜉), for each 𝑥 ∈ 𝑀 the image of the
orthonormal basis under 𝛼𝑥, denoted by {𝑒𝑖 = 𝛼𝑥(𝑒𝑖)}, forms an orthonor-
mal basis of 𝜉𝑓0(𝑥). Note that 𝜉𝑓0(𝑥) = 𝑓0(𝑥) is a 𝑚-plane. So we can extend
this orthonormal basis to get an orthonormal basis {𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑛} of R𝑛.
With respect to this basis {𝑒𝑖} of 𝑇𝑥𝑀 and the basis {𝑒𝑖} of R𝑛, it is easy to
see that each linear transformation in {𝛼𝑥 : 𝑇𝑥𝑀 → R𝑛 |𝑊 (𝛼)(𝑥) = 𝑓0(𝑥)}
corresponds to a matrix in GL(𝑚) (extended to a 𝑛×𝑚 matrix with zeros).
Thus the result follows from the second statement of Theorem 3.8. �

4.6. Metric and geodesic incompleteness. As a consequence that scal-
ing of a full ranked one-form is totally geodesic we immediately obtain the
geodesic and metric incompleteness of the metric:
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Theorem 4.9. The space Ω1
+(𝑀,R𝑛) is metrically and geodesically incom-

plete.

Proof. This follows directly from the fact that scaling of a metric yields
geodesic curves that leave the space in finite time, c.f. Theorem 4.8. �

To obtain the metric completion we believe that a similar strategy as in
[12] will lead to the following result:

Conjecture 4.10. The metric completion of the space Ω1
+(𝑀,R𝑛) equipped

with the geodesic distance function of the generalized Ebin metric is the
quotient space Ω1(𝑀,R𝑛)/ ∼, where 𝛼 ∼ 𝛽 if the statement

𝛼(𝑥) ̸= 𝛽(𝑥) ⇐⇒ rank(𝛼(𝑥)) < min(𝑛,𝑚) and rank(𝛽(𝑥)) < min(𝑛,𝑚)

holds almost surely.

The proof of [12] used rather heavy machinery from geometric measure
theory. To develop this theory in the current context is out of the scope of
the present article. Thus we leave this question open for future research.

5. An application: Reparametrization invariant metrics on the
space of open curves

In this section we will describe the relation of our proposed metric to
the square root framework as developed for shape anlysis of curves [32, 34,
30]. In contrast to the aforementioned framework our construction is not
limited to one-dimensional objects, but has a direct generalization to higher
dimensional objects, notably to the space of surfaces. We plan to develop
this line of research in a future application oriented article and will focus
mainly on the simpler space of curves in this section.

In the following we denote the space of immersed curves in R𝑛 by

Imm([0, 1],R𝑛) :=
{︀
𝑐 ∈ 𝐶∞([0, 1],R𝑛) : |𝑐′| ≠ 0

}︀
.

Here 𝑐′ denotes the derivative of 𝑐 with respect to 𝜃 ∈ [0, 1]. We can map
each curve to a R𝑛-valued one-form on [0, 1] via 𝑐 ↦→ 𝑐′𝑑𝜃. The immersion
condition ensures that the resulting one-form actually has full rank and thus
we obtain a bijection

(5.1) Φ : Imm([0, 1],R𝑛)/ trans → Ω1
+([0, 1],R𝑛) .

Here we had to identify curves that differ only by a translation as they
all get mapped to the same one-form. Pulling back the metric (4.1) on
Ω1
+([0, 1],R𝑛), one obtains a reparametrization invariant metric on the space

of curves modulo translations. It turns out that this metric is exactly the
Younes-metric as studied in [32]:
(5.2)

(Φ*𝐺)𝑐(ℎ, 𝑘) = 𝐺Φ(𝑐) (𝑑Φ(𝑐)(ℎ), 𝑑Φ(𝑐)(𝑘)) =

∫︁ 1

0

ℎ𝜃.𝑘𝜃
|𝑐′|

𝑑𝜃 =

∫︁ 1

0
𝐷𝑠ℎ.𝐷𝑠𝑘𝑑𝑠,

where 𝑐 ∈ Imm([0, 1],R𝑛) and ℎ, 𝑘 ∈ 𝑇𝑐 Imm([0, 1],R𝑛). Here 𝐷𝑠 = 1
|𝑐′|

denotes arc-length differentiation and 𝑑𝑠 = |𝑐′|𝑑𝜃 denotes integration with
respect to arc length. In the article [34] the authors introduced a transfor-
mation for this metric that allows to obtain explicit formulas for geodesics
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between open and closed curves in the plane. Implicitly this has been ex-
tended to open curves in arbitrary dimension in the articles [28]. By consid-
ering the formulas of Section 4.4 in the special case studied in this section
we obtain an explicit formula for geodesics for curves in arbitrary dimension
and in addition we obtain the non-negativity of the sectional curvature:

Theorem 5.1. Let 𝑐0 ∈ Imm([0, 1],R𝑛) and ℎ ∈ 𝑇𝑐 Imm([0, 1],R𝑛). The ge-
odesic on the space of open curves modulo translations Imm([0, 1],R𝑛)/ trans
starting at 𝑐0 in the direction ℎ with respect to the metric (5.2) is given by

𝑐(𝑡) = 𝑓(𝑡)𝑒−𝑠(𝑡)(𝑉 𝑇−𝑉 )𝑐0,(5.3)

where

𝑉 = ℎ 𝑐′+0 , 𝛿0 = tr(𝑉 𝑇𝑉 ), 𝜏0 = tr(𝑉 ),

𝑓(𝑡) =
𝛿0
4
𝑡2 + 𝜏0𝑡 + 1, 𝑠(𝑡) =

∫︁ 𝑇

0
1/𝑓(𝜎)𝑑𝜎 .

Furthermore, the sectional curvature of Imm([0, 1],R𝑛)/ trans with respect
to the metric (5.2) is always non-negative for 𝑛 ≥ 2 and vanishes for 𝑛 = 2.

Proof. To prove the statement on the explicit solution formula we consider
the formula given in Theorem 3.6 for 𝑚 = 1. Let 𝑐(𝑡, 𝜃) be the geodesic
starting at 𝑐0 in direction ℎ. We will use 𝑐′ to denote the derivative with
respect to 𝜃 and 𝑐𝑡 to denote the derivative in time 𝑡. Using the notation
𝑉 = 𝑐′𝑡(0)𝑐′+(0) = ℎ𝑐′+0 we have:

𝑐𝜃(𝑡) = 𝑓(𝑡)𝑒−𝑠(𝑡)𝜔0𝑐′0𝑒
𝑠(𝑡)𝑃0 ,

where 𝑓(𝑡) and 𝑠(𝑡) are as in Theorem 3.6, 𝜔0 = 𝑉 𝑇 − 𝑉 and where

𝑃0 =
(︀
𝑐𝑇𝜃 𝑐𝜃

)︀−1
𝑣𝑇 𝑐𝜃 − 𝜏0 = 0 ,

Taking the integral with respect to 𝜃 formula (5.3) follows. The result on
the sectional curvature follows directly from statement (3) of Theorem 3.10
and Theorem 4.7. �

In Figure 1, we present one example of a geodesic, that was computed
using the explicit formula derived above.

5.1. The space of surfaces. In this section we will briefly comment on
the difficulties that arise for using the same method to obtain a frame-
work for shape analysis of surfaces. As mentioned above, in the case of
curves, the mapping Φ in (5.1) gives us a bijection between the space of
curves modulo translations and the space of full rank R𝑛-valued one-forms
on [0, 1]. Thus the preimage of a geodesic in the space Ω1

+([0, 1],R𝑛) gives
a geodesic in the space of immersed curves in R𝑛. However, in the case
of (two-dimensional) surfaces in R3 (here typically 𝑛 will be 3), the opera-
tor 𝑑 : Imm(𝑆2,R3)/ trans → Ω1

+(𝑆2,R3) only induces a bijection between
Imm(𝑆2,R3)/ trans and the space of full rank and exact one forms, denoted
by Ω1

+,ex(𝑆2,R3), which is a proper subspace of Ω1
+(𝑆2,R3). Furthermore

Ω1
+,ex(𝑆2,R3) is not a totally geodesic submanifold of Ω1

+(𝑆2,R3) and so

geodesics in Ω1
+(𝑆2,R3) do not give rise to geodesics in Imm(𝑆2,R3)/ trans.
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Figure 5. A geodesic in the space of surfaces modulo trans-
lations with respect to the generalized Ebin metric (4.1).

Thus using this representation for shape analysis of surfaces will require
some extra work. A potential approach is to study the submanifold geometry
of Ω1

+,ex(𝑆2,R3) in more detail to obtain an explicit solution formula in this
space. Alternatively one could work in the space of all full rank one-forms
Ω1
+(𝑆2,R3) and project the geodesic onto the submanifold Ω1

+,ex(𝑆2,R3). In
Figure 2 and 5, we present examples of geodesics between two parametrized
surfaces with respect to the pull-back metric, that have been calculated
using a discretization of the space of full ranked exact one-forms. This is
part of a very preliminary work, that we will pursue in a future application
oriented article.

Appendix A. The computation of the geodesic formula in the
space 𝑀+(𝑛,𝑚)

In this appendix we give the computation of the geodesic formula in the
space 𝑀+(𝑛,𝑚) with respect to the metric (3.1). Recall that the geodesic
equation on 𝑀+(𝑛,𝑚) is given by

(A.1)
𝑎𝑡𝑡 =𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡 𝑎 + 𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇𝑎𝑡 − 𝑎(𝑎𝑇𝑎)−1𝑎𝑇𝑡 𝑎𝑡

+
1

2
tr
(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡
)︀
𝑎− tr

(︀
𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇
)︀
𝑎𝑡,

and a simpler form of the geodesic equation for 𝐿 = 𝑎𝑡𝑎
+ is given by

𝐿𝑡 + tr(𝐿)𝐿 + (𝐿𝑇𝐿− 𝐿𝐿𝑇 ) − 1

2
tr(𝐿𝑇𝐿)𝑎𝑎+ = 0.(A.2)

To solve the equation (A.1), we start with the equation (A.2) for 𝐿(𝑡) and
we have the following proposition.

Proposition A.1. Suppose 𝑎 and 𝐿 are as in (A.1) and (A.2). Define
𝛿 = tr(𝐿𝑇𝐿) and 𝜏 = tr(𝐿). Then 𝜏 and 𝛿 satisfy the differential equations{︃

𝜏𝑡 + 𝜏2 − 𝑚
2 𝛿 = 0, 𝜏(0) = 𝜏0 = tr(𝐿(0))

𝛿𝑡 + 𝜏𝛿 = 0, 𝛿(0) = 𝛿0 = tr(𝐿(0)𝑇𝐿(0)).
(A.3)

The solution of these equations is

(A.4) 𝜏(𝑡) =
𝑓𝑡(𝑡)

𝑓(𝑡)
, 𝛿(𝑡) =

𝛿0
𝑓(𝑡)

,

where

(A.5) 𝑓(𝑡) =
𝑚𝛿0

4
𝑡2 + 𝜏0𝑡 + 1.
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Proof. The trace of (A.2) yields the first equation in (A.3) since tr (𝑎𝑎+) =
tr(𝑎+𝑎) = tr(𝐼𝑚×𝑚) = 𝑚. Notice that 𝐿𝑎𝑎+ = 𝐿. We have

tr(𝐿𝑇𝑎𝑎+) = tr(𝑎𝑎+𝐿𝑇 ) = tr((𝐿𝑎𝑎+)𝑇 ) = tr(𝐿𝑇 ) = tr(𝐿).

Multiplying (A.2) on the left by 𝐿𝑇 yields the second equation in (A.3). The
system (A.3) is exactly the same system as in the work of Freed-Groisser [19].
Thus we can use the same trick to solve it. Write 𝜏(𝑡) = 𝑓𝑡(𝑡)/𝑓(𝑡) where
𝑓(0) = 1, and the first equation in (A.3) becomes

𝑓𝑡𝑡(𝑡) =
𝑚

2
𝛿(𝑡)𝑓(𝑡), 𝑓(0) = 1, 𝑓𝑡(0) = 𝜏0.

Meanwhile the second equation in (A.3) becomes
𝑑

𝑑𝑡
(𝛿𝑓) = 0, which can

immediately be solved to give 𝛿(𝑡) = 𝛿0/𝑓(𝑡). So the second derivative

𝑓𝑡𝑡(𝑡) =
𝑚𝛿0

2
is constant, and with 𝑓𝑡(0) = 𝜏0 and 𝑓(1) = 1, we get the

solution 𝑓(𝑡) =
𝑚𝛿0

4
𝑡2 + 𝜏0𝑡 + 1. Formula (A.4) follows. �

With explicit solutions for 𝜏(𝑡) and 𝛿(𝑡) in hand, we can now solve the
rest of the geodesic equation (A.2) with initial 𝐿(0), given by

(A.6) 𝐿𝑡 +
𝑓𝑡
𝑓
𝐿 + (𝐿𝑇𝐿− 𝐿𝐿𝑇 ) − 𝛿0

2𝑓
𝑎𝑎+ = 0.

Lemma A.2. Let 𝑀(𝑡) = 𝐿(𝑡) − 𝜏(𝑡)

𝑚
𝑎(𝑡)𝑎+(𝑡). Then 𝐿 satisfies (A.6) if

and only if 𝑀 satisfies

𝑀𝑡 +
𝑓𝑡
𝑓
𝑀 + (𝑀𝑇𝑀 −𝑀𝑀𝑇 ) = 0.(A.7)

Proof. We first compute

(𝑎𝑎+)𝑡 =
(︀
𝑎(𝑎𝑇𝑎)−1𝑎𝑇

)︀
𝑡

=𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇 − 𝑎(𝑎𝑇𝑎)−1

(︀
𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡

)︀
(𝑎𝑇𝑎)−1𝑎𝑇 + 𝑎(𝑎𝑇𝑎)−1𝑎𝑇𝑡

=𝐿− 𝐿𝑇𝑎𝑎+ − 𝑎𝑎+𝐿 + 𝐿𝑇

=𝑀 −𝑀𝑇𝑎𝑎+ − 𝑎𝑎+𝑀 + 𝑀𝑇 .

Here we used that 𝐿 = 𝑎𝑡𝑎
+ = 𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇 , that 𝜏𝑡 =
𝑚

2
𝛿 − 𝜏2 and that

𝑀𝑎𝑎+ = 𝑀 . Thus we obtain

𝐿𝑡 =𝑀𝑡 +
𝛿0
2𝑓

𝑎𝑎+ − 𝜏2

𝑚
𝑎𝑎+ +

𝜏

𝑚

(︀
𝑀 −𝑀𝑇𝑎𝑎+ − 𝑎𝑎+𝑀 + 𝑀𝑇

)︀
,

𝑓𝑡
𝑓
𝐿 =

𝑓𝑡
𝑓
𝑀 +

𝜏2

𝑚
𝑎𝑎+,

𝐿𝑇𝐿− 𝐿𝐿𝑇 =𝑀𝑇𝑀 −𝑀𝑀𝑇 +
𝜏

𝑚
𝑎𝑎+𝑀 +

𝜏

𝑚
𝑀𝑇𝑎𝑎+ − 𝜏

𝑚
𝑀𝑇 − 𝜏

𝑚
𝑀.

Replacing the terms in (A.6) with the formulas above we obtain equation
(A.7) and thus the statement follows. �
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Proposition A.3. The solution of (A.6) satisfies

(A.8) 𝐿(𝑡) =
1

𝑓(𝑡)
𝑒−𝑠(𝑡)𝜔0𝑀0𝑒

𝑠(𝑡)𝜔0 +
𝑓𝑡(𝑡)

𝑚𝑓(𝑡)
𝑎(𝑡)𝑎(𝑡)+,

where 𝜔0 = 𝐿(0)𝑇 − 𝐿(0), 𝑠(𝑡) =
∫︀ 𝑇
0

𝑑𝜎

𝑓(𝜎)
and 𝑀0 = 𝐿(0) − 𝜏0

𝑚
𝑎(0)𝑎+(0).

Proof. Use equation (A.7) and set 𝑀(𝑡) = 𝑁(𝑡)/𝑓(𝑡). Then 𝑁 satisfies

𝑁𝑡 +
1

𝑓
(𝑁𝑇𝑁 −𝑁𝑁𝑇 ) = 0.

Changing variables to 𝑠(𝑡) =
∫︀ 𝑇
0

𝑑𝜎

𝑓(𝜎)
we obtain

(A.9) 𝑁𝑠 + 𝑁𝑇𝑁 −𝑁𝑁𝑇 = 0.

Note that the transpose of (A.9) is 𝑁𝑇
𝑠 + 𝑁𝑇𝑁 −𝑁𝑁𝑇 = 0. It follows that

𝜔 = 𝑁𝑇 − 𝑁 is constant in time, and thus 𝜔 = 𝜔0 = 𝑁𝑇 (0) − 𝑁(0) =
𝑀𝑇 (0) −𝑀(0) = 𝐿𝑇 (0) − 𝐿(0). We can rewrite (A.9) as

𝑁𝑠 = 𝑁𝑁𝑇 −𝑁𝑇𝑁 = −𝜔0𝑁 + 𝑁𝜔0 = [−𝜔0, 𝑁 ].

Then we obtain the solution

𝑁(𝑠) = 𝑒−𝑠𝜔0𝑁(0)𝑒𝑠𝜔0 .(A.10)

Translate (A.10) back into

𝐿(𝑡) = 𝑀(𝑡) +
𝜏

𝑚
𝑎(𝑡)𝑎+(𝑡) =

1

𝑓(𝑡)
𝑁(𝑡) +

𝜏

𝑚
𝑎(𝑡)𝑎+(𝑡),

we obtain (A.8). �

Using formula (A.8) of 𝐿(𝑡) we are now able to obtain a solution formula
for the flow equation 𝑎𝑡(𝑡) = 𝐿(𝑡)𝑎(𝑡).

Theorem A.4. Let 𝑓(𝑡) be of the same form as in (A.5). Then the solution
of the flow 𝑎𝑡(𝑡) = 𝐿(𝑡)𝑎(𝑡) with initial data 𝑎(0) is given by

𝑎(𝑡) = 𝑓(𝑡)1/𝑚𝑒−𝑠(𝑡)𝜔0𝑎(0)𝑒𝑠(𝑡)𝑃0 ,(A.11)

where 𝜔0 = 𝐿𝑇 (0) − 𝐿(0) and

𝑃0 =
(︀
𝑎𝑇 (0)𝑎(0)

)︀−1
𝑎𝑡(0)𝑇𝑎(0) − 𝜏0

𝑚
𝐼𝑚×𝑚.

Proof. Using (A.8), the equation for 𝑎(𝑡) becomes

𝑎𝑡 = 𝐿𝑎 =
1

𝑓
𝑒−𝑠𝜔0𝑀0𝑒

𝑠𝜔0𝑎 +
𝑓𝑡
𝑚𝑓

𝑎.

Write 𝑎(𝑡) = 𝑓(𝑡)1/𝑚𝑄(𝑡) to eliminate the second term. Then we have

𝑄𝑡 =
1

𝑓
𝑒−𝑠𝜔0𝑀0𝑒

𝑠𝜔0𝑄.

Changing variables to 𝑠(𝑡) =
∫︀ 𝑇
0

𝑑𝜎

𝑓(𝜎)
we obtain

𝑄𝑠 = 𝑒−𝑠𝜔0𝑀0𝑒
𝑠𝜔0𝑄.
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Now let 𝑄(𝑠) = 𝑒−𝑠𝜔0𝑅(𝑠). Then 𝑅(𝑠) satisfies the differential equation

𝑅𝑠 =𝜔0𝑅 + 𝑀0𝑅 = 𝑀𝑇
0 𝑅

=(𝐿𝑇 (0) − 𝜏0
𝑚
𝑎(0)𝑎+(0))𝑅

=𝑎(0)
(︁

(𝑎𝑇 (0)𝑎(0))−1𝑎𝑇𝑡 (0) − 𝜏0
𝑚
𝑎+(0)

)︁
𝑅.

Notice that the initial 𝑅(0) = 𝑎(0) and 𝑅𝑠 is always of the form 𝑎(0) times
a 𝑚×𝑚 matrix. Therefore we must have 𝑅(𝑠) = 𝑎(0)𝐵(𝑠) for some 𝑚×𝑚
matrix 𝐵, which satisfies 𝐵(0) = 𝐼𝑚×𝑚 and

𝐵𝑠 =
(︁(︀

𝑎𝑇 (0)𝑎(0)
)︀−1

𝑎𝑡(0)𝑇𝑎(0) − 𝜏0
𝑚
𝐼𝑚×𝑚

)︁
𝐵(𝑠).(A.12)

Let 𝑃0 =
(︀
𝑎𝑇 (0)𝑎(0)

)︀−1
𝑎𝑡(0)𝑇𝑎(0)− 𝜏0

𝑚
𝐼𝑚×𝑚. The solution of the equation

(A.12) with initial 𝐵(0) = 𝐼𝑚×𝑚 is

𝐵(𝑠) = 𝑒𝑠𝑃0 .

Changing back to 𝑡 variables, formula (A.11) follows immediately. �

Appendix B. The space of symmetric matrices (revisited)

In this appendix we re-derive some classical results by [19, 21, 12, 16]
concerning the (finite-dimensional version of the) Ebin-metric on the space
of symmetric matrices using our Riemannian submersion picture. We first
present the geodesic equation on Sym+(𝑚), which corresponds to the hori-
zontal geodesic equation on 𝑀+(𝑛,𝑚):

Corollary B.1. The geodesic equation on Sym+(𝑚) with respect to the
metric 3.2 is given by

𝑔𝑡𝑡 = 𝑔𝑡𝑔
−1𝑔𝑡 +

1

4
tr(𝑔−1𝑔𝑡𝑔

−1𝑔𝑡)𝑔 −
1

2
tr(𝑔−1𝑔𝑡)𝑔𝑡.

Proof. We identify the space of symmetric matrices Sym+(𝑚) with the quo-
tient space SO(𝑛)∖𝑀+(𝑛,𝑚) and consider the horizontal geodesic equation
on 𝑀+(𝑛,𝑚), which is given by

𝑎𝑡𝑡 = 𝑎𝑡𝑎
+𝑎𝑡 +

1

2
tr(𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑡 )𝑎− tr(𝑎𝑡𝑎
+)𝑎𝑡.(B.1)

This is a straight-forward calculation using that 𝑎𝑡𝑎
+ is symmetric. Now

consider a smooth curve 𝑔(𝑡) in the space of symmetric matrices Sym+(𝑚).

Then 𝑔(𝑡) = 𝜋(𝑎(𝑡)) = 𝑎(𝑡)𝑇𝑎(𝑡) for some horizontal lift 𝑎(𝑡) ∈ 𝑀+(𝑛,𝑚)
and

𝑔𝑡 = 𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡; 𝑔𝑡𝑡 = 𝑎𝑇𝑡𝑡𝑎 + 2𝑎𝑇𝑡 𝑎𝑡 + 𝑎𝑇𝑎𝑡𝑡.

Inserting the expression of 𝑎𝑡𝑡 in (B.1) we obtain

𝑔𝑡𝑡 =𝑎𝑇𝑡𝑡𝑎 + 2𝑎𝑇𝑡 𝑎𝑡 + 𝑎𝑇𝑎𝑡𝑡

=𝑎𝑇𝑡 𝑎(𝑎𝑇𝑎)−1𝑎𝑇𝑡 𝑎 + 2𝑎𝑇𝑡 𝑎𝑡 + 𝑎𝑇𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇𝑎𝑡

+ tr(𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇𝑡 )𝑎𝑇𝑎− tr(𝑎𝑡𝑎

+)(𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡)

Notice that 𝑎+𝑎 = 𝐼 and 𝑎𝑡𝑎
+ is symmetric. It is easy to check that

𝑔𝑡𝑔
−1𝑔 = 𝑎𝑇𝑡 𝑎(𝑎𝑇𝑎)−1𝑎𝑇𝑡 𝑎 + 2𝑎𝑇𝑡 𝑎𝑡 + 𝑎𝑇𝑎𝑡(𝑎

𝑇𝑎)−1𝑎𝑇𝑎𝑡.
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Similar to the calculation in Theorem 3.3 we obtain
1

4
tr(𝑔−1𝑔𝑡𝑔

−1𝑔𝑡) =
1

4
tr((𝑎𝑇𝑎)−1(𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡)(𝑎

𝑇𝑎)−1(𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡))

= tr(𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇𝑡 ),

and
1

2
tr(𝑔−1𝑔𝑡) =

1

4
tr((𝑎𝑇𝑎)−1(𝑎𝑇𝑡 𝑎 + 𝑎𝑇𝑎𝑡)(𝑎

𝑇𝑎)−1(𝑎𝑇𝑎 + 𝑎𝑇𝑎))

= tr(𝑎𝑡(𝑎
𝑇𝑎)−1𝑎𝑇 ) = tr(𝑎𝑡𝑎

+).

The conclusion follows. �

Using Theorem 3.10 and O’Neill’s curvature formula we obtain the cur-
vature of the space of symmetric matrices. which agrees with the formula
of [19]:

Corollary B.2. The space
(︀
Sym+(𝑚), ⟨·, ·⟩Sym

)︀
has negative sectional cur-

vature given by:

𝒦Sym
𝑔 (ℎ, 𝑘) =

1

16

[︀
tr([𝑔−1ℎ, 𝑔−1𝑘]2) +

𝑚

4

(︀
tr(𝑔−1ℎ𝑔−1𝑘)

)︀2
− 𝑚

4
tr
(︀
(𝑔−1ℎ)2

)︀
tr
(︀
(𝑔−1𝑘)2

)︀ ]︀√︀
det(𝑔)

Proof. Similarly as in Section 3.1 we identify the space of symmetric ma-
trices Sym+(m) with the quotient space SO(𝑛)∖𝑀+(𝑛,𝑚). Using the fact
that the metrics on 𝑀+(𝑚,𝑛) and Sym(𝑚) are connected via a Riemann-
ian submersion, we can calculate the curvature of the quotient space using
O’Neill’s curvature formula.

Let 𝑔 ∈ Sym+(𝑚) and ℎ, 𝑘 ∈ 𝑇𝑔 Sym+(𝑚) be two orthonormal tangent
vectors with respect to the metric (3.2). Then we have a lift 𝑎 ∈ 𝑀+(𝑛,𝑚)

and the horizontal lifts ℎ̃, 𝑘 ∈ 𝑇𝑎 (𝑀+(𝑛,𝑚)) of ℎ, 𝑘 such that

𝜋(𝑎) = 𝑔, 𝑑𝜋𝑎(ℎ̃) = ℎ, 𝑑𝜋𝑎(𝑘) = 𝑘.

Since 𝑑𝜋𝑎 is an isometry, ℎ̃, 𝑘 are orthonormal with respect to the metric
(3.1). Recall from Theorem 3.3 that any horizontal tangent vectors 𝑢 at
𝑎 ∈ 𝑀+(𝑛,𝑚) has the property that 𝑈 = 𝑢𝑎+ is symmetric. Thus by

Theorem 3.10 the sectional curvature 𝒦 at 𝑎 for ℎ̃, 𝑘 ∈ 𝑇𝑎(𝑀+(𝑛,𝑚)) is
given by:

𝒦𝑎(ℎ̃, 𝑘)

=

(︂
7

4
tr
(︁

[𝐻̃0, 𝐾̃0]
2
)︁

+
𝑚

4

(︁
tr(𝐻̃0𝐾̃0)

)︁2
− 𝑚

4
tr(𝐻̃2

0 ) tr(𝐾̃2
0 )

)︂√︁
det(𝑎𝑇𝑎).

It remains to calculate O’Neill’s curvature term. We have

[ℎ̃, 𝑘]𝑎+ = (ℎ̃𝑎+𝑘 − 𝑘𝑎+ℎ̃)𝑎+ = 𝐻̃𝐾̃ − 𝐾̃𝐻̃ = [𝐻̃, 𝐾̃],

where the commutator on the right side is the usual matrix commutator,
which is defined for any two square matrices. Notice that for symmetric 𝐻̃
and 𝐾̃, the commutator [𝐻̃, 𝐾̃] is skew-symmetric and thus [ℎ̃, 𝑘] = ℎ̃𝑎+𝑘−
𝑘𝑎+ℎ̃ is in the vertical bundle. Therefore the O’Neill term is given by

3

4
⟨[𝐻̃, 𝐾̃], [𝐻̃, 𝐾̃]⟩𝑎 = −3

4
tr([𝐻̃, 𝐾̃]2)

√︁
det(𝑎𝑇𝑎).



30 MARTIN BAUER, ERIC KLASSEN, STEPHEN C. PRESTON, AND ZHE SU

Notice that tr([𝐻̃, 𝐾̃]2) = tr([𝐻̃0, 𝐾̃0]
2). Using O’Neill’s curvature formula

we then obtain the sectional curvature on the quotient space:

𝒦Sym
𝑔 (ℎ, 𝑘)

=

(︂
tr
(︁

[𝐻̃0, 𝐾̃0]
2
)︁

+
𝑚

4

(︁
tr(𝐻̃0𝐾̃0)

)︁2
− 𝑚

4
tr(𝐻̃2

0 ) tr(𝐾̃2
0 )

)︂√︁
det(𝑎𝑇𝑎).

It is straightforward calculation to show that

tr
(︁

[𝐻̃0, 𝐾̃0]
2
)︁

=
1

16
tr([𝑔−1ℎ, 𝑔−1𝑘]2);

tr(𝐻̃0𝐾̃0) =
1

4
tr(𝑔−1ℎ𝑔−1𝑘);

tr(𝐻̃2
0 ) tr(𝐾̃2

0 ) =
1

16
tr
(︀
(𝑔−1ℎ)2

)︀
tr
(︀
(𝑔−1𝑘)2

)︀
.

Therefore, the result follows. �
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