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Abstract. In this article we study breakdown of solutions for (generalized) Euler-Arnold equations
on Rn. Our method is based on treating the equation in Lagrangian coordinates, where it is an ODE
on the diffeomorphism group, and comparison with the Liouville equation; in contrast to the usual
comparison approach at a single point, we apply comparison in an infinite dimensional function
space. We thereby show that the Jacobian of the Lagrangian flow map of the solution reaches zero
in finite time, which corresponds to C1-breakdown of the velocity field solution. We demonstrate the
applicability of our result by proving breakdown of smooth solutions to some higher-order versions of
the EPDiff equation in all dimensions n ≥ 3, even in situations where the one-dimensional equation
has global solutions, such as the EPDiff equation corresponding to a Sobolev metric of order two.
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1. Introduction

1.1. Background. In his seminal paper [2] Arnold recast Euler’s equation for the motion of an
incompressible fluid as the geodesic equation of a (right invariant) Riemannian metric on the
group of volume preserving diffeomorphisms. Since then it has been shown that an analogous
geometric interpretation—as geodesic equations of a right-invariant connection on a group of
diffeomorphisms—exists for many prominent PDEs in mathematical physics; such equations are
now commonly referred to as (generalized) Euler-Arnold equations. Examples include the Camassa-
Holm [12, 46, 38], the Hunter-Saxton [35, 41], the modified Constantin-Lax-Majda [16, 28], the
KdV [52], or the surface quasi-geostrophic equation (SQG) [58]. See also [3, 57] for further exam-
ples.

In this article we will be interested the family of non-linear PDE of order 2k ∈ R given by

(1) Ωt +∇UΩ+ (∇U)TΩ+ div(U)Ω = 0, Ω = (σ −∆)kU, σ ≥ 0, k ≥ 0

where U : [0, T )× Rn → Rn is a time dependent vector field and ∆ is the vector Laplacian on Rn.
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2 BREAKDOWN OF EULER-ARNOLD EQUATIONS

The interest in this family of equations can be motivated from different angles. First, it en-
compasses several of the above mentioned physically relevant PDEs as special cases, including the
Camassa-Holm, the Hunter-Saxton equations, and the mCLM equation. Second, it admits a geo-
metric interpretation as an Euler-Arnold equation, i.e., it can be realized as the geodesic equation
of the right-invariant Sobolev metric of order k on the group of diffeomorphisms of Rn. Such
equations are often also called EPDiff equations, short for Euler-Poincaré equation on the diffeo-
morphism group. Note that the terminology EPDiff was first used for the Euler-Arnold equation of
the right invariant Sobolev metric of order one (corresponding to the Camassa-Holm equation) (see
e.g., [34, 33]), but since then it has become common to use it more broadly for Euler-Arnold equa-
tions of general (Riemannian or Finslerian) metrics on groups of diffeomorphisms, see [50, 11, 6, 17]
and the references therein. Finally, right invariant Sobolev metrics on diffeomorphism groups and
thus equation (1) take a central role in the fields of template matching and shape analysis [60, 23],
particularly in the widely acclaimed LDDMM framework [10]. This approach, following the spirit
of Grenander’s pattern theory [32], represents the differences between shapes as optimal transfor-
mations (diffeomorphisms) between objects, where the optimality is measured with respect to a
right invariant metric of high order on the transformation group. Consequently the EPDiff equa-
tion arises as the first order optimality condition. In this context, it is also known as the template
matching equation.

Over the past decades the short and long-time existence of the EPDiff equation has been stud-
ied in detail. A significant amount of this analysis dates back to the seminal paper of Ebin and
Marsden [25], who used Arnold’s geometric picture [2] to obtain local well-posedness of the incom-
pressible Euler-equations. Using similar methods, the local well-posedness for the EPDiff equation
has been established, assuming that the order k satisfies k ≥ 1

2 (independently of the dimension n);
see [29, 48, 27, 6, 4, 56]. Global existence can sometimes be established using entirely geometric
arguments: if the order k > n

2 +1 then the corresponding geometric description can be extended to
a strong, right-invariant metric on a group of Sobolev diffeomorphisms. In this setting the global
existence of solutions holds true by general arguments, and one directly obtains the global well-
posedness in the smooth category by applying an Ebin-Marsden type of no-loss-no-gain argument;
see e.g., the work by Escher, Kolev, Michor, Mumford and others [11, 26, 50, 48, 6, 7, 25].

For the EPDiff equation of order k = 0 and k = 1, much work has been dedicated to showing
that the global wellposedness fails, i.e., that there exists smooth initial conditions such that the
corresponding solutions break down in finite time. In particular in dimension n = 1 and order
k = 0 this corresponds to breakdown of the inviscid Burgers’ equation. For n = 1 and k = 1,
we have to distinguish between the homogeneous inertia operator A = −∂2

x, corresponding to the
Hunter-Saxton equation, and the non-homogeneous inertia operator A = 1− ∂2

x, corresponding to
the Camassa-Holm equation. Breakdown (wave breaking) for the Camassa-Holm equation is known
from the original paper of Camassa and Holm [12]; see also [14] for a more rigorous mathematical
analysis. The complete picture of the breakdown mechanism for this equation has been obtained
by McKean [45]. For the Hunter-Saxton equation the situation is much simpler, as one can obtain
an explicit solution formula [41, 5] which then directly leads to proof of breakdown; see also [59].
Note that this yields a complete characterization for (integer order) EPDiff equations in dimension
one: they are globally well-posed for any smooth initial conditions if k ≥ 2, and there exist initial
conditions such that the corresponding solutions break down in finite time for k ∈ {0, 1}.

Studying breakdown for solutions to higher-dimensional EPDiff equations was first proposed by
Chae and Liu in [13], where they also confirmed breakdown for the higher dimensional Burgers’
equation (k = 0). For the higher dimensional Camassa-Holm equation (k = 1), this result has been
obtained by Li, Yu, and Zhai in [42], who showed that the breakdown mechanism of dimension one
can be adapted to the higher dimensional situation. In the higher dimensional situation there is,
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however, a gap to the global well-posedness results for the EPDiff equation: already in dimension
two the global existence result is only valid for k ≥ 3; furthermore all the above breakdown results
for EPDiff equations in higher dimensions are only for equations with k = 0 or k = 1 where the
one-dimensional version already admits breakdown. The main results of the present article, which
we will describe next, are of a different nature: they include cases where the breakdown of the
equation is a genuinely higher dimensional phenomenon; specifically we deal primarily with the
case k = 2 where the one-dimensional equation has global solutions for all initial conditions, while
in dimensions n ≥ 3 we will show that some solutions exhibit breakdown. Furthermore we suspect
that the methods presented here can be adapted to any value of k < n

2 + 1 (including non-integer
k) and in any dimension to produce similar results. Note that this would yield an almost complete
characterization, as for k > n

2 + 1 it is known that global existence of solutions holds true.

1.2. Main Contributions. The starting point of the present article is the observation that the EPDiff
equation (1) admits radial solutions, which allows us to reduce the investigations to an equation of
a single variable. The corresponding “radial EPDiff equation” takes the form

(2) ωt + uωr + 2urω + n−1
r uω = 0, ω∂r = (σ −∆)k(u ∂r),

where σ ∈ {0, 1} and k ∈ {1, 2} and where the vector Laplacian ∆ on Rn for radial functions is
explicitly given by

∆
(
u(r)∂r

)
=

(
u′′(r) +

n− 1

r
u′(r)− n− 1

r2
u(r)

)
∂r.

Note that this is not the same as the usual Laplacian on functions; in particular it is not the case
that ω = (σ −∆)ku as functions, which is why we must be careful in this notation. For simplicity

we will simply denote the family of radial equations (2) as either the radial Ḣk family if σ = 0 or
the radial Hk family if σ = 1, regardless of dimension n.

Our main breakdown results for this family of equations—thus also for the EPDiff equations (1)
—are summarized in the following theorem:

Theorem (Theorems A, C, D and E). Let n ≥ 3 and suppose that the initial momentum ω0 satisfies
ω0(r) ≤ 0 for all r ≥ 0. Then the solution of the radial EPDiff equation (2) with inertia operator
(σ−∆)k, k ∈ {1, 2} and σ ∈ {0, 1} breaks down in finite time. If k = 1 the result continues to hold
for n ≤ 2.

To be more specific, the case k = 1 and σ = 0 is shown in Theorem A, the case k = 2 and
σ = 0 in Theorem C, the case k = 1 and σ = 1 in Theorem D, and the case k = 2 and σ = 1 in
Theorem E. The proof of Theorem A is essentially a computation, while the proofs of Theorems
C, D and E will follow from the more general breakdown result for Euler-Arnold type equations,
which is based on a comparison theorem with a Liouville-type equation given below in Theorem B.
Next we will explain the main ideas of it in more detail.

Reducing the EPDiff equation to an ODE. Our approach is based on the fact that in Lagrangian
coordinates, the EPDiff equation is an ordinary differential equation on a Banach space. Suppose
u(t, r) is a solution of the EPDiff equation (2); then the Lagrangian flow γ(t, r) is defined to be the
solution of the flow equation γt(t, r) = u(t, γ(t, r)) with γ(0, r) = r, and it is a diffeomorphism as
long as the velocity field u(t, r) remains smooth (or at least C1). The basic principle is that every
Euler-Arnold equation (and thus in particular the EPDiff equation) satisfies some analogue of the
vorticity-transport law (i.e., momentum conservation), which for equation (2) takes the form

γ(t, r)n−1γr(t, r)
2ω(t, γ(t, r)) = rn−1ω0(r).
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Inverting the operator (σ − ∆)k that relates ω to u, we can solve for u(t, γ(t, r)) in terms of the
initial momentum ω0 and the Lagrangian quantities γ and γr. This yields the particle-trajectory
form of the equations, cf. Majda-Bertozzi [44] and Ebin [24] who used this method for proving
local existence for the Euler equations of ideal fluid mechanics. For the radial EPDiff equation, this
explicitly looks like

(3)
∂γ(t, r)

∂t
=

∫ r

0
δ
(
γ(t, s), γ(t, r)

) z0(s)

γs(t, s)
ds+

∫ ∞

r
δ
(
γ(t, r), γ(t, s)

) z0(s)

γs(t, s)
ds, γ(0, r) = r

for some Green function δ defined on the set

D = {(r, s) | s ≥ r ≥ 0}\{(0, 0)} ⊂ R2,

with z0(s) = sn−1ω0(s). Differentiating equation (3) in r gives a similar equation for γr. Remarkably
this procedure often yields an ODE in the variables (γ, γr), in the sense that the right side is a
locally Lipschitz and in many cases smooth function on a Banach space, which can be used to
construct a local existence theory using Picard iteration.

An explicit solution for the radial Hunter-Saxton equation. Our next ingredient is the existence
of an explicit solution formula for the radial Hunter-Saxton equation, i.e., for (2) with σ = 0 and
k = 1, we can directly relate the solution to (3) to the Liouville type equation

(4)
∂

∂t
ln q(t, r) =

∫ ∞

r

z0(s)

q(t, s)
ds, q(0, r) = 1 ∀r ≥ 0, lim

r→∞
q(t, r) = 1 ∀t ≥ 0.

This is a well-known PDE that has both an ODE interpretation on a Banach space and a simple
exact solution, found by Liouville in 1853 [43], which is of the form q(t, r) = (1 + ty0(r))

2 for
some function y0. Note that q obviously reaches zero in finite time if y0 is ever negative. Sarria-
Saxton [55] studied the global behavior of this equation in the periodic domain, inspired by their
study of the Lagrangian flow approach to the Proudman-Johnson equation [54], and this approach
was further developed by Kogelbauer [37].

The change of variables q(t, r) = r1−nγ(t, r)n−1γr(t, r) turns the radial Hunter-Saxton equation
into the Liouville equation (4). (Note that this q is simply the Jacobian determinant of the radial
diffeomorphism γ.) Thus we obtain the following explicit formula for the solution along with a
precise breakdown criterion; we refer to Theorem A for a precise formulation of the assumptions:

Theorem. For any initial data u0 the solution to the radial Hunter-Saxton equation (Equation (2)
with k = 1 and σ = 0) satisfies the equation

γ(t, r)n−1ρ(t, r) = rn−1

(
1 +

t

2

(
u′0(r) +

n− 1

r
u0(r)

))2

,
∂γ

∂r
(t, r) = ρ(t, r).

with
∂γ

∂t
(t, r) = u

(
t, γ(t, r)

)
, γ(0, r) = r.

The solution breaks down in finite time if and only if u′0(r) +
n−1
r u0(r) < 0 for some r ≥ 0.

In dimension n = 1 we recover the result of [5] for the Hunter-Saxton equation on the line, with
odd initial data. In higher dimensions this leads to a proof of breakdown for the higher dimensional
Hunter-Saxton equation, which has been studied by Modin [49] due to its connections to geometric
statistics [36].
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The general breakdown result. Next we will describe the main methodological contribution of the
article: the general breakdown result for equations of type (3) based on comparison theory for
ODEs on Banach spaces. The main principle is to consider functions on the space W consisting of
continuous functions q : [0,∞) → [a, b] ⊂ (0,∞) and autonomous vector fields F : W → TW which
are locally Lipschitz in the usual supremum norm topology. The space of such positive functions is
a convex subset of a Banach space and has a partial order where q ≤ q̃ iff q(r) ≤ q̃(r) for all r ≥ 0; if

F and F̃ are vector fields on this space satisfying the monotonicity property q ≤ q̃ ⇒ F (q) ≤ F̃ (q̃),

then the solutions of qt = F (q) and q̃t = F̃ (q̃) with the same initial condition q(0) = q̃(0) will
satisfy q(t, r) ≤ q̃(t, r) for all t ≥ 0 as long as the solution exists.

We will apply this principle to the Jacobian-like functions q = Q(γ)γr depending on the La-
grangian flow γ, and we will use the right hand side of the Liouville equation [43] as our comparison

function F̃ . Our strategy will be to choose Q to obtain an ODE for q(t, r) and compare it to a
known solution q̃(t, r) of the Liouville equation which approaches zero in finite time. This will then
allow us to conclude that γr(t, r) approaches zero at least as quickly and thus in finite time. Our
main result of this part establishes a general breakdown result for equations of type (3), we refer
to Theorem B for a precise formulation of all assumptions:

Theorem. Assume that the kernel δ can be written in the form δ(r, s) = rsφ(r, s), where φ is smooth
on D = {(r, s) |s ≥ r ≥ 0}\{(0, 0)}, such that for all (r, s) ∈ D we have:

(1) φ(r, s) > 0;

(2) ∂2

∂r∂s lnφ(r, s) ≥ 0;
(3) there exists a C > 0 such that

S(r) :=
r∂1φ(r, r)φ(0, r)− rφ(r, r)∂2φ(0, r)

φ(0, r)2
≥ C.

Suppose z0(r) ≤ 0 for all r > 0. Then there exists T > 0 and r0 ≥ 0 such that γr(T, r0) = 0, i.e.,
the solution γ leaves the group of C1 diffeomorphisms, and thus the C1 norm of the velocity field u
blows up at finite time T .

Geodesic completeness of the geometric interpretation: As a corollary of our results and the global
existence results described above we obtain the following complete characterization of geodesic com-
pleteness (incompleteness, resp.) of the corresponding geometric picture for integer order Sobolev
metrics in dimension three:

Corollary (Corollary 7.1). The diffeomorphism group Diff(R3) equipped with the right-invariant
Sobolev metric of order k ∈ N is geodesically complete if and only if k ≥ 3, i.e., for any k ≥ 3
and any initial conditions U0 ∈ H∞(R3,R3) the solution to the geodesic equation (EPDiff equation,
resp.) exists for all time t, whereas for any k ∈ {0, 1, 2} there exists initial conditions U0 ∈
H∞(R3,R3) such that the solution blows up in finite time.

It is likely that a similar statement is true on Rn and for fractional values of k; see Section 7.

1.3. Structure of the Article. In Section 2 we present some general mathematical background. We
begin with the solution of the Liouville equation, and we present the Green functions of the Laplace
operator acting on radial functions. Finally we present a comparison theorem for ODEs in Banach
spaces, which will be one of the main ingredients for our breakdown theorem. In Section 3 we
describe the geometric picture for the EPDiff equation, derive the momentum transport law, write
its particle formulation, and prove the existence of radial solutions. We also discuss the local well-
posedness theory for both smooth and “classical” solutions along with the basic breakdown result.
Next, in Section 4, we derive an explicit solution formula for the radial Hunter-Saxton equation,
i.e., the EPDiff equation for the Ḣ1 metric with radial initial conditions in any dimension. We then
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present the main breakdown result and its proof in Section 5, which we apply to show breakdown
of various EPDiff equations (Ḣ2, H1, and H2) in Section 6. Finally in Section 7 we discuss several
possible avenues to generalize these results to higher-order and fractional order EPDiff equations.
In Appendix A we prove the Green function formulas, and in Appendix B we present the local
existence theory for homogeneous metrics in C1 using the particle trajectory approach.

1.4. Acknowledgements. The second author is grateful for the hospitality of the University of Vi-
enna, the Wolfgang Pauli Institute, and the Erwin Schrödinger Institute. MB was partially sup-
ported by NSF grants DMS-1912037 and DMS-1953244 and by FWF grant FWF-P 35813-N.

2. Analytic background material

2.1. The Liouville equation and ODE comparison theorems. We start by presenting the explicit
solution to the Liouville equation [43], which will be an essential ingredient for the results of the
article:

Lemma 2.1 (Explicit Solution of the Liouville Equation). For a fixed function z0 ∈ L1(R≥0) consider
the Liouville-type equation

(5)
d

dt
ln q(t) = F (q(t)), F (q)(r) :=

∫ ∞

r

z0(s)

q(s)
ds, t, r ≥ 0.

Then for any a > 0, the function F is locally Lipschitz on the space C(R+, (a,∞)) of continuous
functions bounded below by a. Thus the equation (5) with boundary condition q(0, r) = 1 has a
unique solution q, which is given by

q(t, r) =

(
1 +

t

2

∫ ∞

r
z0(s)ds

)2

,

defined on a maximal interval of existence [0, T ), where T = 2
K with

K = max

(
− inf

r≥0

∫ ∞

r
z0(s)ds, 0

)
.

Remark 2.2. Taking an additional r derivative of equation (5) one arrives at the classical version
of the Liouville equation

∂2

∂r∂t
ln q(t, r) = − z0(r)

q(t, r)
, t, r ≥ 0,

with boundary conditions of the form

q(0, r) = 1, lim
r→∞

q(t, r) = 1

Note that these initial/boundary conditions are more specific than the situation studied in Liou-
ville’s original paper [43], and our unknown function q(t, r) is the reciprocal of the one he used.

Proof of Lemma 2.1. Local Lipschitz continuity of F is a special case of Proposition B.1. The
Lipschitz continuity of F implies that the function qF (q) is also Lipschitz and thus the theorem
of Picard-Lindelöf implies the existence and uniqueness of solutions to (5)—here we rewrote (5) in
the form ∂

∂tq = qF (q).
The explicit solution formula can be easily checked to satisfy the differential equation and bound-

ary conditions by direct computation. It can be derived as in Liouville’s original paper [43], with
slight adaptations stemming from the fact that we use different boundary conditions and have q in
the denominator on the right side. See also [55] for a different derivation of this formula. □
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For the radial Hunter-Saxton equation, treated in Section 4, the above theorem will lead to an
explicit solution formula in Theorem A, which will allow us to characterize the precise breakdown
mechanism for this family of equations. For the main results, EPDiff equations for non-homogeneous
and higher order operators, such an explicit solution formula will not be available. We will, however,
be able to compare the solutions of these more complicated equations to the solution of the above
Liouville equation, which will then allow us to deduce finite time breakdown. Towards this aim we
will need a comparison theorem for ODEs on Banach spaces. The following theorem is a special
case of more general comparison theorems (see e.g., [20, 21]), which is tailored to the situation
studied in the present article:

Lemma 2.3 (Comparison theorem). Let a > 0 and let

F, F̃ : C(R+, (a,∞)) → C(R+,R)

be functions satisfying the monotonicity property

(6) ṽ(r) ≥ v(r) ∀r ≥ 0 =⇒ F̃ (ṽ)(r) ≥ F (v)(r) ∀r ≥ 0

for all functions v, ṽ ∈ C(R+, (a,∞)). Assume in addition that F̃ is locally Lipschitz continuous
when C(R+, (a,∞)) and C(R+,R) are equipped with the supremum norm.

Let ũ : [0, T̃ ) → C(R+, (a,∞)) be the unique solution to ∂tũ = F̃ (ũ) with initial condition
ũ(0) = ũ0. Let u : [0, T ) → C(R+, (a,∞)) be a solution to ∂tu = F (u) with the same initial
conditions, i.e., u(0) = u0 = ũ0. Then

ũ(t)(r) ≥ u(t)(r), ∀t ∈ [0,min(T̃ , T )) and r ∈ R+.

Proof. Fix u, and for any ũ define w(t, r) = ũ(t, r) − u(t, r); then w(0, r) = 0 for all r ≥ 0, and w
satisfies the differential equation

(7)
∂w

∂t
(t, r) = F̃

(
w(t, r) + u(t, r)

)
− F

(
u(t, r)

)
.

Consider for any w : [0, T ]× [0,∞) → [a,∞) the Picard map

Φ(w)(t, r) =

∫ t

0

[
F̃
(
w(τ, r) + u(τ, r)

)
− F

(
u(τ, r)

)]
dτ.

This map is bounded for each bounded w, and if w(τ, r) ≥ 0 for all τ ∈ [0, T ] and r ≥ 0, then
w(τ, r) + u(τ, r) ≥ u(τ, r) and thus our assumption (6) shows that Φ(w)(t, r) ≥ 0 for all t ∈ [0, T ]
and r ≥ 0.

Thus Φ maps the closed subspace of bounded nonnegative functions on [0, T ] × [0,∞) to itself.

Since F̃ is locally Lipschitz, we see that Φ is also locally Lipschitz, and thus it is a contraction
mapping on a neighborhood of zero. For short time the fixed point of iteration exists as in the
usual Picard-Lindelöf theorem, and this fixed point must be in the closed subspace of bounded
nonnegative functions as well. Hence indeed the unique solution w(t, r) of the differential equation
(7) is nonnegative for short time, and iteratively we can conclude that it is nonnegative for all time
that the solution exists. □

2.2. Green functions for Laplace operators acting on radial vector fields. The analysis of this article
will largely build upon the existence of radial solutions to the (higher-dimensional) EPDiff equation,
cf. Lemma 3.5. This will essentially allow us to reduce all estimates to estimates on functions of
one variable only. In this section we will collect several formulas for the Green functions of the
inertia operator A = (σ id−∆)k acting on radial vector fields.
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Therefore let U = u(r) ∂r be a a smooth radial velocity field. The vector Laplacian in radial
coordinates acting on U is given by

(8) ∆U =
(
u′′(r) +

n− 1

r
u′(r)− n− 1

r2
u(r)

)
∂r.

To invert this operator we will need to impose certain decay conditions for r towards infinity: for
λ ∈ R, we let Xλ denote the space of functions that decay at infinity like a power r−λ, i.e.,

Xλ(R≥0,R) = {u : R≥0 → R | lim sup
r→∞

rλ|f(r)| < ∞}.

In addition to this decay conditon we will assume that the vector fields u(r) ∂r can be extended to
smooth vector fields on Rn, which will lead to the condition that all even derivatives at zero vanish.
Thus we let

Wm,1
odd (R≥0,R) :=

{
u ∈ Wm,1(R,R) |u(2k)(0) = 0, 0 ≤ 2k < m⌋

}
,

where Wm,1 denotes the Sobolev space of order m, i.e., all functions on R that have (m − 1)
absolutely continuous derivatives (so that the mth derivative exists almost everywhere and is locally
in L1). Using these definitions we consider the intersection of those two spaces as domain for the
radial Laplace operator, i.e., we consider the space

(9) Qm
λ (R≥0,R) = Wm,1

odd (R≥0,R) ∩ Xλ(R≥0,R).
We obtain the following result concerning the corresponding Green’s functions:

Lemma 2.4. Let k ∈ N, and 2(k − 1) < λ < n. Given any ω ∈ Q0
2k+λ−1(R≥0,R), there is a unique

solution u ∈ Q2k
λ−1(R≥0,R) of (−∆)k

(
u(r)∂r

)
= ω(r) ∂r.

It is given by

(10) u(r) =

∫ r

0
δ(s, r)sn−1ω(s) ds+

∫ ∞

r
δ(r, s)sn−1ω(s) ds, δ(r, s) := rsφ(r, s),

where the function φ(r, s) is defined on D = {(r, s) |s ≥ r ≥ 0}\{(0, 0)}. For k = 1 and k = 2 it is
given explicitly via

• k = 1 and n ≥ 1 :

(11) φ(r, s) = 1
ns

−n.

• k = 2 and n ≥ 3 :

(12) φ(r, s) = 1
2n(n−2)s

2−n − 1
2n(n+2)r

2s−n.

In the non-homogeneous situation, i.e., for A = (1−∆)k, the situation is significantly easier, as
we do not have to keep track of the decay conditions for r → ∞. To further simplify the situation,
we will restrict ourselves to the smooth category and consider the space of odd H∞-functions:

H∞
odd(R≥0,R) :=

{
u ∈ H∞(R≥0,R) |u(2k)(0) = 0, ∀k ∈ N

}
; ,

In this setting we obtain the following result concerning the Green’s function for (1−∆)k:

Lemma 2.5. For any ω ∈ H∞
odd(R≥0,R) and positive integer k, there is a unique u ∈ H∞

odd(R≥0,R)
such that

(1−∆)k(u(r) ∂r) = ω(r) ∂r.

This solution can be written in the same form (10) as in Lemma 2.4, where now the function φ is
given on D by

• k = 1 and n ≥ 1 :

(13) φ(r, s) = αn(r)βn(s).
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• k = 2 and n ≥ 3 :

(14) φ(r, s) = 1
2

[
nαn(r)βn(s) +

1
nαn(r)βn−2(s)− nαn−2(r)βn(s)

]
.

Here the functions αp and βp are defined for p ∈ R by

(15) αp(r) := cpr
−p/2Ip/2(r), βp(r) := c−1

p r−p/2Kp/2(r), cp := 2p/2Γ(p2 + 1),

We remind the reader that ∆ is the vector Laplacian; the formulas would be different if we were
using the Laplacian on functions. We give the proofs of both Lemmas 2.4 and 2.5 in Appendix A.

Remark 2.6 (Homogeneous metrics). Note that the operator (1 − ∆) is invertible as an operator
Hk+2(Rn) to Hk(Rn). Furthermore, the operator (1 − ∆)−1 makes sense and maps the space of
rapidly decaying smooth functions to itself, and can be iterated any number of times. Thus there is
no issue with k = 2 and n = 1, 2 or even any larger integer k. On the other hand, as we have seen in
Lemma 2.4, the homogeneous operator (−∆) behaves quite differently: even for a rapidly decaying,
radial, smooth vector field ω(r) ∂r, it is not true that the solution of ∆(u(r) ∂r) = −ω(r) ∂r is
also rapidly decaying. In the above formulas we take advantage of the fact that the slow decay of
functions in Rn for n ≥ 3 is still fast enough to invert the Laplacian twice, and thus work only with
n ≥ 3 when dealing with the Ḣ2 metric. See Appendix A for the computations which justify this
statement.

Furthermore, it is important to note that, although we require a power-law decay condition in
order to justify that u is the unique solution of (−∆)k(u∂r) = ω∂r, once we obtain the formula
(10), it makes sense for ω under milder conditions, in particular∫ ∞

0
r2k|ω(r)| dr < ∞,

as can be shown iteratively. We will use this fact in Appendix B to establish a local existence result
with minimal assumptions on the initial data ω0, which includes for example delta functions.

3. The general EPDiff equation

3.1. Euler-Arnold equation. In this part we will recall the derivation of the EPDiff equation as an
Euler-Arnold equation on the diffeomorphism group. We will follow the presentation in [6]; see
also [48, 57] and the references therein.

We will focus the presentation on the non-homogeneous inertia operator, i.e., A = (σ − ∆)k

with σ > 0, and only comment on the homogeneous case (σ = 0) at the end of this section,
cf. Remark 2.6. To derive the EPDiff equation as a geodesic equation we consider the group of
H∞-diffeomorphisms on Rn:

Diff(Rn) := {η = id+f : f ∈ H∞(Rn,Rn) and det(id+df) > 0} ,

where

H∞(Rn,Rn) =
⋂
q≥0

Hq(Rn,Rn)

is the intersection of all Sobolev spaces. The space Diff(Rn) is a regular Fréchet Lie group with Lie
algebra the set of all H∞ vector fields, i.e., TeDiff(Rn) = XH∞(Rn) = H∞(Rn,Rn), see [22]. To
define a right invariant metric we have to describe an inner product on H∞(Rn,Rn). The simplest
inner product on this space is the L2-product given by

⟨U1, U2⟩L2 =

∫
Rn

U1 · U2 dx,
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where U1, U2 ∈ H∞(Rn,Rn) and where · denotes the Euclidean scalar product on Rn. Using the
operator A we can define a Sobolev Hk inner product via

⟨U1, U2⟩Hk =

∫
Rn

AU1 · U2 dx =

∫
Rn

(σ −∆)kU1 · U2 dx ,

where the symmetry of this inner product follows from the corresponding property of the Laplacian.
Given an inner product on the Lie algebra, we can extend this to a right-invariant metric on the
diffeomorphism group via right translation, i.e.,

gkη(δη1, δη2) = ⟨δη1 ◦ η−1, δη2 ◦ η−1⟩Hk , δη1, δη2 ∈ Tη Diff(Rn)

Using this Riemannian metric we can define the “kinetic energy” of a path of diffeomorphisms
η : [0, 1] → Diff(Rn) via

E(η) =
1

2

∫ 1

0
gkη(η̇, η̇)dt.

Curves that minimize the energy between fixed endpoints are called “geodesic curves,” and the first
order optimality condition dE = 0 gives rise to the geodesic equation. For a right-invariant metric
on a Lie group, it is convenient to introduce the Eulerian velocity U(t, x) = ∂tη(t, η

−1(t, x)). Using
this change of coordinates the geodesic equation can be written as

(16) ∂tη(t, x) = U(t, η(t, x)), Ut(t, x) + ad(U(t, x))⊤U(t, x) = 0,

where ad(U)⊤ is the adjoint of the operator ad(U), with respect to the inner product ⟨·, ·⟩Hk .
This form of the geodesic equations on Lie groups was originally derived in the finite-dimensional
setting and was extended by Arnold [2] to diffeomorphism groups (and more generally to Fréchet-
Lie groups). For this reason the first order equation on U is called the Euler-Arnold equation.
Following this approach for the Hk-inner product on Diff(Rn), one obtains exactly the EPDiff
equation (1) with inertia operator A = (σ − ∆)k; see e.g., [48, 6]. As a consequence of this
geometric interpretation we obtain a conserved quantity, the Riemannian energy:

Corollary 3.1. Let U : [0, T ) → C∞(Rn,Rn) be a solution to the EPDiff equation (1) with inertia
operator (σ −∆)k. Then the instantaneous Riemannian energy is constant over time, i.e.,

⟨U(t), U(t)⟩Hk = const .

The general geodesic equation (16) implies the momentum conservation law

d

dt

(
Ad⊤η(t) U(t)

)
= 0,

relating the flow η(t) to the velocity field U(t). This can be integrated using η(0) = id and U(0) = U0

to obtain

Ad⊤η(t) U(t) = U0.

We may then eliminate U(t) in (16) to get an equation directly on the group given by

(17)
dη

dt
= U(t) ◦ η(t) = Ad⊤η(t)−1 U0 ◦ η(t), η(0) = id.

Explicitly, on the diffeomorphism group with inertia operator A = (σ − ∆)k, this takes the form
(see [48], Proposition 3.6)

Ad⊤η U0 = A−1
[
Jac(η)DηT (AU0)

]
.

If A is a sufficiently strong differential operator—k ≥ 1 is sufficient—then (17) has a smooth right
side as a function of η in the Sobolev space Hs for large s, and we can prove local well-posedness
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using Picard iteration, for any fixed U0 ∈ Hs. When applied to the Euler equations (on the volume-
preserving diffeomorphism group), this technique is referred to as the particle-trajectory method in
Majda-Bertozzi [44], see also [24]. A derivation on abstract Lie groups can be found in [8, Lemma 5].

We will apply this method to not only study local well-posedness but also global existence, in
the special case that U0 is a purely radial vector field U0 = u0(r) ∂r, and thus η(t) is a purely radial
diffeomorphism, with η(t, x) = γ(t, r)x/r for x ∈ Rn and r = |x|.

3.2. Local ODE existence and radial solutions. As a consequence of the geometric description in
the previous section, a series of local and global well-posedness results for the EPDiff equation
(depending on the order k) have been obtained [25, 48, 29, 50]. In the following theorem we
summarize these results for initial data in H∞(Rn,Rn):

Proposition 3.2 (Local and global well-posedness). Let A = (1 − ∆)k. For any k ≥ 1 and U0 ∈
H∞(Rn,Rn), the EPDiff equation (1) has a unique non-extendable smooth solution

U ∈ C∞(J,H∞(Rn,Rn)).

The maximal interval of existence J is open and contains 0. If k > n
2 + 1, then the solution exists

for all time t, i.e., J = R.

Remark 3.3 (Fractional orders). In [27, 6] the above result has been extended to fractional order
EPDiff equations, i.e., to k ∈ R, where it has been shown that the local well-posedness result holds
for any k ≥ 1

2 and the global well-posedness result for k > n
2 + 1.

Remark 3.4 (Setting for wellposedness results). By the above result, Proposition 3.2, we have local

existence for the nonhomogeneous Hk metric and ω0 in H∞. For the homogeneous Ḣk case and
ω0 ∈ L1 (and thus γ being barely C1) we show local well-posedness in Appendix B. With additional

work, we could prove the opposite—local existence in H∞ for homogeneous Ḣk metrics, and local
existence in C1 for nonhomogeneous Hk metrics—but this would take us too far afield. In either
case a solution γ must be at least C1 spatially to be considered a classical solution, and so our
result that the solution must fail to be globally C1 applies regardless of how a local solution is
obtained or what the initial data is.

In the next result, which will be essential in the remainder of the article, we observe the existence
of radial solutions to the EPDiff equation.

Lemma 3.5 (Radial Solutions). Let U0 be a radial initial velocity, i.e., U0 = u0(r)∂r. Let U be the
corresponding solution to the EPDiff equation (1) defined on its maximal interval of existence J .
Then U is a radial velocity field for each t ∈ J . The radial function u satisfies the corresponding
radial EPDiff equation given by (2).

Proof. This follows directly by plugging the ansatz U = u(t, r)∂r into (1), using the fact that
(σ −∆)k preserves radial velocity fields. □

The momentum form of the Euler-Arnold equation given by (2) implies a transport law which
will be crucial for the rest of the paper. To derive it we define the radial flow map γ(t, r) by the
flow equation

(18)
∂γ

∂t
(t, r) = u

(
t, γ(t, r)

)
, γ(0, r) = r,

which is just (16) specialized to the radial case.
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Lemma 3.6. If U(t, r) = u(t, r) ∂r and ω(t, r) solve the radial EPDiff equation (2) on a time interval
[0, T ) for all r ≥ 0, with the flow γ(t, r) defined by (18), then for all t ∈ [0, T ) and r ∈ [0,∞) we
have the transport law

(19) γ(t, r)n−1γr(t, r)
2ω

(
t, γ(t, r)

)
= rn−1ω0(r).

Proof. By the chain rule and product rule, we have

∂

∂t
ln
(
γ(t, r)n−1γr(t, r)

2ω
(
t, γ(t, r)

))
=

ωt

(
t, γ(t, r)

)
+ γt(t, r)ωr

(
t, γ(t, r)

)
ω
(
t, γ(t, r)

) + (n− 1)
γt(t, r)

γ(t, r)
+ 2

γtr(t, r)

γr(t, r)

=
ωt

(
t, γ(t, r)

)
+ u

(
t, γ(t, r)

)
ωr

(
t, γ(t, r)

)
ω
(
t, γ(t, r)

) + (n− 1)
u
(
t, γ(t, r)

)
γ(t, r)

+ 2ur
(
t, γ(t, r)

)
,

using the fact that γt(t, r) = u
(
t, γ(t, r)

)
and the r-derivative is

(20) γtr(t, r) = ur
(
t, γ(t, r)

)
γr(t, r).

Now replace γ(t, r) everywhere with a new variable R, and this becomes

∂

∂t
ln
(
γ(t, r)n−1γr(t, r)

2ω
(
t, γ(t, r)

))
=

1

ω(t, R)

[
ωt(t, R) + u(t, R)ωr(t, R) + (n− 1)

u(t, R)

R
ω(t, R) + 2ur(t, R)ω(t, R)

]
,

and the term in brackets is zero since it is just (2) evaluated at R.
Hence the quantity γ(t, r)n−1γr(t, r)

2ω
(
t, γ(t, r)

)
is constant in time. Since γ(0, r) = r and

γr(0, r) = 1, the value of this quantity at t = 0 is rn−1ω0(r). □

Finally we discuss the main breakdown result we derive in this paper. A classical solution U(t, x)
exists as long as U remains C1 in the spatial variable x ∈ Rn, corresponding to u(t, r) being C1

in r ≥ 0. We will prove breakdown by showing that the radial Lagrangian flow γ must leave the
diffeomorphism group in finite time, which happens if and only if ur(t, r) becomes unbounded in
finite time.

Lemma 3.7. Let u : [0, T )× [0,∞) → R be a C1 solution of the radial EPDiff equation (2) such that
limr→∞ u(r) = 0. We have:

(1) The Lagrangian flow, defined by γt(t, r) = u(t, γ(t, r)) with γ(0, r) = r, exists on the same
time interval as u and is C1 in time and space.

(2) If limt↗T γr(t, r) = 0 for some r ≥ 0 and T > 0, then u cannot be extended as a C1 solution
to time T .

Proof. The Lagrangian flow is an ODE on Rn for a C1 time-dependent vector field which decays as
r → ∞ and is thus bounded. Consequently the flow is also defined on the same time interval and
is C1 in time and space, see [1, Proposition 4.1.22].

To see the second statement we integrate equation (20) and use the initial condition γr(t, 0) = 1.
Then we have that

ln γr(t, r) =

∫ t

0
ur
(
τ, γ(τ, r))

)
dτ

for each r ≥ 0. If γr(t, r) approaches zero as t → T for some r ≥ 0, then both sides of this equation
must approach negative infinity for that r, and in particular inf

r≥0
ur(t, r) → −∞ as t → T . So the

C1 norm of u must approach infinity, and the solution cannot be continued classically. □
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3.3. Momentum transport formulation. Finally we will describe the momentum transport formu-
lation, as discussed in general at the end of Section 3, for the specific case of radial solutions.

Proposition 3.8. Suppose that the inertia operator A is invertible and that the solution of A(u(r) ∂r) =
ω(r) ∂r is given by an integral formula of the form (10), where δ is C1 on D = {(r, s) | s ≥ r ≥
0}\{(0, 0)}. Let u(t, r) be a solution of the radial EPDiff equation (2) with u(0, r) = u0(r) and
ω0(r) ∂r = A(u0(r)∂r). If z0(r) := rn−1ω0(r), then the flow γ(t, r) satisfies

(21)
∂γ

∂t
(t, r) =

∫ r

0

δ
(
γ(t, s), γ(t, r)

)
γs(t, s)

z0(s) ds+

∫ ∞

r

δ
(
γ(t, r), γ(t, s)

)
γs(t, s)

z0(s) ds,

and its spatial derivative satisfies

(22)
∂

∂t
ln
(
γr(t, r)

)
=

∫ r

0

∂2δ
(
γ(t, s), γ(t, r)

)
γs(t, s)

z0(s) ds+

∫ ∞

r

∂1δ
(
γ(t, r), γ(t, s)

)
γs(t, s)

z0(s) ds,

Proof. We want to express γt(t, r) = u
(
t, γ(t, r)

)
as an integral formula using the conservation

law (19). Fix a t; since the inversion of A involves only spatial computations, we can ignore the
t-dependence. So we have

u
(
γ(r)

)
=

∫ γ(r)

0
δ
(
σ, γ(r)

)
σn−1ω(σ) dσ +

∫ ∞

γ(r)
δ
(
γ(r), σ

)
σn−1ω(σ) dσ.

Now change variables via σ = γ(s), so that dσ = γ′(s) ds. Then we have

u
(
γ(r)

)
=

∫ r

0
δ
(
γ(s), γ(r)

)
γ(s)n−1ω

(
γ(s)

)
γ′(s) ds+

∫ ∞

r
δ
(
γ(r), γ(s)

)
γ(s)n−1ω

(
γ(s)

)
γ′(s) ds.

Formula (19) then implies that γ(r)n−1γ′(r)2ω
(
γ(r)

)
= z0(r), so these integrals simplify to

u
(
γ(r)

)
=

∫ r

0
δ
(
γ(s), γ(r)

) z0(s)
γ′(s)

ds+

∫ ∞

r
δ
(
γ(r), γ(s)

) z0(s)
γ′(s)

ds,

which is (21).
To compute the spatial derivative, we use the Leibniz integral rule (relying on the fact that δ is

C1) and obtain

u′
(
γ(r)

)
γ′(r) =

∫ r

0
∂2δ

(
γ(s), γ(r)

)
γ′(r)

z0(s)

γ′(s)
ds+

∫ ∞

r
∂1δ

(
γ(r), γ(s)

)
γ′(r)

z0(s)

γ′(s)
ds

+ δ
(
γ(r), γ(r)

) z0(r)
γ′(r)

− δ
(
γ(r), γ(r)

) z0(r)
γ′(r)

.

The local (nonintegral) terms on the last line cancel out, and in what remains there is a common
factor of γ′(r) which can be canceled to yield

∂

∂t
ln
(
γr(t, r)

)
=

γtr(t, r)

γr(t, r)
= u′

(
γ(r)

)
=

∫ r

0
∂2δ

(
γ(s), γ(r)

) z0(s)
γ′(s)

ds+

∫ ∞

r
∂1δ

(
γ(r), γ(s)

) z0(s)
γ′(s)

ds,

which is (22). □
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The system (21)–(22) can be written in the form of an autonomous vector field ODE on a Banach
space, as

dγ

dt
(r) =

∫ r

0

δ
(
γ(s), γ(r)

)
ρ(s)

z0(s) ds+

∫ ∞

r

δ
(
γ(r), γ(s)

)
ρ(s)

z0(s) ds,(23)

dρ

dt
(r) = ρ(r)

∫ r

0

∂2δ
(
γ(s), γ(r)

)
ρ(s)

z0(s) ds+ ρ(r)

∫ ∞

r

∂1δ
(
γ(r), γ(s)

)
ρ(s)

z0(s) ds.(24)

Here ρ(t, r) = γr(t, r), but we treat it as a separate variable to get a closed ODE system.
Of course γ and ρ are not independent, since γ is the unique antiderivative of ρ such that

γ(0) = 0. Hence we may consider the system as a single ODE for ρ alone. Hence we may view
(23) as a consequence of (24), although we will often find it convenient to deal with both equations
simultaneously. For a fixed function z0, this makes sense on the space of functions ρ bounded above
and below by positive numbers.

More precisely, consider ρ ∈ P where P is the space of continuous functions on [0,∞) for which
there exist numbers b > a > 0 such that 0 < a ≤ ρ(r) ≤ b for all r ∈ [0,∞). Then we also have

a ≤ γ(r)

r
=

∫ r
0 ρ(s) ds

r
≤ b,

so that r 7→ γ(r)/r is also in P. Let Γ denote the map from P to C1 diffeomorphisms given by

Γ(ρ)(r) = γ(r).

Then we can express the vector field X which governs the evolution of ρ via:

(25) X(ρ)(r) = ρ(r)

∫ r

0
∂2δ

(
Γ(ρ)(s),Γ(ρ)(r)

) z0(s)
ρ(s)

ds+ ρ(r)

∫ ∞

r
∂1δ

(
Γ(ρ)(r),Γ(ρ)(s)

) z0(s)
ρ(s)

ds.

Fundamentally this is what we have in mind when considering the system (23)–(24).
In Appendix B we prove local existence of solutions of the system (23)–(24) in the homogeneous

case σ = 0 with k = 1 and k = 2. We obtain local solutions ρ in the space of continuous,
positive functions on [0,∞), and thus we obtain existence of C1 local solutions γ. These then
indirectly generate spatially C1 local solutions u(t, r) via the formulas ∂tγ(t, r) = u(t, γ(t, r)) and
ur(t, γ(t, r)) = ρt(t, r)/ρ(t, r). See [47, 40] for a similar approach in the context of the Camassa-
Holm equation.

4. An explicit solution formula for the radial Hunter-Saxton equation

In this section we will use the solution of the Liouville equation to obtain a solution formula for
the radial Hunter-Saxton equation with Ḣ1 inertia operator and thereby see the precise breakdown
mechanism.

The radial Hunter-Saxton equation corresponds to the EPDiff equation for radial solutions with
the inertia operator A = −∆, i.e.,

(26)

{
ωt + uωr + 2urω + n−1

r uω = 0,

ω∂r = −∆(u∂r) = −
(
urr +

n−1
r ur − n−1

r2
u
)
∂r.

Note that in dimension one the momentum is simply ω = −urr, and equation (26) equals the Hunter-
Saxton equation [35], hence the name radial Hunter-Saxton equation. The higher-dimensional
Hunter-Saxton equation was introduced by Modin in [49], motivated by connections to the field of
information geometry [36].
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Recalling formula (11), we have that δ(r, s) = 1
nrs

1−n; thus the system (23)–(24) can be written
as

dγ

dt
(r) =

γ(r)1−n

n

∫ r

0
γ(s)

z0(s)

ρ(s)
ds+

γ(r)

n

∫ ∞

r
γ(s)1−n z0(s)

ρ(s)
ds,

dρ

dt
(r) =

(1− n)γ(r)−nρ(r)

n

∫ r

0
γ(s)

z0(s)

ρ(s)
ds+

ρ(r)

n

∫ ∞

r
γ(s)1−n z0(s)

ρ(s)
ds,

(27)

where z0(s) = sn−1ω0(s). In the next theorem we will derive an explicit solution formula for
equation (27) and thus of the radial Hunter-Saxton equation (26). Our strategy is to combine these
equations into one, eliminating the integral on [0, r] so that only the integral on [r,∞) remains. By
coincidence everything in the combined equation depends only on the quantity γ(r)n−1ρ(r)/rn−1,
which then satisfies the Liouville equation (5).

Theorem A. Let ω0 ∈ L1([0,∞)). Then

∂γ

∂r
(t, r) = ρ(t, r)(28)

γ(t, r)n−1ρ(t, r) = rn−1
(
1 +

t

2

∫ ∞

r
ω0(s) ds

)2
= rn−1

(
1 +

t

2

(
u′0(r) +

n− 1

r
u0(r)

))2

solves the Lagrangian form of the radial Hunter-Saxton equation (27) with initial data γ(0, r) = r

and ∂γ
∂r (0, r) = ρ(0, r) = 1.

The solution breaks down in finite time by leaving the diffeomorphism group, if and only if
u′0(r) +

n−1
r u0(r) < 0 for some r ≥ 0.

Proof. The system (27) can be written in the form

∂

∂t
ln γ =

1

n

[
X(t, r) + Y (t, r)

]
,

∂

∂t
ln ρ =

1

n

[
− (n− 1)X(t, r) + Y (t, r)

]
,

where

X(t, r) := γ(t, r)−n

∫ r

0

γ(t, s)sn−1ω0(s)

ρ(t, s)
ds and Y (t, r) :=

∫ ∞

r

sn−1ω0(s)

γ(t, s)n−1ρ(t, s)
ds.

Thus we see that

(29)
∂

∂t

(
ln
[
γ(t, r)n−1ρ(t, r)

])
= Y (t, r)

Define a new function

q(t, r) :=
γ(t, r)n−1ρ(t, r)

rn−1
for r > 0, q(t, 0) := ρ(t, 0)n,

where the value at r = 0 is defined to get continuity, and the quotient by rn−1 is to ensure that if
ρ(t, r) is bounded between two positive constants a and b for some t, then q(t, r) will be bounded
between an and bn (and hence be an element of our space of continuous positive functions; see
Appendix B).

Then equation (29) becomes

∂

∂t
ln q(t, r) =

∫ ∞

r

ω0(s)

q(t, s)
ds, q(t, 0) = 1,
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which puts it exactly in the form of the Liouville equation studied in Lemma 2.1. Thus it follows
that

q(t, r) = rn−1
(
1 +

t

2

∫ ∞

r
ω0(s) ds

)2

From here the solution formula follows by integrating.∫ ∞

r
ω0(s) ds = −

∫ ∞

r

[
u′′0(s) +

n− 1

s
u′0(s)−

n− 1

s2
u0(s)

]
ds = u′0(r) +

n− 1

r
u0(r).

Here we used that limr→∞ u0(r) = limr→∞ u′0(r) = 0, which follows from the assumption that ω0 ∈
L1([0,∞)) using formulas (10) and (11). Thus the solution can only break down as ρ(t, r) approaches
zero in finite time, and this happens if there exists an r0 ≥ 0 such that u′0(r0)+

n−1
r0

u0(r0) < 0. □

Note that the first such time t with ρ(t, r0) = 0 occurs at a point r0 where
∫∞
r ω0(s) ds has its

minimum, so that the initial momentum ω0(r) crosses from positive to negative at r0 as in the
one-dimensional case. Also note that we could if desired integrate (28) in r to solve for γ(t, r)n,
then use this to construct the velocity field u(t, r) using the flow equation (18).

5. The general breakdown result

We now consider the system (23)–(24) in general. The following general breakdown theorem
provides one of the main technical contributions of the present article:

Theorem B. Let ω0(r) ≤ 0 for all r > 0 and let δ be a kernel of the form δ(r, s) = rsφ(r, s), where
φ is smooth on D = {(r, s) |s ≥ r ≥ 0}\{(0, 0)}, satisfying the following conditions:

(a) positivity: φ(r, s) > 0 for all (r, s) ∈ D;

(b) log-supermodularity: ∂2

∂r∂s lnφ(r, s) ≥ 0 for all (r, s) ∈ D;
(c) there exists a C > 0 such that for all r ≥ 0,

(30) S(r) :=
r∂1φ(r, r)φ(0, r)− rφ(r, r)∂2φ(0, r)

φ(0, r)2
≥ C

Assume in addition that there exists a local solution to equations (23)–(24) corresponding to initial
condition ω0.

If Q : [0,∞) → [0,∞) is defined via

(31) Q(r) :=
1

rφ(0, r)
for r > 0, Q(0) := lim

r→0

1

rφ(0, r)
,

then for any pair (γ, ρ) satisfying equations (23)–(24), the quantity q(t, r) = Q
(
γ(t, r)

)
ρ(t, r)/Q(r)

satisfies the differential inequality

(32)
∂

∂t
ln
[
q(t, r)

]
≤ −C

∫ ∞

r

sn−1|ω0(s)|/Q(s)

q(t, s)
ds.

Consequently Q(γ(t, r))ρ(t, r)/Q(r) reaches zero in finite time by comparison with the Liouville
equation.

Remark 5.1. Note that δ(r, s) and φ(r, s) are intentionally only defined for s ≥ r as in the integrals
for s ∈ [r,∞); hence when we use δ(s, r) or φ(s, r), it is implicit that s ≤ r as in the integrals for
s ∈ [0, r]. This is important since we will interchange the names of these variables several times,
and confusion is avoided by remembering that the second argument is always larger than the first.

Also note that ∂1φ(r, r) is not the same as d
drφ(r, r); rather it is lims→r−

∂
∂rφ(r, s). Hence the

quantity S(r) in (30) is not the same thing as the tempting simplification r d
dr

φ(r,r)
φ(0,r) .
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Finally note that existence of Q in the definition (31) at zero is assumed implicitly, and this limit

exists in all cases given by Lemmas 2.4 and 2.5. When n = 1 in the cases Ḣ1 or H1, and when
n = 3 in the cases Ḣ2 or H2, this limit is positive, while in all higher dimensional cases we have
Q(0) = 0.

Proof of Theorem B. In the following we will suppress the dependence on t. Using the system
(23)–(24) and the assumption z0 ≤ 0, we derive an ODE for Q(γ)ρ:

d

dt
ln
[
Q(γ)ρ

]
=

Q′(γ(r))
Q
(
γ(r)

) dγ

dt
+

d

dt
ln ρ

= −
∫ r

0

(Q′(γ(r))

Q(γ(r))
δ
(
γ(s), γ(r)

)
+ ∂2δ

(
γ(s), γ(r)

)) |z0(s)|
ρ(s)

ds

−
∫ ∞

r

(Q′(γ(r))

Q(γ(r))
δ
(
γ(r), γ(s)

)
+ ∂1δ

(
γ(r), γ(s)

)) |z0(s)|
ρ(s)

ds

We will therefore prove inequality (32) if we can show that there exists a constant C > 0 such that

Q′(r)

Q(r)
δ(s, r) + ∂2δ(s, r) ≥ 0 for all s ∈ [0, r];(33)

Q′(r)

Q(r)
δ(r, s) + ∂1δ(r, s) ≥

C

Q(s)
for all s ∈ [r,∞).(34)

By assumption (b), using δ(r, s) = rsφ(r, s) we have that

(35)
∂2

∂r∂s
ln δ(r, s) =

∂2

∂r∂s
lnφ(r, s) ≥ 0 for s ≥ r,

which, after interchanging the variables, is equivalent to

∂

∂s

( 1

δ(s, r)

∂δ(s, r)

∂r

)
≥ 0 for s ≤ r.

Integrating this with respect to s, on the interval from 0 to s, we get

∂2δ(s, r)

δ(s, r)
≥ lim

s→0

∂2δ(s, r)

δ(s, r)
=

d
dr [rφ(0, r)]

rφ(0, r)
= −Q′(r)

Q(r)
,

by definition of Q, which is equivalent to (33) since δ is nonnegative.
Since φ is positive by assumption (a), condition (34) is equivalent to

(36)
Q′(r)

Q(r)
≥ −∂1δ(r, s)

δ(r, s)
+

C

Q(s)δ(r, s)
for all s ≥ r.

Since Q is nonnegative, condition (33) implies that

∂

∂r

(
Q(r)δ(s, r)

)
≥ 0 for r ≥ s,

which implies that Q(r)δ(s, r) ≥ Q(s)δ(s, s) whenever r ≥ s. Exchanging the roles of r and s here,
we find that Q(s)δ(r, s) ≥ Q(r)δ(r, r) whenever s ≥ r, which implies that for any C > 0,

(37) sup
s≥r

C

Q(s)δ(r, s)
=

C

Q(r)δ(r, r)
.

Meanwhile the log-supermodularity assumption (35) implies that ∂1δ(r,s)
δ(r,s) is increasing in s for s ≥ r,

and thus

(38) sup
s≥r

−∂1δ(r, s)

δ(r, s)
= − inf

s≥r

∂1δ(r, s)

δ(r, s)
= −∂1δ(r, r)

δ(r, r)
.
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Since (37) and (38) are attained at the same point s = r, we see that (36) is satisfied if and only if

Q′(r)

Q(r)
≥ −∂1δ(r, r)

δ(r, r)
+

C

Q(r)δ(r, r)
for all r > 0.

This is now equivalent to

Q′(r)δ(r, r) +Q(r)∂1δ(r, r) ≥ C,

and inserting the definition (31) of Q turns this into the requirement S(r) ≥ C, with S given by
(30) after substituting in terms of φ and simplifying.

To prove breakdown of the solution to equation (25) we can again use the comparison theorem,
Lemma 2.3. Local Lipschitz continuity of the comparison function

F̃ (q)(r) := −Cq(r)

∫ ∞

r

|z0(s)|/Q(s)

q(s)
ds

is proved in Proposition B.1. Finally the monotonicity property follows directly from the above
inequality, which concludes the proof. □

6. Breakdown for the EPDiff equation

In this section we will apply our general breakdown theorem to obtain our breakdown results for
the H1 metric in any dimension and the Ḣ2 and H2 metrics in dimension n ≥ 3, having already
obtained the full breakdown result in the Ḣ1 case in Section 4.

6.1. The EPDiff equation of the homogeneous Ḣ2-metric on Rn. We aim to prove breakdown of
the EPDiff equation on Rn for radial solutions with the inertia operator A = ∆2 and n ≥ 3. We
want to emphasize that the analysis of this equation has to be taken with caution, as the kernel of
the inertia operator A can lead to significant difficulties, see also the comments in Remark 2.6.

Theorem C. Let n ≥ 3 and suppose that the initial momentum satisfies ω0(r) ≤ 0 for all r ≥ 0.

Then the solution of equation (21) with homogeneous Ḣ2 operator ∆2 with γ(0, r) = r and γr(0, r) =
ρ(0, r) = 1 breaks down in finite time, in the sense that γr(t, r) = ρ(t, r) = 0 for some t > 0 and
r ≥ 0.

Proof of Theorem C. We aim to apply Theorem B: The required local existence of solutions is
guaranteed by Corollary B.2. The positivity condition (a) follows from

φ(r, s) =
s−n((n+ 2)s2 − (n− 2)r2)

2n(n− 2)(n+ 2)
>

s−n(s2 − r2)

2n(n+ 2)
≥ 0,

for (r, s) ∈ D. For the log-supermodularity condition (b) we compute

∂2

∂r∂s
lnφ(r, s) =

4rs(n2 − 4)[
(n+ 2)s2 − (n− 2)r2

]2 ,
which is obviously nonnegative for n ≥ 3. For the last condition (c) we obtain after a straightforward

computation that S(r) = 2(n−2)
n+2 . Thus all conditions of Theorem B are satisfied. It remains to

calculate the function Q(r), which is given by Q(r) = 2n(n− 2)rn−3. As Q(r) ̸= 0 this implies that
ρ reaches zero in finite time and thus we obtain the desired breakdown result. □
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6.2. The higher dimensional Camassa-Holm equation. The higher dimensional Camassa-Holm equa-
tion corresponds to the EPDiff equation of the right invariant H1-metric, i.e., it corresponds to
equation (1) with A = 1 − ∆ on Rn. In the following we will refer to this equation restricted
to radial solutions as the radial, n-dimensional Camassa-Holm equation. Breakdown for smooth
solutions of this family of equations was already shown in [42], Theorem 2.2. We present the result
here since it is a simple application of our general technique.

Theorem D. Suppose the initial momentum ω0 satisfies ω0(r) ≤ 0 for all r ≥ 0. Then the solution
of equation (21) with H1 operator (1 −∆) with γ(0, r) = r and γr(0, r) = ρ(0, r) = 1 breaks down
in finite time, in the sense that γr(t, r) = ρ(t, r) = 0 for some t > 0 and r ≥ 0.

Proof. The required local existence follows from Proposition 3.2. Next we recall from Lemma 2.5
that the function φ from formula (13) is given by φ(r, s) = αn(r)βn(s). We aim to apply Theorem B:
we will use several properties of these functions that are discussed in detail in Appendix A. The
positivity condition (a) follows directly from the positivity of the Bessel functions. Since φ is a
product of two functions of one variable, the log-supermodularity condition (b) is trivially satisfied.

For the last condition (c) we need to compute S(r), and for this we compute first

∂1φ(r, r) = α′
n(r)βn(r) and φ(0, r) = βn(r),

using the fact that αn(0) = 1 for all n by (55). Then S(r) simplifies to

S(r) =
rβn(r)

[
βn(r)α

′
n(r)− αn(r)β

′
n(r)

]
βn(r)2

=
1

rnβn(r)
,

using the Wronskian (54). Since this function is always positive even at r = 0 by the asymptotic
formula (55) and approaches infinity as r → ∞ by (56), we see that S(r) ≥ C for some positive
constant C and all r ≥ 0.

Thus all conditions of Theorem B are satisfied, and this implies that ρ reaches zero in finite time.
Thus the radial, n-dimensional Camassa-Holm equation blows up. □

6.3. The EPDiff equation of the H2-metric. We are now ready to tackle our main breakdown result
for the EPDiff equation: breakdown of the EPDiff equation (1) corresponding to A = (1−∆)2 in
dimensions n ≥ 3.

Theorem E. Let n ≥ 3 and suppose that the initial momentum ω0 satisfies ω0(r) ≤ 0 for all r ≥ 0.
Then the solution of equation the n-dimensional EPDiff equation (21) with H2 inertia operator
(1−∆)2 and initial conditions γ(0, r) = r and γr(0, r) = ρ(0, r) = 1 breaks down in finite time, in
the sense that γr(t, r) = ρ(t, r) = 0 for some t > 0 and r ≥ 0.

Proof of Theorem E. The required local existence follows from Proposition 3.2. Thus it only re-
mains to check that

φ(r, s) = 1
2

[
nαn(r)βn(s) +

1
nαn(r)βn−2(s)− nαn−2(r)βn(s)

]
,

as defined in (14), satisfies all conditions of Theorem B. This is slightly easier if we write

(39) φ(r, s) =
n

2
αn(r)βn(s)

[
1 +Rβ(s)−Rα(r)

]
, Rα(r) =

αn−2(r)

αn(r)
, Rβ(s) =

βn−2(s)

n2βn(s)
.

Again we will need several properties of Bessel functions discussed in Appendix A.
From formulas (51)–(52) we can compute that Rα(r) satisfies the Riccati equation

R′
α(r) =

n
r

(
r2

n2 +Rα(r)−Rα(r)
2
)
= n

r

(
1
2 +

√
1
4 + r2

n2 −Rα(r)
)(

− 1
2 +

√
1
4 + r2

n2 +Rα(r)
)
.



20 BREAKDOWN OF EULER-ARNOLD EQUATIONS

Since Rα(0) = 1 by formula (55), we can use this Riccati equation to conclude that

(40) Rα(r) ≤
√

1
4 + r2

n2 + 1
2 and R′

α(r) ≥ 0 for all r ≥ 0.

These inequalities are strict as soon as r > 0. Similarly Rβ(r) satisfies the Riccati equation

R′
β(r) =

n
r

(
− r2

n2 +Rβ(r) +Rβ(r)
2
)
= n

r

(
Rβ(r) +

1
2 +

√
1
4 + r2

n2

)(
Rβ(r) +

1
2 −

√
1
4 + r2

n2

)
,

and since limr→0Rβ(r) = 0 by (55), we conclude that

(41) Rβ(r) ≥
√

1
4 + r2

n2 − 1
2 and R′

β(r) ≥ 0 for all r ≥ 0.

Similarly these are strict when r > 0. See Laforgia-Natalini [39] for the details.
To check condition (a), i.e., that φ(r, s) > 0 for all (r, s) ∈ D, we use the factored form (39) and

the inequalities (40)–(41) to get

φ(r, s) ≥ n

2
αn(r)βn(s)

[√
1
4 + s2

n2 −
√

1
4 + r2

n2

]
≥ 0.

The first inequality is strict as soon as r > 0 and s ≥ r, while the second is strict as soon as s > r
even for r = 0.

To prove condition (b), that ∂r∂s lnφ(r, s) ≥ 0, we observe that

∂2

∂r∂s
lnφ(r, s) =

∂2

∂r∂s

(
ln
[
αn(r)

]
+ ln

[
βn(s)

]
+ ln

[
1 +Rβ(s)−Rα(r)

])
=

∂

∂r

R′
β(s)

1 +Rβ(s)−Rα(r)
=

R′
α(r)R

′
β(s)[

1 +Rβ(s)−Rα(r)
]2

which is nonnegative using (40)–(41).
It remains to show that S(r), as defined in (c), is bounded below by a positive constant for all

r ∈ [0,∞), i.e., that for some C > 0 we have

(42) N(r) := r
[
∂1φ(r, r)φ(0, r)− φ(r, r)∂2φ(0, r)

]
≥ Cφ(0, r)2 for all r ≥ 0.

Therefore we calculate the terms appearing here. For convenience we define the function

jn(r) = n2
[
αn−2(r)− αn(r)

]
,

so that formula (14) becomes

φ(r, s) = 1
2n

[
αn(r)βn−2(s)− jn(r)βn(s)

]
.

Since αn(0) = 1 for all n by (55), we have jn(0) = 0, and we obtain

φ(0, r) = 1
2n βn−2(r), ∂2φ(0, r) = − r

2 βn(r).

Recalling the derivative formulas (51)–(52), we compute that

(43) rj′n(r) = −njn(r) + nr2αn(r), rα′
n(r) =

1
njn(r),

and thus the quantity r∂1φ(r, r) simplifies to

r∂1φ(r, r) =
1
2n

[
rα′

n(r)βn−2(r)− rj′n(r)βn(r)
]

= 1
2n

[
1
njn(r)βn−2(r) + njn(r)βn(r)− nr2αn(r)βn(r)

]
.
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Plugging into the quantity N(r) from (42), we get

N(r) = 1
4n2

(
βn−2(r)

[
1
njn(r)βn−2(r) + njn(r)βn(r)− nr2αn(r)βn(r)

]
+ nr2βn(r)

[
αn(r)βn−2(r)− jn(r)βn(r)

])
= 1

4n2 jn(r)
(

1
nβn−2(r)

2 + nβn−2(r)βn(r)− nr2βn(r)
2
)
.

Thus S(r) is given by

S(r) =
jn(r)

[
1
nβn−2(r)

2 + nβn−2(r)βn(r)− nr2βn(r)
2
]

βn−2(r)2
=

jn(r)

nRβ(r)2
[
Rβ(r)

2 +Rβ(r)− r2

n2

]
.

Since jn(r) = nrα′
n(r) > 0 for r > 0 by (40), and since the term in square brackets is positive for

r > 0 by (41), we conclude that S(r) > 0 for all r > 0.
To show S(r) is bounded below by a positive constant C, it is sufficient to show that S(r) cannot

approach zero as r → 0 or as r → ∞. For this purpose we use the asymptotic formulas (55)–(56).
By formula (55) we know that limr→0 r

nβn(r) =
1
n , so that

lim
r→0

S(r) = lim
r→0

j(r)

r2
lim
r→0

(
r2

n
+ n

rnβn(r)

rn−2βn−2(r)
− n

r2nβn(r)
2

r2n−4βn−2(r)2

)
=

n

n+ 2

[
n
(n− 2

n

)
− n

(n− 2

n

)2
]

=
2(n− 2)

n+ 2
.

Here we computed limr→0
j(r)
r2

= n
n+2 using L’Hopital’s rule and formula (43). For n ≥ 3 we see

that limr→0 S(r) is positive.
On the other hand as r → ∞ it is easy to see from (56) that S(r) → ∞ like rmer for some power

m, and in particular it does not approach zero. So S(r) has a positive minimum value at some
r ≥ 0, and condition (c) is verified. □

7. Future Work and Conclusions

A summary of global existence and breakdown results for the EPDiff equations: By the results of
this article and the breakdown results of [13, 42], we know that solutions to the Hk and Ḣk EPDiff
equations blow up in any dimension if k ∈ {0, 1}, and that they blow up in dimension n ≥ 3 for
k = 2. Combining this with the global existence results for k > n

2 + 1 [26, 50, 6, 7, 25], this gives a
complete characterization for which (integer order) EPDiff equations all solutions exist for all time
if n = 1 or n = 3. Using the geometric interpretation of the EPDiff equation as an Euler-Arnold
equation on the diffeomorphism group, cf. Section 3, directly leads to the following characterization
of geodesic (in)completeness for the corresponding diffeomorphism group in dimensions one and
three:

Corollary 7.1. Consider the diffeomorphism group Diff(Rn) equipped with the right-invariant Sobolev
metric Gk of order k ∈ N. We have:

• if n = 3 then (Diff(R3), Gk) is geodesically complete if and only if k ≥ 3, i.e., for any
k ≥ 3 and any initial conditions U0 ∈ H∞(R3,R3), the solution to the geodesic equation
(EPDiff equation, resp.) exists for all time t, whereas for any k ∈ {0, 1, 2}, there exist
initial conditions U0 ∈ H∞(R3,R3) such that the solution breaks down in finite time.

• if n = 1, then (Diff(R), Gk) is geodesically complete if and only if k ≥ 2.
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Open questions for EPDiff equations I: critical indices and higher dimensions. Note that we did not
obtain a full characterization for which integers k the corresponding EPDiff equations are globally
well-posed if n = 2 or if n > 3. In dimension two it only remains to resolve the case k = 2: the
difficulty here is that this is exactly the critical index for the Sobolev embedding theorem—H2

functions are almost but not quite guaranteed to be C1—and the present technique does not work
in that case. We have explicitly computed the quantity S(r) in any dimension and found that
its value at r = 0 is proportional to (n − 2); in particular it is strictly positive when n > 2 but
approaches zero at one point in dimension n = 2. One might at first think this is a mild obstacle,
but in fact it turns out to change everything: the evidence based on preliminary estimates is that
solutions exist globally. In dimension n > 3, it remains to prove breakdown for higher integer values
of k < n

2 + 1. Based on the pattern here, we conjecture the following:

Conjecture 1. For k ∈ N, all solutions of the Euler-Arnold equation (2) exist for all time if k ≥ n
2+1,

while there are always some solutions that break down in finite time if k < n
2 + 1. Consequently,

the space (Diff(Rn), Gk) is geodesically complete if and only if k ≥ n
2 + 1.

We believe the extension of the breakdown results to higher k (n, resp.) to be computationally
involved but rather straightforward. We foresee bigger difficulties in obtaining the global existence
for the critical Sobolev indices k = n

2 + 1 with n even: it will likely require substantially more
complicated computations to extend the analysis in the one-dimensional case as in [9] to general
(non-radial) initial conditions.

Open questions for EPDiff equations II: fractional orders. Beyond this we can study noninteger
values of k, where the operator (σ−∆)k can be defined using the Fourier transform. These situations
are indeed very relevant in modeling fluid mechanics; for example the case k = 1/2 in dimension
n = 1 is related to the De Gregorio equation [18, 19] and to the Okamoto-Sakajo-Wunsch family
of equations [51]; and in dimension two the case k = −1

2 is related to the surface quasigeostrophic
(SQG) equation. The main difference between these situations and the integer order metrics studied
in the present article is that the kernel δ(r, s) factors as a sum of products of functions of r and
s separately in the integer case, while no such factorization is possible in general. Nonetheless we
believe that our general technique will probably apply in the fractional case, and that we can extend
Conjecture 1 word for word to the case of any real k. Note that when n = 1, the critical index
is k = 3

2 , which is related to the Weil-Petersson metric [30]. In this case, it has been shown that

the equations are indeed globally wellposed; see [53, 9]. Note that for k < 1
2 we do not obtain an

ODE on a Banach space, e.g., for k = 0 this has been shown by Constantin and Kolev in [15]. This
will require a different breakdown analysis for these low-order cases, as the ODE interpretation is
a central ingredient of the current criterion.

Appendix A. Proofs of Lemmas 2.4 and 2.5, Green’s functions for the Laplacian

Proof of Lemma 2.4. We want to prove that if j is a nonnegative integer and λ is a real number

such that 0 < λ < n, then ω ∈ Qj
λ+1 implies that there is a unique solution u ∈ Qj+2

λ−1 of the equation

∆(u∂r) = −ω∂r. Assume ω ∈ Qj
λ+1; recall from the definition (9) that lim sup

r→∞
rλ+1|ω(r)| < ∞, and

that ω(j) is locally in L1, with ω(2i)(0) = 0 for 0 ≤ 2i < j. We want to prove that the solution u

will satisfy lim sup
r→∞

rλ−1|u(r)| < ∞, and that u(j+2) is locally L1, with u(2i)(0) = 0 for 0 ≤ 2i ≤ j.

Recalling formula (8), it is easy to see that we may rewrite the equation ∆(u∂r) = ω∂r as

(44)
1

rn+1

d

dr

(
rn+1u′(r)

)
= −ω(r)

r
, u(r) :=

u(r)

r
.
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We are demanding that u(0) = 0 and u is at least C1, which implies that

lim
σ→0+

σn+1u′(σ) = lim
σ→0+

σn

(
u′(σ)− u(σ)

σ

)
= 0,

in addition to implying that u(0) is finite. As such, multiplying (44) by rn+1 and integrating from
r = 0, we obtain

(45) σn+1u′(σ) = −
∫ σ

0
snω(s) ds.

Now integrate from 0 to r, then change integration order by Fubini’s Theorem (since ω is at least
locally L1) to get

u(r)− u(0) = −
∫ r

0

∫ σ

0

snω(s)

σn+1
ds dσ = −

∫ r

0

∫ r

s

snω(s)

σn+1
dσ ds =

1

n

∫ r

0
snω(s)(r−n − s−n) ds,

which leads to

(46) u(r) = u(0)− 1

n

∫ r

0
ω(s) ds+

1

nrn

∫ r

0
snω(s) ds.

At the moment u(0) is undetermined. To find it we observe that by our assumptions on ω,

(47) ∃R > 0,∃C > 0 s.t. r ≥ R =⇒ |ω(r)| ≤ C

rλ+1
.

Since λ > 0, this implies that ω is L1 on all of [0,∞), not just locally, and that the limit of the
middle term in (46) is finite. On the other hand we can show that the limit of the last term is zero:
in fact that term is in Xλ(R≥0,R) since for r ≥ R we have

rλ
∣∣∣∣r−n

∫ r

0
snω(s) ds

∣∣∣∣ ≤ rλ−n

(∫ R

0
sn|ω(s)| ds+ C

∫ r

R
sn−1−λ ds

)
≤ rλ−n

(∫ R

0
sn|ω(s)| ds+ C

n− λ
(rn−λ −Rn−λ)

)
≤ Mrλ−n +

C

n− λ
, M :=

∫ R

0
sn|ω(s)| ds− C

n− λ
Rn−λ

which is bounded for r ≥ R since n > λ.
Thus the only way to hope for u(r) to decay (and thus for u(r) to be in Xλ+1) is if

(48) u(0) =
1

n

∫ ∞

0
ω(s) ds,

which then turns (46) into

(49) u(r) =
1

nrn

∫ r

0
snω(s) ds+

1

n

∫ ∞

r
ω(s) ds;

thus if there is a solution, it must satisfy this equation. It remains to check that u(r) = ru(r)
satisfies the desired conditions: we need u ∈ Xλ−1 (which is equivalent to u ∈ Xλ), and we need

u ∈ W j+2,1
odd . For decay, we have already seen that the first term in (49) is in Xλ, so we just need to

check the second term. For r ≥ R, we have by (47) that

rλ
∣∣∣∣∫ ∞

r
ω(s) ds

∣∣∣∣ ≤ Crλ
∫ ∞

r

ds

sλ+1
=

C

λ
,

which is precisely what we need. Hence the formula (49) defines a function u which is in the correct
decay space Xλ, and thus u ∈ Xλ−1.
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Finally we need to check that ω ∈ W j,1
odd implies that u ∈ W j+2,1

odd . This is easiest to do using
the formula (45). In fact it is easy to show by induction that for any nonnegative integer i, if

ω(i) ∈ L1[0, r], then we have

(50) u(i+1)(r) = −r−n−i−1

∫ r

0
sn+iω(i)(s) ds.

The base case is precisely (45), and the inductive step follows by an integration by parts and the

product rule. We immediately conclude that if ω(j) is locally in L1, then u(j+1) and thus u(j+1) are
absolutely continuous for r > 0.

All that remains is to check that u(2i)(0) = 0 if 2i < j. For i = 0 we get that u(0) = ru(0) = 0

by (48). The iterated product rule on u(r) = ru(r) shows that for i ≥ 1, we have u(2i)(0) = 0 if

and only if u(2i−1)(0) = 0, and an integration by parts of (50) with i replaced by 2i− 2 shows that

u(2i−1)(0) =
1

n+ 2i− 1

(
−ω(2i−2)(r) + r−n−2i+1

∫ r

0
sn+2i−1ω(2i−1)(s) ds

)
.

Since 2i − 1 ≤ j, we see that ω(2i−1)(s) is locally in L1, so the second term in the numerator

approaches zero as r → 0, while the first term is zero by our assumption ω ∈ W j,1
odd.

Formula (49) yields precisely (10) in the case (11) which covers the case k = 1 for any n ≥ 1,
since we can find λ such that 0 < λ < n. We have seen that if ω ∈ Xλ+1 and 0 < λ < n, then
∆−1ω ∈ Xλ−1. As long as 0 < λ − 2 < n as well, we can continue this, and obtain an iterated
formula for ∆−2; note that this now requires n ≥ 3, and similarly operators ∆−k are only defined
on spaces with decay condition Xλ+1 where 2(k − 1) < λ < n.

We can easily obtain the explicit formula for the solution of ∆2(u(r) ∂r) = ω(r) ∂r by iterating
the formula above: using K1(r, s) := δ1

(
min{r, s},max{r, s}

)
to denote the Green function for

∆−1, we can write

∆−1(ω)(r) =

∫ ∞

0
K1(r, s) s

n−1ω(s) ds.

Iterating this we get

∆−2(ω)(r) =

∫ ∞

0

[∫ ∞

0
σn−1K1(r, σ)K1(σ, s) dσ

]
sn−1ω(s) ds =

∫ ∞

0
K2(r, s) s

n−1ω(s) ds,

where

K2(r, s) = δ2(r, s) = rsφ2(r, s) for r ≤ s,

and

φ2(r, s) =

∫ ∞

0
σn+1φ1

(
min{r, σ},max{r, σ}

)
φ1

(
min{σ, s},max{σ, s}

)
dσ.

This integral is easy to compute for r ≤ s using φ1(r, s) =
1
ns

−n by breaking up the intervals, and
we get

φ2(r, s) =
1
n2

∫ r

0
σn+1r−ns−n dσ + 1

n2

∫ s

r
σn+1σ−ns−n dσ + 1

n2

∫ ∞

s
σn+1σ−nσ−n dσ

=
s2−n

2n(n− 2)
− r2s−n

2n(n+ 2)
,

which is (12). □

Proof of Lemma 2.5. For the nonhomogeneous operator (1 − ∆), it is again simpler to solve the
equation (1−∆)u(r) = ω(r), as in the previous proof, where u(r) = ru(r) and ω(r) = rω(r), with
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∆ = ∂2
r + n+1

r ∂r. We need some special properties of the functions αp and βp defined in (15).
Standard formulas (see e.g., Gradshteyn-Ryzhik [31] (8.486)) show that the derivatives satisfy

α′
p(r) =

r
p+2αp+2(r), β′

p(r) = −(p+ 2)rβp+2(r)(51)

rα′
p(r) = −pαp(r) + pαp−2(r), rβ′

p(r) = −pβp(r)− 1
pβp−2(r).(52)

From formulas (51)–(52) we can compute that

(1−∆)αp(r) =
p− n

p+ 2
αp+2(r) and (1−∆)βp(r) = (p+ 2)(n− p)βp+2(r),

for any p ∈ R and any n ∈ N, which makes these functions especially convenient for handling the
operator (1−∆). In particular we see that

(53) (1−∆)αn = 0, (1−∆)αn−2 = − 2
nαn, (1−∆)βn = 0, (1−∆)βn−2 = 2nβn,

which shows that {αn, βn, αn−2, βn−2} form a basis of fundamental solutions to the H2 inertia
operator (1−∆)2.

The modified Bessel function identity

Iν(r)Kν+1(r) + Iν+1(r)Kν(r) =
1

r

(e.g., [31] (8.477)) shows that the Wronskian of (15) satisfies

(54) βp(r)α
′
p(r)− αp(r)β

′
p(r) = r

[βp(r)αp+2(r)

p+ 2
+ (p+ 2)αp(r)βp+2(r)

]
= r−p−1.

Standard formulas for Bessel functions show that for p > 0 we have the asymptotic behavior

αp(0) = 1, lim
r→0

rpβp(r) =
1
p ,(55)

lim
r→∞

r(p+1)/2e−rαp(r) =
cp√
2π

, lim
r→∞

r(p+1)/2erβp(r) =

√
2π

2cp
.(56)

In particular αp(r) is finite at r = 0 and approaches infinity as r → ∞, while βp(r) does the
opposite. The nice behavior at r = 0 is the reason for our choice of scaling in the definition (15).

To solve the equation (1 −∆)u(r) = ω(r) for u, we may use the usual variation of parameters
technique to write

(57) u(r) = αn(r)v1(r) + βn(r)v2(r),

where the functions v1 and v2 satisfy the system

(58) αn(r)v
′
1(r) + βn(r)v

′
2(r) = 0, α′

n(r)v
′
1(r) + β′

n(r)v
′
2(r) = −ω(r)/r.

Using the Wronskian from (54), the solution of (58) is

(59) v′1(r) = −rnβn(r)ω(r), v′2(r) = rnαn(r)ω(r).

As in the Ḣ1 case, the asymptotic behavior of αn and βn implies for finiteness of u(r) that we must
have v1(r) → 0 as r → ∞ and v2(0) = 0, so integrating (59) yields

v1(r) =

∫ ∞

r
βn(s)s

nω(s) ds, v2(r) =

∫ r

0
αn(s)s

nω(s) ds.

Then plugging into (57) yields

u(r) = ru(r) = βn(r)

∫ r

0
αn(s)rs

nω(s) ds+ αn(r)

∫ ∞

r
βn(s)rs

nω(s) ds,

which is of the form (10) with δ(r, s) = rsαn(r)βn(s), proving (13).
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Finally we consider the solution of (1 − ∆)2u(r) = ω(r). We could iterate the formula for
(1−∆)−1, but this results in rather difficult integrals of Bessel functions with a number of terms that
cancel out anyway. A simpler method is variation of parameters using the fundamental solutions
(53). This gives

(60) u(r) = αn(r)v1(r) + βn(r)v2(r) + αn−2(r)v3(r) + βn−2(r)v4(r),

with boundary conditions v1(r), v3(r) → 0 as r → ∞ and v2(0) = v4(0) = 0, as in the H1 case
above. The standard technique gives the auxiliary conditions

αn(r)v
′
1(r) + βn(r)v

′
2(r) + αn−2(r)v

′
3(r) + βn−2(r)v

′
4(r) = 0,

α′
n(r)v

′
1(r) + β′

n(r)v
′
2(r) + α′

n−2(r)v
′
3(r) + β′

n−2(r)v
′
4(r) = 0.

(61)

Since u, u′, and u′′ only involve differentiating the functions α and β, we obtain via (53) that

(1−∆)u(r) =
[
(1−∆)αn(r)

]
v1(r) +

[
(1−∆)βn(r)

]
v2(r)

+
[
(1−∆)αn−2(r)

]
v3(r) +

[
(1−∆)βn−2(r)

]
v4(r)

= − 2
nαn(r)v3(r) + 2nβn(r)v4(r).

We therefore impose one more auxiliary condition

(62) − 2
nαn(r)v

′
3(r) + 2nβn(r)v

′
4(r) = 0,

to obtain
d

dr
(1−∆)u(r) = − 2

nα
′
n(r)v3(r) + 2nβ′

n(r)v4(r),

and finally get the equation

(63) (1−∆)2u(r) = 2
nα

′
n(r)v

′
3(r)− 2nβ′

n(r)v
′
4(r) = ω(r)/r.

Using the Wronskian (54), the solution of the system (62)–(63) is given by

(64) v′3(r) =
n
2 r

nβn(r)ω(r), v′4(r) =
1
2nr

nαn(r)ω(r),

similarly to the H1 case (59). We now use these in (61) to solve for v′1 and v′2, which become (using
(51) and (54) to simplify) the system

αn(r)v
′
1(r) + βn(r)v

′
2(r) = −1

2ω(r),

α′
n(r)v

′
1(r) + β′

n(r)v
′
2(r) = 0,

with solution

v′1(r) =
1
2r

n+1β′
n(r)ω(r), v′2(r) = −1

2r
n+1α′

n(r)ω(r).

Equivalently using (52) we may rewrite this as

(65) v′1(r) = −1
2r

n
[
nβn(r) +

1
nβn−2(r)

]
ω(r), v′2(r) =

n
2 r

n
[
αn(r)− αn−2(r)

]
ω(r).

Now using the boundary conditions vi(r) → 0 as r → ∞ for odd i and vi(0) = 0 for even i, we can
integrate (64) and (65), plug in to formula (60), and obtain the solution

u(r) = 1
2αn(r)

∫ ∞

r

[
nβn(s) +

1
nβn−2(s)

]
snω(s) ds+ n

2βn(r)

∫ r

0

[
αn(s)− αn−2(s)

]
snω(s) ds

− n
2αn−2(r)

∫ ∞

r
βn(s)s

nω(s) ds+ 1
2nβn−2(r)

∫ r

0
αn(s)s

nω(s) ds

Multiplying by r to get u(r) puts this in the form (10) with δ(r, s) given by (14). □
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Appendix B. Local existence in the space of radial C1 diffeomorphisms

In this section we consider the local existence for the equation (24) on the space of continuous
functions on [0,∞) bounded above and below by positive constants, as discussed at the end of
Section 3.3, denoted by

(66) P =
{
ρ ∈ C([0,∞),R+)

∣∣∃b ≥ a > 0 s.t. ∀r ≥ 0, a ≤ ρ(r) ≤ b
}
.

Open balls in this space in the supremum norm are given by

Wa,b :=
{
ρ ∈ C([0,∞),R+)

∣∣∣ ∃a > 0, b ≥ a s.t. a < ρ(r) < b∀r ∈ [0,∞)
}
.

In this Appendix we will prove that when δ(r, s) = rps−q for p, q > 0, the vector field (25) is a
Lipschitz vector field on each Wa,b, and thus we have local existence on P. Since ρ(t, r) = γr(t, r),

this shows existence of C1 radial solutions in the Ḣ1 case for n ≥ 1 and the Ḣ2 case for n ≥ 3.
Explicitly when δ(r, s) = rps−q, the vector field (25) becomes X(ρ) = ρF(ρ), where

(67) F(ρ)(r) = −qγ(r)−q−1

∫ r

0

γ(s)p

ρ(s)
sn−1ω0(s) ds+ pγ(r)p−1

∫ ∞

r

γ(s)−q

ρ(s)
sn−1ω0(s) ds.

Here we think of γ as also being a function of ρ defined by γ(r) =
∫ r
0 ρ(s) ds, while ω0 is independent

of ρ, as in Section 3.3.
To simplify matters we will write this in the form

(68) F(ρ) = −qF1
p,q+1(ρ) + pF2

p−1,q,

where

(69) F1
p,q(ρ)(r) = γ(r)−q

∫ r

0

γ(s)p

ρ(s)
z0(s) ds and F2

p,q(ρ)(r) = γ(r)p
∫ ∞

r

γ(s)−q

ρ(s)
z0(s) ds,

with z0(s) = sn−1ω0(s).

Proposition B.1. Suppose p and q are nonnegative integers and that
∫∞
0 sp−q+n−1|ω0(s)| ds < ∞.

Then for any positive real numbers a < b, the functions F1
p,q and F2

p,q defined by formula (69) map
Wa,b to C([0,∞)) and are Lipschitz functions in the supremum topology.

Proof. We start with F1
p,q. Let ρ and ζ be two elements of Wa,b, so that a < ρ(r) < b and

a < ζ(r) < b for all r ≥ 0. We will show that F1 is bounded and Lipschitz on this set. Let γ and
η be the corresponding diffeomorphisms given by

γ(r) :=

∫ r

0
ρ(σ) dσ and η(r) :=

∫ r

0
ζ(σ) dσ.

We clearly have ar ≤ γ(r) ≤ br for all r ≥ 0. If ∥ρ − ζ∥ = ε, then by definitions of γ and η we
clearly have |γ(r)− η(r)| ≤ εr for all r ≥ 0.

First we establish boundedness for a particular ρ: we have

|F1(ρ)(r)| ≤ γ(r)−q

∫ r

0

γ(s)p

ρ(s)
|z0(s)| ds ≤

bpr−q

aq+1

∫ r

0
spsn−1|ω0(s)| ds ≤

bp

aq+1

∫ r

0
sp−q+n−1|ω0(s)| ds,

since r−q ≤ s−q for s ∈ [0, r], using the fact that q ≥ 0.
Next we establish the Lipschitz bound. The difference F1(ρ)−F1(ζ) can be expressed as a sum

of three terms:

F1(ρ)−F1(ζ) = I + II + III,
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where

I(r) =
[
γ(r)−q − η(r)−q

] ∫ r

0

z0(s)γ(s)
p

ρ(s)
ds(70)

II(r) = η(r)−q

∫ r

0

[
γ(s)p − η(s)p

] z0(s)
ρ(s)

ds(71)

III(r) = η(r)−q

∫ r

0
η(s)pz0(s)

[ 1

ρ(s)
− 1

ζ(s)

]
ds.(72)

We need to bound the three terms (70)–(72) in terms of ε.
For term I in (70) we observe, using ar ≤ γ(r), η(r) ≤ br, that∣∣γ(r)−q − η(r)−q

∣∣ = η(r)−qγ(r)−q
∣∣η(r)q − γ(r)q

∣∣
= η(r)−qγ(r)−q

∣∣η(r)− γ(r)
∣∣ q−1∑
i=0

η(r)iγ(r)q−1−i

≤ (ar)−2q (εr)

q−1∑
i=0

(br)i(br)q−1−i ≤ εqbq−1a−2qr−q.

As such we immediately obtain∣∣I(r)∣∣ ≤ εqbq−1

a2q
r−q

∫ r

0

|z0(s)|γ(s)p

ρ(s)
ds

≤ εqbq−1

a2q
r−q

∫ r

0

|z0(s)|bpsp

a
ds ≤ εqbq+p−1

a2q+1
r−q

∫ r

0
sp|z0(s)| ds.

For term II in (71) a similar technique yields∣∣γ(s)p − η(s)p
∣∣ = ∣∣γ(s)− η(s)

∣∣ p−1∑
i=0

γ(s)iη(s)p−1−i ≤ (εs)p(bs)p−1 = εpbp−1sp,

and thus

II(r) ≤ (ar)−q

∫ r

0

εpbp−1sp|z0(s)|
a

ds =
εpbp−1

aq+1
r−q

∫ r

0
sp|z0(s)| ds.

Finally for term III in (72) we obtain

III(r) = (ar)−q

∫ r

0
(bs)p

|z0(s)|
ρ(s)ζ(s)

∣∣ζ(s)− ρ(s)
∣∣ ds ≤ εbp

aq+2
r−q

∫ r

0
sp|z0(s)| ds.

Summing up, we obtain∣∣F1(ρ)(r)−F1(ζ)(r)
∣∣ ≤ εbp−1

a2q+1

(
qbq + paq + baq−1

)
r−q

∫ r

0
sp|z0(s)| ds.

Hence

∥F1(ρ)−F1(ζ)∥ ≤ Cεr−q

∫ r

0
sp+n−1|ω0(s)| ds ≤ Cε

∫ ∞

0
sp−q+n−1|ω0(s)| ds,

as desired.
The computations for the term F2 are exactly the same, except that the integrals are on [r,∞)

and the estimate becomes

∥F2(ρ)−F2(ζ)∥ ≤ Cεrp
∫ ∞

r
sn−1−q|ω0(s)| ds ≤ Cε

∫ ∞

0
sp−q+n−1|ω0(s)| ds,

using the fact that rp ≤ sp for s ≥ r, since p ≥ 0. This is the same as the estimate for F1. □
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We now conclude local well-posedness of the vector field (67), and thus local well-posedness of

the Ḣ1 and Ḣ2 Euler-Arnold equations in the form (24) on the space P defined in (66).

Corollary B.2. Consider the vector field X given by (25) and the differential equation dρ
dt = X(ρ)

on the space P defined by (66), where X(ρ) = ρF(ρ) and F given by (68)–(69). Then X is locally
Lipschitz on P, and the solution can be constructed on a time interval [0, T ) as long as ρ(t) remains

bounded above and below by positive numbers. In particular the radial Ḣ1 and Ḣ2 equations (24)
for ρ with δ given by either (11) or (12) are locally well-posed on the space P, as long as either∫ ∞

0
|ω0(s)| ds < ∞ or

∫ ∞

0
s2|ω0(s)| ds < ∞, respectively.

Proof. Proposition B.1 shows that on any open ball Wa,b, the fields F1
p,q+1 and F2

p−1,q are both
bounded Lipschitz vector fields for p ≥ 1 and q ≥ 0, as long as

(73)

∫ ∞

0
sp+n−q−2|ω0(s)| ds < ∞.

Since our given vector field ρF is a product of ρ with a linear combination sum of F1
p,q+1 and F2

p−1,q,
it is obviously also bounded and locally Lipschitz under the same condition.

In the Ḣ1 case we have a single term of the form (67) with p = 1 and q = n − 1, so condition
(73) is given by ∫ ∞

0
|ω0(s)| ds < ∞.

In the Ḣ2 case we have two terms of this form, with either p = 3 and q = n − 1 or p = 1 and
q = n − 3, and in either case the relevant combination is p + n − q − 2 = 2, so condition (73) is
given by ∫ ∞

0
s2|ω0(s)| ds < ∞.

□

The computation above can be used to show not only that F is locally Lipschitz, but is in fact
continuously differentiable of all orders, and likely even real analytic. One proceeds as follows: the
derivative of F1

p,q with respect to ρ in a direction v is given by

(DF1
p,q)ρ(v)(r) = −qγ(r)−q−1η(r)

∫ r

0

γ(s)p

ρ(s)
z0(s) ds

+ pγ(r)−q

∫ r

0

γ(s)p−1η(s)

ρ(s)
z0(s) ds− γ(r)−q

∫ r

0

γ(s)pv(s)

ρ(s)2
z0(s) ds,

where η(r) =
∫ r
0 v(s) ds. This is of the same basic form as F1

p,q(ρ) itself, with the same powers inside
and outside the integral, since γ(r) and η(r) are both bounded above and below by a constant times
r. Hence the Lipschitz estimate works here as well, and we get that F1 is continuously differentiable,
of the same form as we started. We can then iterate this procedure inductively and obtain a C∞

vector field on W, and keeping track of the size of the bounds on the derivatives would also be
expected to give real analyticity, as in [58].

The technique used here is also applicable for the nonhomogeneous H1 and H2 metrics, but
the definition of P and the estimates become rather more complicated, and would take us too far
afield. Already in the simplest case, H1 in dimension n = 1, we have the Camassa-Holm equation
where a similar analysis was performed in [40], requiring a more careful definition of the space P
to make everything work. The difference is that here ∂1δ(r, s) is essentially the same as δ(r, s)/r,
while Bessel functions grow at infinity like exponentials so that ∂1δ(r, s) looks like δ(r, s). Since we
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have a general local existence result in H∞ for the full Hk equations already (see Proposition 3.2),
this result is not necessary for the present purpose of studying global existence, but it would be
interesting to establish local existence in the best-possible space of C1 radial diffeomorphisms for
the nonhomogeneous metrics on Rn.
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