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Abstract. We study the Riemannian geometry of 3D axisymmetric ideal fluids.
We prove that the L2 exponential map on the group of volume-preserving diffeo-
morphisms of a 3-manifold is Fredholm along axisymmetric flows with sufficiently
small swirl. Along the way, we define the notions of axisymmetric and swirl-free
diffeomorphisms of any manifold with suitable symmetries and show that such dif-
feomorphisms form a totally geodesic submanifold of infinite L2 diameter inside the
space of volume-preserving diffeomorphisms whose diameter is known to be finite.
As examples we derive the axisymmetric Euler equations on 3-manifolds equipped
with each of Thurston’s eight model geometries.
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1. Introduction

Let M be an oriented Riemannian manifold (possibly with boundary) of dimen-
sion n and let µ be its Riemannian volume. Let Dµ be the group of smooth diffeo-
morphisms of M preserving the volume form. Consider the right-invariant (weak)
Riemannian metric on Dµ which at the identity diffeomorphism e is given by the L2

inner product

(1.1) 〈v, w〉L2 =

∫
M

〈v(x), w(x)〉 dµ, v, w ∈ TeDµ.
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In a celebrated paper V. Arnold [1] showed that a geodesic γ(t) of the L2 metric
in Dµ starting at γ(0) = e in the direction u0 ∈ TeDµ corresponds to the solution of
the Cauchy problem for the incompressible Euler equations in M , namely

∂tu+∇uu = −∇p
div u = 0(1.2)

u(0) = u0

where p is the pressure function and u is the fluid velocity (parallel to the boundary
if ∂M 6= 0). The correspondence is obtained by solving the initial value problem for
the flow equation

dγ

dt
(t, x) = u(t, γ(t, x))(1.3)

γ(0, x) = x, x ∈M.

The two formulations of the equations of fluid motion are only formally equiva-
lent. It turns out that if Dµ is equipped with a suitable topology then the geodesic
formulation has an important technical advantage. For example, Ebin and Marsden
[13] showed that the completion of the group of diffeomorphisms in the Sobolev Hs

topology with s > n/2 + 1 becomes a smooth Hilbert manifold Ds
µ and a topological

group. In this case the geodesic equation can be uniquely solved (at least for short
times) by the method of successive approximations for ODEs in Banach spaces. Con-
sequently, the geodesics of the L2 metric depend smoothly (in the Hs topology) on
the initial data and there is a well-defined smooth exponential map

(1.4) expe : U ⊆ TeD
s
µ → Ds

µ, expe tu0 := γ(t)

where γ(t) is the unique geodesic of the metric (1.1) with γ(0) = e and γ̇(0) = u0

defined on some open subset U . A similar calculation as in finite dimensions shows
that d expe(0) = id and therefore the L2 exponential map is a local diffeomorphism
near the identity in Ds

µ by the inverse function theorem. Furthermore, if the under-
lying manifold M is two-dimensional then this map can be extended to the whole
tangent space TeDs

µ.1

The study of the structure of singularities of the map (1.4) is of considerable in-
terest. The question whether geodesics in Ds

µ have conjugate points was raised by
Arnold [1, 3, 4] and, subsequently, various examples have been constructed by Mi-
sio lek [23, 24], Shnirelman [30], Preston [28], Benn [5, 6] and others. Further progress
was made by Ebin et al. [12] who proved that if n = 2 then the L2 exponential map
is necessarily a non-linear Fredholm map of index zero. In this case, it is possible to
obtain normal forms for the L2 exponential map near its singularities (see Lichten-
felz [21]). Moreover, when M is the flat 2-torus Shnirelman [31] showed that it is a
quasiruled Fredholm map. However, the picture changes in dimension n = 3. Simple
examples of a steady rotation of the solid torus in R3 or a left-invariant Killing field
on the 3-sphere show that the Fredholm property may fail in general, cf. [12]. Fur-
ther examples can be found in [28] and, more recently, in Preston and Washabaugh
[29]. Yet despite these examples the failure of Fredholmness seems to be borderline
and there is some evidence that exponential maps of right-invariant Hr metrics of
positive Sobolev index r > 0 are nonlinear Fredholm of index zero, cf. [25].

In this paper we study the L2 exponential map in the three-dimensional case
and prove that it retains the Fredholm property when restricted to certain subsets

1This is essentially a consequence of a theorem of Wolibner [36].
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of axisymmetric diffeomorphisms of 3-manifolds. The proof of Fredholmness when
n = 2 relies on compactness properties of the algebra coadjoint operator. The fact
that the geometry of coadjoint orbits of volume-preserving diffeomorphisms of a 3-
manifold is considerably more complicated (a source of many difficulties encountered
in 3D hydrodynamics) is one of the reasons why the structure of singularities of the
L2 exponential map is not yet completely understood when n = 3. On the other
hand, if the manifold admits symmetries then the situation simplifies. For example,
if the velocity field initially commutes with an isometry of the underlying manifold
then it does so necessarily for all time. When combined with the fact that the swirl is
also conserved in time this essentially reduces the problem from three to two spatial
dimensions. A perturbation argument then yields Fredholmness of the exponential
map for axisymmetric ideal fluids with suitably small swirls. In Euclidean space there
are two simple types of isometries: translations which yield equations that completely
decouple and rotations which yield equations with a singularity located on the axis of
rotation. In other geometries we find equations with nontrivial twisting but without
singular behavior. A number of examples together with explicit calculations are
included in the later sections of the paper.

The remainder of the paper has the following structure. After reviewing some
necessary background in Section 2, in Section 3 we develop a general framework
for axisymmetric flows on Riemannian manifolds and show that the notion of swirl
generalizes in a natural way.

In Section 4 we construct the group of swirl-free diffeomorphisms, and show that
it has infinite diameter, despite being a totally geodesic submanifold of Ds

µ (which
has finite diameter; see [32]).

In Section 5 we prove that swirl is transported by the fluid and use this fact
to extend the classical global wellposedness result for swirl-free flows in R3 to this
setting. Finally, in Section 6 we present a number of examples of axisymmetric
flows on 3-manifolds equipped with the model geometries of Thurston. One family
of examples includes Boothby-Wang fibrations over constant-curvature surfaces, for
which we will show the Euler-Arnold equation is

(1.5) ∂t∆f + {f,∆f}+ {f, σ} = 0, ∂tσ + {f, σ} = 0,

where the Laplacian and Poisson bracket are computed on either the plane, the
sphere, or the hyperbolic plane.

Acknowledgements. We would like to thank David Ebin, Herman Gluck and
Karsten Grove for helpful suggestions. The work of S.C.P. was partially supported
by Simons Foundation Collaboration Grant no. 318969.

2. Background and the setup

In this section we recall a few basic facts about Fredholm maps and describe the
geometric setup used in the paper. Our main references regarding the geometry of
the group of diffeomorphisms are [13], [12], [23] and [25].

A bounded linear operator between Banach spaces X and Y is said to be Fredholm
if it has finite dimensional kernel and cokernel. Consequently, its range is closed by
the open mapping theorem. If X = Y then the set of Fredholm operators forms
an open subset in the space of all bounded linear operators on X which is invariant
under products and adjoints. Furthermore, it is also stable under perturbations by
compact operators as well as perturbations by bounded operators of suitably small
norm. The index of an operator L given by indL = dim kerL− dim cokerL defines
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a map into Z which is constant on connected components of the set of Fredholm
operators.2 A nonlinear generalization of this notion was introduced by Smale [33].
A C1 map f between Banach manifolds is called Fredholm if its Fréchet derivative
is a Fredholm operator at each point in the domain of f . If the domain is connected
then the index of f is by definition the index of its derivative.

As in classical Riemannian geometry a singular value of the exponential map of an
infinite-dimensional (weak) Riemannian manifold is called a conjugate point. How-
ever, in contrast with the finite dimensional case it is necessary to distinguish two
types of such points depending on how the derivative of the exponential map fails
to be an isomorphism. If γ(t) is a geodesic then a point q = γ(1) is called monocon-
jugate if d expp(tγ̇(0)) is not injective as a linear map between the tangent spaces
at p and q; it is called epiconjugate if d expp(tγ̇(0)) is not surjective. Furthermore,
it is not difficult to see that the order of conjugacy can be infinite and that finite
geodesic segments may contain clusters of conjugate points of either type. A simple
example of the former is provided by any pair of antipodal points on the unit sphere
in a Hilbert space equipped with the round metric. An example of the latter can
be found on the infinite-dimensional ellipsoid constructed by Grossman [17]. Such
phenomena are ruled out if the exponential map is Fredholm.

Given u0 ∈ TeDs
µ let γ(t) be the associated L2 geodesic starting at the identity

element in Ds
µ. A very useful tool in the study of the exponential map is the Jacobi

equation along γ(t), namely

J ′′ +R(J, γ̇)γ̇ = 0

where ′ denotes the covariant derivative of the L2-metric in the direction of γ and
R is the L2 curvature operator along γ. It is known that R is a bounded tri-linear
operator on each tangent space TγDs

µ from which it follows that the Cauchy problem
for the Jacobi equation admits unique solutions which persist as long as the geodesic
exists. In fact, solutions subject to the initial conditions J(0) = 0 and J ′(0) = w
provide precise information about the derivative of the exponential map by means of
the formula d expe(tu0)tw = J(t). In what follows it will be convenient to introduce
the following operator on TeDs

µ

w 7→ Φt(w) = dLγ(t)−1d expe(tu0)tw(2.1)

where Lη is the left multiplication in Ds
µ by η and decompose Φt into a sum of two

bounded linear operators as described in the following proposition.

Proposition 2.1. Φt is a bounded linear operator on TeDs
µ for each t ≥ 0. Further-

more, if u0 ∈ TeDs+1
µ then

(2.2) Φt = Ωt − Γt

where Ωt and Γt are bounded operators on TeDs
µ given by

w → Ωtw =

∫ t

0

Adγ−1
τ

Ad∗
γ−1
τ
w dτ(2.3)

w → Γtw =

∫ t

0

Adγ−1
τ

Ad∗
γ−1
τ

ad∗Φτwu0 dτ(2.4)

and the two coadjoint operators are defined by the formulas 〈Ad∗ηv, w〉L2 = 〈v,Adηw〉L2

and 〈ad∗vu,w〉L2 = 〈u, advw〉L2 for any u, v, w ∈ TeDs
µ.

2A good reference for these facts is Kato [19].
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Proof. See [25]; Thm. 5.6. �

Remark 2.2. We emphasize that on Ds
µ the decomposition (2.2)-(2.4) must be applied

with care due to the loss of derivatives involved in calculating the differential of the
left multiplication operator Lη. Recall that if s > n/2 + 1 then left translations
are continuous but not differentiable in the Hs topology. For this reason in several
places in the paper it will be convenient to assume that the initial velocity u0 is an
element of TeDµ and, in particular, the proof of Fredholmness of the exponential map
(1.4) will be carried out under the assumption that the corresponding L2 geodesic
γ(t) is C∞ smooth, (cf. e.g., [13]; Thm. 12.1). The proof of Fredholmness in the
general case when u0 ∈ TeDs

µ follows then by a simple perturbation argument which
is completely analogous to that in [12] or [25] and can therefore be omitted.

3. Axisymmetric diffeomorphisms of 3-manifolds

In this section we introduce the notion of axisymmetric diffeomorphisms of a gen-
eral Riemannian manifold M of dimension n = 3 equipped with a smooth Killing
vector field K. To simplify the exposition we assume that M is compact (possi-
bly with boundary) or M is the three-dimensional Euclidean space. The flow of K
consists of isometries and its covariant derivative is antisymmetric, i.e.,

〈∇wK, v〉+ 〈w,∇vK〉 = 0

for all vector fields v and w on M . Among the standard examples are the isometric
R-action and the circle action on the Euclidean space R3 with cylindrical coordinates
(r, θ, z) where K = ∂z and K = ∂θ, respectively.3

A divergence-free vector field u on M will be called axisymmetric if [K, u] = 0.
The set of axisymmetric vector fields will be denoted by TeA s

µ .

If M = R3 and K = ∂θ then the commutator condition is precisely the statement
that components of u do not depend on the θ-variable which corresponds to the
standard case of rotational symmetry. If M = R3 and K = ∂z then the components
of u are independent of the z-variable which reflects translational symmetry. All
other infinitesimal isometries of Euclidean space are linear combinations of these
with more complicated equations.

In non-Euclidean geometries axisymmetric flows are more interesting. In fact, the
translational case of R3 is essentially trivial because in this case the Euler equations
(1.2) completely decouple, while the rotational case is only slightly more complicated
since K vanishes along the z-axis. On the other hand, on a curved manifold such as
the 3-sphere S3 there exist nonvanishing Killing fields for which the Euler equations
do not decouple.

Proposition 3.1. The space TeAµ of smooth axisymmetric vector fields on M is an
infinite-dimensional Lie algebra.

Proof. Since TeDµ is an (infinite-dimensional) Lie algebra we need only check that
[u, v] commutes with K whenever u, v ∈ TeAµ. This however follows at once from
the Jacobi identity

[
K, [u, v]

]
= −

[
u, [v,K]

]
−
[
v, [K, u]

]
= 0. �

3To obtain a compact manifold for these examples, we may work on M = D2×S1, the vertically
periodic cylinder of radius 1 and height 2π.
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A volume-preserving diffeomorphism of M will be called axisymmetric if it com-
mutes with the flow of the Killing field K. It turns out that the Sobolev Hs comple-
tion of the set of all such diffeomorphisms

A s
µ =

{
η ∈ Ds

µ : ϕt ◦ η = η ◦ ϕt, ϕt is a flow of K
}

can be equipped with the structure of a smooth Hilbert manifold whose tangent
space at η ∈ A s

µ is

TηA
s
µ = deRη(TeA

s
µ ) =

{
v ◦ η : v ∈ TeA s

µ

}
.(3.1)

If M is compact the following proposition can be essentially deduced from the
results of Omori4 [26]; Chap. VIII, XVI. The direct proof given below (following the
unpublished paper [14]) has an advantage of being easily adapted to noncompact
manifolds (with asymptotically Euclidean ends).

Proposition 3.2. The set A s
µ is a topological group and a smooth Hilbert submani-

fold of Ds
µ.

Proof. For simplicity we will assume that µ(M) = 1 and ∂M = ∅. We will first show
that the group of all Hs diffeomorphisms commuting with the flow ϕt, which we
denote by A s, is a smooth submanifold of the group Ds of all Hs diffeomorphisms
of M . The proof follows a well-known construction of Eells [15]. We will show how
to define a typical coordinate chart for A s.

Let expM be the Riemannian exponential map on M . For any η ∈ A s the map
V → expMη ◦V defines a coordinate chart around η in Ds when restricted to a suf-

ficiently small5 Hs neighbourhood U of the zero section of the pull-back bundle
η∗TM . Let Sη = {v ◦ η : [v,K] = 0, v ∈ Hs(TM)}. Clearly, Sη is a closed subspace
of Hs(η∗(TM)). Furthermore, we have

Claim. expMη (U ∩Sη) = expMη U ∩A s.

To prove the claim, given ξ ∈ expMη (U ∩ Sη) let w be an Hs vector field on M
with [w,K] = 0 such that ξ = expMη (w ◦ η). Since w is axisymmetric, we have
w ◦ ϕt = ϕt∗ew and using the fact that ϕt is an isometry commuting with η, we find

ξ ◦ ϕt = expMη◦ϕt(w ◦ η ◦ ϕt) = expMϕt◦η(w ◦ ϕt ◦ η)

= expMϕt◦η(ϕt∗η(w ◦ η)) = ϕt ◦ expMη (w ◦ η)

= ϕt ◦ ξ.
This shows the inclusion expMη (U ∩Sη) ⊆ expMη U ∩A s.

On the other hand, given any ξ ∈ expMη U ∩A s pick a vector field w ∈ Hs(TM)
such that ξ = expMη (w ◦ η) and ξ ◦ ϕt = ϕt ◦ ξ. To show that w is axisymmetric we
fix t and consider two geodesics

t′ → γ1(t′) = expMη◦ϕt(t
′w ◦ η ◦ ϕt) = expMη (t′w ◦ η) ◦ ϕt

and
t′ → γ2(t′) = expMϕt◦η(t

′ϕt∗η(w ◦ η)) = ϕt ◦ expMη (t′w ◦ η).

Clearly, γ1(0) = γ2(0) and since ξ commutes with ϕt we also have γ1(1) = γ2(1). Since
by construction we can always arrange that ‖w‖Hs is smaller than the injectivity

4In Omori’s terminology A ∞(M) is a strong ILH Lie group and a Sobolev manifold. In the
boundary case one needs to assume, for technical reasons, that M is diffeomorphic to ∂M × [0, 1)
in some neighborhood of ∂M .

5E.g., assume that the Hs norms of vectors in U are less than the injectivity radius of M .
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radius of M (observe that w is in U) there is only one geodesic between γ1(0) and
γ1(1) which implies that γ1 = γ2. Since both geodesics have the same initial velocity,
we have

w ◦ ϕt ◦ η = w ◦ η ◦ ϕt = ϕt∗η(w ◦ η)

from which we deduce that w ◦ ϕt = ϕt∗ew for all t so that w is axisymmetric. This
shows that expMη U ∩A s ⊆ expMη (U ∩Sη) and establishes the claim.

Next, let Hs−1
K,1 (ΛnM) be the set of all n-forms of Sobolev class Hs−1 which are

invariant under ϕt and have volume 1 or, equivalently, let

Hs−1
K, 1(M) =

{
f ∈ Hs−1(M) : f ◦ ϕt = f and

∫
M

f dµ(x) = 1
}

be the set of K-invariant Hs−1 functions of mean 1. Clearly, this set is a hyperplane
of the space of all Hs−1 functions invariant under K which, in turn, form a closed
subspace of Hs−1(M).

Consider the map F : A s → Hs−1
K,1 (M) given by the Radon-Nikodym derivative

η → F (η) = d(η∗µ)/dµ. F is a smooth map between Hilbert manifolds and we can
set A s

µ = F−1(1). The derivative of F at η ∈ A s is

dFη : TηA
s → Hs−1

K,0 (M) where v ◦ η → d(η∗(Lvµ))/dµ

where Hs−1
K,0 (M) is the space of K-invariant mean-zero functions on M and Lv is the

Lie derivative in the direction of v. Since η∗ is an isomorphism of the space of smooth
n-forms it suffices to show that dFe is a submersion on A s

µ . Let f = dLvµ/dµ with∫
M
f dµ = 0 and using the Hodge decomposition6 choose a vector field v = ∇∆−1f

of Sobolev class Hs. Then7

[K, v][ = LKv[ − LKg(·, v)

= dιKv
[ + ιKdv

[(3.2)

= d∇K∆−1f = d∆−1〈∇f,K〉 = 0

since K is an infinitesimal isometry of g and hence, in particular, it commutes with
the Laplacian ∆ and its inverse. This shows that dFe is surjective with split kernel
(because A s is a Hilbert manifold).

That A s
µ is a topological group is an immediate consequence of the fact that the

ambient space Ds
µ(M) is a topological group whenever s > 5/2. �

Remark 3.3. Proposition 3.2 states that the space of diffeomorphisms that leave K
invariant is a smooth manifold modelled locally on the space of vector fields that
commute with K. Note however that the latter may vary depending on the orbits of
K. For example if K = ∂x+r∂y on T3 where r is irrational then 〈∇f,K〉 = 0 implies
that f is a function of the z variable alone while if K = ∂x then f can be an arbitrary
function of both variables y and z. In either case, we get a manifold structure on
the space of diffeomorphisms preserving K but without further assumptions on K
we cannot nice a generic description of this manifold (e.g., as parameterized by two
functions of two variables).

The next result shows that fluid flows with axisymmetric initial conditions remain
axisymmetric. More precisely, we have

6Cf. e.g., [13]; Sect. 7.
7The musical symbols ] and [ denote the usual isomorphisms between vector fields and differential

forms induced by the Riemannian metric g on M .
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Theorem 3.4. If u0 ∈ TeA s
µ then the solution u(t) of the Euler equations (1.2)

belongs to TeA s
µ (as long as it is defined). In particular, A s

µ is a totally geodesic
submanifold of Ds

µ.

Proof. The flow ϕt of the Killing field K on M is smooth and defined globally in
time. The assumption [K, u0] = 0 is equivalent to the fact that u0 is constant along
the flow, that is

(3.3) u0 = ϕt∗ϕ−tu0 ◦ ϕ−t for all t ∈ R.
For any fixed t′ ∈ R consider the vector field

t→ ũ(t) = ϕt′∗ϕ−t′u(t) ◦ ϕ−t′ .

Since ϕt is a flow of local isometries of M the vector field ũ(t) is divergence-free and
we have

∂tũ+∇ũũ = ϕt′∗ϕ−t′ (∂tu+∇uu) ◦ ϕ−t′
= ϕt′∗ϕ−t′ (−∇p ◦ ϕ−t′)
= −∇(p ◦ ϕ−t′).

Furthermore, from (3.3) we also have ũ(0) = u0 so that ũ(t) and u(t) must coincide
by uniqueness of solutions to (1.2). Consequently, we find that [K, u(t)] = 0, as long
as u(t) is defined.

From Proposition 3.2 it now follows that any L2 geodesic in Ds
µ with initial velocity

in TeA s
µ remains in A s

µ which implies that A s
µ is totally geodesic. �

It follows that the restriction of the L2 exponential map (1.4) to TeA s
µ yields

a well-defined exponential map on A s
µ which we will continue to denote by expe.

Furthermore, its differential preserves the right-invariant distribution (3.1) in the
sense that for any u0 and w0 in TeA s

µ we have d expe(tu0)tw0 ∈ Texpe tu0A
s
µ .

3.1. Conservation of swirl. A general 3D axisymmetric fluid flow can display very
complicated behavior. Since vorticity is typically not conserved along particle tra-
jectories, the two-dimensional approach to global persistence fails unless additional
conditions are imposed. In the case of flows in R3 one such condition involves the
swirl of the velocity field. The notion of swirl can be generalized to fluid flows in
spaces of nonzero curvature. Given an axisymmetric vector field v on M we define
its swirl to be the function σv = 〈v,K〉. A vector field v will be called swirl-free if
σv = 0.

It turns out that, as in the Euclidean case, solutions of the Euler equations which
are initially swirl-free remain swirl-free as long as they exist. In fact, the following
more general result holds.

Theorem 3.5. The swirl of an axisymmetric velocity field is transported by its flow.
More precisely, if u0 ∈ TeA s

µ and γ(t) is the corresponding geodesic in A s
µ then

σu(t) ◦ γ(t) = σu0 as long as it is defined.

Proof. For simplicity, assume that M is either a compact manifold with no boundary
or the Euclidean space R3. Consider the function f(t) = 〈u(t), K〉. Since u(t) is a
solution of the Euler equations (1.2) we have

∂tf +∇uf = 〈∂tu,K〉+ 〈∇uu,K〉+ 〈u,∇uK〉
= −〈∇p,K〉+ 〈u,∇uK〉
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where p is the pressure of the fluid. Since K is a Killing field the second term on the
right hand side is zero.

Furthermore, since u is axisymmetric we have

LK∇uu = ∇[K,u]u+∇u[K, u] = 0

and thus applying the Lie derivative in K to (1.2) and using the fact that LKg = 0,
we obtain

d〈∇p,K〉 = LKdp = (LK∇p)[ = −
(
∂tLKu+ LK∇uu

)[
= 0.

Since M is connected it follows that 〈∇p,K〉 is a constant function but since K is di-
vergence free (and tangent to the boundary if ∂M 6= ∅) we also have

∫
M
〈∇p,K〉 dµ =

0 which implies that the constant is zero.
Consequently, we find that f satisfies a homogeneous transport equation with

initial condition f(0) = σu0 and therefore has the form f(t) = σu0 ◦ γ−1(t). �

4. Axisymmetric diffeomorphisms with no swirl

In the previous section, we defined the notion of swirl for an axisymmetric vector
field on M . It follows from this definition that the set of swirl-free vector fields is
a linear subspace of the axisymmetric vector fields. It is natural to ask whether
this subspace is also a Lie algebra, and if that is the case, whether there exists an
underlying Lie group corresponding to it. The goal of this section is to provide a
partial answer to these questions.

Let TeA s
µ,0 denote the space of all axisymmetric vector fields on M with zero

swirl. First, note that TeA s
µ,0 is a Lie subalgebra of TeA s

µ if and only if the normal
distribution

(4.1) M\Z 3 x→ K⊥x =
{
V ∈ TxM : 〈V,K(x)〉 = 0

}
is integrable, where Z is the zero set of K. In Section 6.2, we provide examples
illustrating the behavior of this distribution.

Under the integrability assumption we can decompose M\Z into a disjoint union
F =

⋃
x∈M\Z Fx of maximal leaves Fx which are tangent to the distribution K⊥.

Proposition 4.1. The flow of K preserves the foliation F , that is

ϕt
(
Fx
)
⊆ Fϕt (x)

for any x ∈M\Z and any t ≥ 0.

Proof. Let x ∈M\Z. If c(t′) is a curve in Fx joining x and some other point y ∈ Fx
then ϕt ◦ c(t′) is a curve joining ϕt(x) and ϕt(y) which is clearly orthogonal to K.
Thus ϕt(y) ∈ Fϕt(x). �

An axisymmetric diffeomorphism η of M will be called swirl-free if it maps each
leaf of F to itself; i.e. η(Fx) ⊆ Fx for every x ∈M\Z.

To simplify the exposition we will assume from now on that the flow of K is
transitive on the leaves in the sense that for any x and y in M\Z there is a t ∈ R such
that ϕt(Fx) = Fy. This transitivity implies that an axisymmetric diffeomorphism
η that fixes a single leaf (setwise) must also fix all the other leaves. To see this,
let x0 ∈ M\Z and suppose that η(Fx0) ⊆ Fx0 . Then, given any x ∈ M\Z we can
choose t with ϕt(Fx0) = Fx and find that

η(Fx) = η ◦ ϕt(Fx0) = ϕt ◦ η(Fx0) ⊆ ϕt(Fx0) = Fx.
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To state the main theorem in this section, we will also require that any sufficiently
short geodesic which starts at a point p of a given leaf Fx and is transversal to Fx
does not return to Fx (see theorem 4.2 below for a precise definition).

This condition is clearly satisfied in the standard Euclidean example of M = R3

with rotational symmetry, i.e., K = ∂θ. In this case the leaves of the corresponding
foliation F are the half-planes in R3 defined by θ = const. (in polar coordinates) and
a geodesic starting transversally from any point on a given half-plane never returns
to the same half-plane.

Theorem 4.2. Assume that the foliation F is integrable and suppose that for some
x0 ∈M\Z the leaf Fx0 is a submanifold of M that admits an ε-tubular neighborhood.8

Then the set of all swirl-free Sobolev Hs diffeomorphisms

A s
µ,0 =

{
η ∈ A s

µ : η(Fx) ⊆ Fx, x ∈M\Z
}

is a topological group and a smooth Hilbert submanifold of A s
µ .

Proof. The proof follows [13, Theorem 6.1] with obvious modifications. �

Corollary 4.3. In particular, A s
µ,0 is a totally geodesic submanifold A s

µ (and of Ds
µ).

Proof. This follows directly from Theorems 3.4 and 3.5. �

4.1. The diameter of A s
µ,0. In [32] Shnirelman proved that the group of volume-

preserving diffeomorphisms of a compact simply-connected manifold of dimension
greater than two has finite L2 diameter (see also [30], [4]). On the other hand,
Eliashberg and Ratiu [16] showed that the L2 diameter of the symplectomorphism
group of any compact exact symplectic manifold (which in dimension two coincides
with the group of volume-preserving diffeomorphisms) is infinite. Their proof relies
on the fact that it is possible to construct exact symplectomorphisms of such mani-
folds that are fixed near the boundary and whose Calabi invariants take on arbitrarily
large values.

It turns out that their construction can be adapted to the subgroup of swirl-free
diffeomorphisms.

Theorem 4.4. The L2 diameter of A s
µ,0 is infinite.

Proof. Consider the case when the underlying manifold is a cylinder of finite height
in R3, namely

M =
{

(r, θ, z) : 0 ≤ r, z ≤ 1, 0 ≤ θ < 2π
}

where (r, θ, z) are the cylindrical coordinates and the Killing field is K = ∂θ. In this
case Theorems 3.4, 4.2 and Corollary 4.3 imply the following inclusions of totally
geodesic submanifolds

A s
µ,0 ⊂ A s

µ ⊂ Ds
µ.

It will be sufficient to show that the diameter of A s
µ,0 computed in the right invariant

metric given by the L1 norm on the algebra of vector fields is infinite. The result for
the L2 diameter will then follow from Hölder’s inequality.

Let η(t) be any path connecting the identity element e = η(0) with some η1 = η(1)
in A s

µ,0. Since the diffeomorphisms along the path are axisymmetric we have∫ 1

0

∫
M

∣∣η̇t(r, θ, z)
∣∣ rdrdθdzdt = 2π

∫ 1

0

∫
Q2

∣∣η̇t(r, z)
∣∣ rdrdzdt(4.2)

8Recall that a submanifold N of a Riemannian manifold M admits an ε-tubular neighborhood
if for any p ∈ N and v ∈ TpM with ‖v‖ < ε we have expp v ∈ N if and only if v ∈ TpN .
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where Q2 is the two-dimensional square “slice” of the cylinder, that is

Q2 =
{

(r, 0, z) : 0 ≤ r, z ≤ 1
}
⊂M.

In these coordinates, the symplectic structure on Q2 has the form ω = rdr ∧ dz.
It follows from (4.2) that the L1 length of η(t) in A s

µ,0 is bounded from below by

its L1 length as a curve in Dsµ(Q2). Observe that even though Q2 has corners we
can work with diffeomorphisms which fix a neighbourhood of the boundary. Re-
call also that the Calabi invariant defines an epimorphism from the group of exact
symplectomorphisms of Q2 which are fixed near the boundary to R, cf. e.g., [4].

The rest of the argument proceeds now as follows. First, given anyR > 0 cut out an
open disk D in the interior of Q2 and construct a symplectomorphism ξR : D → D
whose Calabi invariant is greater than R and ξR = id near the boundary ∂D, as
in [16]; Lem. 6.1. Next, extend ξR to the identity map on Q2\D and, finally, to
an axisymmetric diffeomorphism of M by composing ρθ ◦ ξR(r, 0, z), where ρθ is a
rotation by 0 ≤ θ < 2π of R3.

Observe that any path η(t) in A s
µ,0 starting at the identity with η1 = ρθ ◦ ξR will

have its L1 length greater than 2πRC, where C > 0 is a constant depending only on
M . This shows that A s

µ,0 has infinite L2 diameter. �

Remark 4.5. It is interesting to observe that the L2 diameter of A s
µ,0 is infinite

even though it is a totally geodesic submanifold of A s
µ whose diameter is finite by

Shnirelman’s result. Finite dimensional examples of this situation are the following.
Let Tn be the n-dimensional flat torus and N ⊆ Tn be any k-dimensional totally
geodesic submanifold such that N is dense in Tn (i.e., a higher dimensional analogue
of the standard “irrational flow” example). Then Tn has finite diameter, but N is
isometric to Rk and therefore has infinite diameter.

On the other hand, if a compact manifold has positive sectional curvature then so
does any totally geodesic submanifold (of dimension greater than 1) and therefore it
must also be compact by the Bonnet-Myers theorem.

5. Fredholm properties of the L2 exponential map

It turns out that the L2 exponential map in 3D hydrodynamics is Fredholm pro-
vided that it is restricted to axisymmetric flows of sufficiently small swirl (including
the swirl-free flows). Thus, in this case the situation resembles that of 2D hydrody-
namics. We state our main results for the derivative of the exponential map because,
as we have seen, in some cases there is no guarantee that such flows are confined to a
smooth submanifold of the diffeomorphism group (cf. Sections 3, 4). We emphasize
that the vanishing conditions on the swirl are necessary. For example, in [12] the au-
thors show that if u0 is a rigid rotation of a solid cylinder in R3 then the L2 geodesic
in the direction of u0 (which lies in A s

µ ) contains clusters of conjugate points along
segments of finite length - in particular, the associated exponential map cannot be
Fredholm.

The next lemma will be crucial in what follows. It shows that the curl of an
axisymmetric swirl-free vector field has a very special form. We will assume that K
either has no zeroes or that they are of the same form as in the usual axisymmetric
case: rotation along an axis in a warped product metric. The following metric seems
very special, but in fact is general enough to cover all the standard three-dimensional
geometries, as we shall see later.
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Definition 5.1. A Killing field K on a Riemannian manifold M is called a rotation
if there is a coordinate chart (r, θ, z) such that K = ∂

∂θ
where the metric is of the

form

(5.1) ds2 = dr2 + α(r)2 dψ2 + β(r)2 dθ2

where θ ∈ S1 and β extends to a C∞ odd function through r = 0 satisfying β′(0) = 1,
and β(0) = 1.

Note that the smoothness requirement on β is a general feature of Riemannian
metrics as discussed in Petersen, Chapter 1, Section 3.4 [27]. Zeroes of Killing
fields on three-dimensional manifolds must occur along geodesics by a theorem of
Kobayashi [20], but we will not consider the general situation since the family (5.1)
is rich enough to give many examples while still yielding relatively simple equations.

Lemma 5.2. Suppose K is nowhere zero or a rotation. If v ∈ TeA s+1
µ,0 then curl v =

φK where φ is a function of class Hs.

Proof. First, assume that the Killing field K does not vanish. Given any x ∈ M
choose smooth vector fields E1, E2 such that together with K/|K| they define a local
coordinate frame of orthonormal fields at x. The axisymmetric assumption on v and
the fact that K is Killing imply that LKv[ = 0 (cf. (3.2)) and from Cartan’s formula
we have

(5.2) 0 = LKv[ = dιKv
[ + ιKdv

[ = ιKdv
[

since v is also swirl-free by assumption. Let ω1, ω2 and ω3 be the component functions
of Sobolev class Hs of the associated 2-form near x, so that

dv[ = ω3E
[
1 ∧ E[

2 + ω2K
[ ∧ E[

1 + ω1E
[
2 ∧K[.

Evaluating on the frame fields and using (5.2) we now have

ω2|K|2 = dv[(K,E1) = 0 = dv[(E2, K) = ω1|K|2

which implies dv[ = ω3E
[
1 ∧E[

2 and consequently curl v = (∗dv[)] = φK for some Hs

function φ and where ∗ is the Hodge star operator. This completes the proof in the
non-vanishing case.

Now if K is a rotation, then we can use more concrete coordinates: we have
E1 = ∂r and E2 = 1

α(r)
∂ψ, and a divergence-free, swirl-free field v can be written

locally as

v = − 1

α(r)β(r)

∂f

∂ψ
∂r +

1

α(r)β(r)

∂f

∂r
∂ψ,

for an Hs+2 stream function f , which must extend to an even function of r in order
for the radial component of v to vanish along the axis. Then the curl of v is given
by curl v = φK where

φ
1

α(r)β(r)

∂

∂r

(
α(r)β(r)

∂f

∂r

)
+

1

α(r)2β(r)2

∂2f

∂z2
.

Since α(r) and β(r)
r

are both smooth even functions of r which approach 1 as r → 0,
we see that this differential operator behaves the same way as in the Euclidean case
where α(r) = 1 and β(r) = r. In particular φ is Hs as in the Euclidean case, cf. e.g.,
[10] or [22]. �
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An immediate consequence of the above lemma and the conservation of swirl of
Section 3.1 is a global existence result for swirl-free flows in any curved space. Before
formulating the result we first recall a special case of particular interest. Consider
the Euclidean space R3 with cylindrical coordinates (r, θ, z) and let the Killing field
be K = ∂θ + κ∂z, where κ ∈ R. The case κ = 0 corresponds to the standard rota-
tional case and it is not difficult to check that the quantity ωθ/r, where ωθ is the
θ-component of the vorticity field, is constant in time. The case κ 6= 0 is some-
times described as helicoidal symmetry and the corresponding conserved quantity
is ωθ/

√
r2 + κ2. In both of these cases global existence and uniqueness results are

well-known, see e.g., [35], [22], [11] or [10].
In the general we have

Theorem 5.3. If u0 ∈ TeA s
µ,0 then the corresponding solution u(t) of the Euler

equations (1.2) in M can be extended globally in time.

Proof. We assume that the Killing field K does not vanish. Since by assumption
u0 is swirl-free, it follows from Theorem 3.5 that the swirl σu(t) = 0 as long as
u is defined. But in this case Lemma 5.2 implies that the vorticity of u(t) has
the form ω(t, x) = φ(t, x)K(x) where φ = φ(t, x) is a time-dependent function of
class Hs−1(M). Therefore, using the 3D vorticity equation and the fact that u(t) is
axisymmetric, we have

(∂tφ+∇uφ)K = ∂t(φK) +∇u(φK)− φ∇uK

= ∂tω +∇uω −∇ωu

= 0.

This shows that the function φ is also transported along the flow of u(t). Conse-
quently, the L∞ norm of ω is constant in time and the theorem follows now from the
Beale-Kato-Majda criterion, see e.g., [22]. �

5.1. The case of no swirl. In this subsection we study Fredholm properties of the
exponential map on A s

µ in the swirl-free directions. Our first result is contained in
the following theorem.

Theorem 5.4. Let M be either a compact Riemannian 3-manifold or R3 equipped
with a smooth Killing field K. Let u0 ∈ TeAµ,0 be an axisymmetric swirl-free vector
field of Schwartz class. Then the derivative

d expe(u0) : TeA
s
µ → Texpe u0

A s
µ

is a Fredholm operator of index zero.

Remark 5.5. If the assumptions of Section 4 are satisfied then (with some extra work
needed to relax the smoothness assumption in order to allow u0 ∈ TeA s

µ,0 for any
s > 5/2, cf. Remark 2.2 above) it follows from the above result and Theorem 4.2
that the L2 exponential map in (1.4) when restricted to the subgroup A s

µ,0 ⊂ A s
µ of

swirl-free diffeomorphisms

expe : TeA
s
µ,0 → A s

µ,0

is a nonlinear Fredholm map of index zero.

Proof of Theorem 5.4. As before, we first assume that M is compact and the Killing
field K does not vanish. To further simplify our calculations we will also assume
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that the first homology group of M is zero.9 Since on a three-dimensional manifold
a 2-form can be identified with a 1-form using Hodge duality, it follows that any
v ∈ TeDs

µ can be now written as

(5.3) v = (δdβ)] = (δ ∗ w[)] = curlw

for some 1-form β of Sobolev class Hs+2 and w[ = ∗dβ.

Lemma 5.6. The Lie group adjoint and coadjoint operators on the volumorphism
group Ds

µ of a 3-manifold are given by the formulas

Adηv = η∗v = curl(η∗w
[)] and Ad∗ηv = curl ∆−1η−1

∗ ∆w

where v ∈ TeDs
µ and w ∈ TeDs+1

µ are related by (5.3). The corresponding Lie algebra
coadjoint operator is given by

ad∗vu = curl ∆−1[v, curlu]

for any u, v ∈ TeDs
µ.

Proof. Both formulas can be found in [25]; Prop. 2.5, Prop. 3.6. �

Let γ(t) be the L2 geodesic starting from the identity e in the direction u0. Consider
the family of bounded operators Φt on TeDs

µ defined in (2.1) with the attendant
decomposition in (2.2) of Proposition 2.1. From Section 3 we know that d expe(tu0)
preserves the tangent spaces to A s

µ so that each Φt is well-defined as a bounded
operator on TeA s

µ .
Regarding the first term in (2.2) we have

Lemma 5.7. The operators Ωt are invertible on TeA s
µ .

Proof of Lemma 5.7. The proof that the operators Ωt in (2.3) are invertible on TeDs
µ

can be found in [12], Prop. 7. In particular, each Ωt is bounded when restricted to
the subspace TeA s

µ .

Observe that if η ∈ A s+1
µ then the product Adη−1Ad∗η−1 of the adjoint operator

and its L2 coadjoint maps TeA s to itself. In fact, if v ∈ TeA s
µ then w[ = ∗∆−1dv[

and from Lemma 5.6 it follows at once that both factors map into Hs and that
div(Ad∗η−1v) = div(Adη−1v) = 0. Furthermore, we have

[K,Ad∗η−1v] = LKAd∗η−1v = LKcurl ∆−1η−1
∗ ∆w(5.4)

= curl ∆−1LKη−1
∗ ∆w = curl ∆−1η−1

∗ ∆LKw = 0

since η being axisymmetric implies η−1
∗ K = K and the Lie derivative is natural with

respect to the push-forward map. The last step in (5.4) follows again from the fact
that K is an infinitesimal isometry so that

(LKw)[ = LKw[ = ∗∆−1dLKv[ = 0

by the axisymmetry assumption on v. Therefore Ad∗η−1v lies in the subspace TeA s
µ .

Similarly, we have

[K,Adη−1v] = LKη−1
∗ v = η−1

∗ LKv = 0

and hence Adη−1v is also in TeA s
µ .

9In this case the group of volume-preserving diffeomorphisms Ds
µ coincides with the group of

exact volumorphisms Ds
µ,ex of M .
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Since u0 ∈ TeAµ,0 the corresponding L2 geodesic γ(t) is smooth. It follows that

each operator Ωt =
∫ t

0
Adγ−1

τ
Ad∗

γ−1
τ
dτ is a continuous linear bijection of TeA s

µ to itself

and hence an isomorphism by Banach’s theorem. �

Our key observation concerning the operators Γt in (2.4) is contained in the fol-
lowing lemma.

Lemma 5.8. The restriction of the algebra coadjoint v → ad∗vu0 to TeA s
µ is a com-

pact operator.

Proof. Since u0 ∈ TeAµ,0 is swirl free, it follows from Lemma 5.2 that curlu0 = φK
for some function φ of Schwartz class. Using Lemma 5.6 we then have

(5.5) v 7→ ad∗vu0 = curl ∆−1[v, curlu0] = curl ∆−1
(
dφ(v)K

)
since v is an axisymmetric vector field. The result follows directly from the usual
Rellich-Kondrashov lemma. �

As a consequence of Lemma 5.8 and Proposition 2.1 we find that each operator
Γt(·) =

∫ t
0

Adγ−1
τ

Ad∗
γ−1
τ

ad∗Φτ (·)u0 dτ is compact as an integral (in t) of a product of

bounded linear operators and a compact operator. Combined with Lemma 5.7 and
(2.2) this implies that each Φt decomposes on TeA s

µ into a sum of an invertible and a
compact operators and is therefore a bounded Fredholm operator whose index equals
ind Φt = ind Φ0 = 0 by a standard perturbation argument.

Remark 5.9. If the first homology H1(M) 6= 0 then the expression for ad∗vu0 would
differ from that in (5.5) by an operator of finite rank. Therefore the Lie algebra
coadjoint would also be compact in that case and the rest of the preceding argument
could be adjusted accordingly.

We next consider the case M = R3 with rotational symmetry, that is, K = ∂θ, and
to simplify the argument we first assume that u0 has compact support in R3. The
formulae of Lemma 5.6 which rely on the Hodge decomposition (which also holds in
R3) remain unchanged and so does Lemma 5.7. We focus therefore on compactness
of the coadjoint operator in Hs(R3). As before, we may disregard the finite rank
terms and therefore we only need to show that the operator in (5.5) maps bounded
sets to relatively compact sets.

From (5.5) using Plancherel’s inequality, standard potential theory estimates and
the fact that φ has compact support we have∥∥curl ∆−1

(
dφ(v)K

)∥∥
Hs(R3)

. ‖dφ(v)K‖L6/5(R3) + ‖dφ(v)K‖Ḣs−1(R3)

. ‖dφ(v)K‖L2(R3) + ‖dφ(v)K‖Ḣs−1(R3)

' ‖dφ(v)‖Hs−1(R3)

where the (suppressed) constants possibly depend on φ. The above estimate implies
that the coadjoint ad∗u0 is bounded as an operator to Hs−1 and so the fact that it
is compact follows once again from the Rellich-Kondrashov lemma.

To dispose of the more general case when u0 is of Schwartz class one can use a
method of approximating in Hs by functions with compact support. This completes
the proof of Theorem 5.4. �

Remark 5.10. In Section 6 we will derive a more explicit expression for the coadjoint
operator based on a decomposition of axisymmetric vector fields into gradient and
swirl components (cf. Proposition 6.3). It can also be used to give an alternative
proof of Lemma 5.8.
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5.2. A perturbation result. Using a straightforward argument it is possible to
extend Theorem 5.4 to more general axisymmetric flows provided that they have
suitably small swirl.

Theorem 5.11. Let u0 be a compactly supported, smooth, axisymmetric and swirl-
free vector field on M . For any v ∈ TeA s

µ which is sufficiently close to u0 in the Hs

norm the derivative
d expe(v) : TeA

s → Texpe(u0)A
s

is a Fredholm operator of index zero.

Proof. Along any geodesic γ(t) in Ds
µ there is an operator τ γt of parallel translation

with respect to the L2 metric (1.1). As in finite dimensions, it is defined as the
solution operator of the Cauchy problem for the corresponding first-order ordinary
differential equation in Ds

µ

X ′(t) = 0, X(0) ∈ TeDs
µ

where ′ is the Levi-Civita covariant derivative of the L2 metric along γ. Since the
Levi-Civita derivative restricted to the submanifold A s

µ is smooth, it follows that
the operator τ γt is a linear isomorphism of the tangent spaces to A s

µ as well as an
isometry of the metric (1.1). We denote its inverse by τ γ−t.

Let γu0 and γv be the L2 geodesics in A s
µ starting from the identity in the direction

u0 and v, respectively. Assume that γv(t) is defined at least for 0 ≤ t ≤ 1. Consider
the map v → τ γv−1 ◦ d expe(v) and observe that it is smooth in the Hs topology as a
composition of two smooth maps. The latter follows from the C∞ regularity of the
L2 exponential map on A s

µ and the smooth dependence on parameters of the parallel
translation operator along geodesics in A s

µ . Consequently, we can find a δ > 0 such
that whenever ‖v‖Hs < δ then∥∥τ γu0−1 ◦ d expe(u0)− τ γv−1 ◦ d expe(v)

∥∥
L(Hs)

. ‖v − u0‖Hs

by a mean-value estimate. The theorem now follows from stability results for Fred-
holm operators, see e.g., [19]; Thm. 5.16. �

Remark 5.12 (L2 sectional curvature). In [29] the authors studied an axisymmetric
flow in the solid torus D2 × S1 with initial condition of the form u0(r, z) = f(r)∂θ,
where f is a smooth function of the radial variable. They showed that the sectional
curvatures of A s

µ were strictly positive on the planes spanned by u and v if and only

if d
dr

(rf 2) > 0, where u is the solution of the Euler equations (1.2) with data u0 and
v is any axisymmetric vector field on the torus. Furthermore, if f(2f +rf ′) > 0 then
the L2 geodesic in A s

µ corresponding to u0 contains clusters of conjugate points and,

in particular, the L2 exponential map is not Fredholm. Observe that their results do
not contradict Theorems 5.4 and 5.11 since the solution of (1.2) corresponding to u0

above necessarily develops a large swirl in finite time.
We may view this as a more precise version of the general result from Ebin-

Marsden [13] that the exponential map is locally a diffeomorphism for small velocity
fields, which follows automatically from the smoothness of the geodesic equation.
Here the velocity field does not need to be small in Hs, but rather its swirl just
needs to be small in Hs−1 so that v is close to a swirl-free field u0.

On the other hand, choosing a swirl-free initial data of the form u0(r, z) = f(r)∂z,
where f is any smooth function of the radial variable, we find that the corresponding
Eulerian solution u satisfies ∇uu = 0. In this case the Gauss-Codazzi equations of
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submanifold geometry (see e.g., [23] or [25]) applied to the L2 sectional curvatures
of A s

µ and Ds yield

〈R(u, v)v, u〉L2 =
〈
R̄(u, v)v, u

〉
L2 + 〈Qe∇uu, Qe∇vv〉L2 − 〈Qe∇uv, Qe∇uv〉L2

= −〈Qe∇uv, Qe∇uv〉L2 ≤ 0(5.6)

for any axisymmetric vector field v. Here Qe = ∇∆−1div is the Hodge projection
onto the gradient fields and R, R̄ are the Riemann curvature tensors of the L2 metric
on Ds

µ, Ds, respectively, and in the second line we used the fact that the L2 curvature

of the full diffeomorphism group of D2×S1 is zero. That the L2 sectional curvatures
along this flow are all non-positive implies that the corresponding geodesic in the
totally geodesic submanifold A s

µ is free of conjugate points. In particular, in this

case the L2 exponential map is Fredholm.

5.3. Exponential map and coadjoint orbits. It is well known that the geometry
of coadjoint orbits of the group of volume-preserving diffeomorphisms of a 3-manifold
is considerably more complicated than that of a 2-manifold. Nevertheless an elegant
geometric description of the orbits was found by Arnold [2] in terms of isovorticity of
vector fields.10 In particular, if two axisymmetric vector fields v and ṽ are isovortical
then the corresponding vorticity fields satisfy

(5.7) curl v = η∗curl ṽ

for some axisymmetric diffeomorphism η. Observe that, in general, vector fields that
are isovortical to a swirl-free vector field need not be themselves swirl-free. A simple
example is given by the vector fields

v = ∂z and ṽ = r−2∂θ

on a finite (hollow) cylinder with periodic conditions

M =
{

(r, θ, z) : 0 < a ≤ r ≤ b <∞, 0 ≤ θ < 2π, −π ≤ z < π
}

in R3 with cylindrical coordinates and rotational symmetry.
As a direct consequence we have

Theorem 5.13. Let M be a compact Riemannian 3-manifold with a smooth Killing
field K. If u0 and ũ0 are related as in (5.7) with u0 ∈ TeAµ,0 and some η ∈ Aµ, then
the derivative

d expe(ũ0) : TeA
s
µ → Texpe ũ0

A s
µ

is a Fredholm operator of index zero.

Note that here we assume u0 is smooth (cf Remark 2.2).

Proof. It is sufficient to show compactness of the algebra coadjoint operator at ũ0.
Proceeding as in the proof of Lemma 5.8 we have

v → ad∗vũ0 = curl ∆−1[v, curl ũ0] + finite rank

= curl ∆−1[v, η∗curlu0] + finite rank

where using Lemma 5.2 we find

[v, η∗u0] = [v, φ ◦ η−1η∗K] = d(φ ◦ η−1)(v)

10In our setting, we say that two vector fields v1, v2 are isovortical if there is an axisymmet-
ric diffeomorphism η such that the circulation of v1 around any closed contour c in M and the
circulation of v2 around η ◦ c are equal.
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since η∗K = K and [v,K] = 0. The rest of the proof follows now as in the case of
Theorem 5.4. �

In general coadjoint orbits for the three-dimensional volumorphism group are dif-
ficult to compute and understand. In two dimensions the basics of the theory are
laid out in Arnold-Khesin [4]. The analysis of the coadjoint orbits and their relation-
ship to the space of steady solutions of the Euler equations is laid out in detail in
Choffrut-Šverák [9], and the complete classification of orbits in the two-dimensional
situation with arbitrary topology was completed in Izosimov-Khesin-Mousavi [18].
We can compute the coadjoint orbits fairly explicitly in simple axisymmetric cases;
we will illustrate this here and leave the details and generalization for a future paper.

Remark 5.14. Consider the Heisenberg group H ∼= R3 which fibers over the flat
Euclidean plane R2; we describe it in detail later in Theorem 6.10. Its geometry is
determined by declaring the vector fields e1 = ∂θ, e2 = ∂x+ 1

2
y ∂θ and e3 = ∂y− 1

2
x ∂θ

to be orthonormal. With K = e1, axisymmetric volumorphisms Ψ: R3 → R3 have
the form

Ψ(θ, x, y) =
(
θ + γ(x, y),Φ(x, y)

)
, Φ(x, y) =

(
η(x, y), ξ(x, y)

)
, ηxξy − ηyξx ≡ 1;

note that Φ is an area-preserving diffeomorphism of R2. Given an axisymmetric field
u0 ∈ TeAµ, the coadjoint orbits are the sets

Cu0 :=
{
u ∈ TeAµ : ∃Ψ ∈ Aµ s.t. Ψ∗du[ = du[0

}
.

Writing u0 = g0(x, y)e1−∂yf0(x, y)e2+∂xf0(x, y)e3 for some functions f0, g0 : R2 → R
which decay to zero at infinity, we get the simple condition for the angular component,
namely

(5.8) g ◦ Φ = g0,

together with the rather more complicated condition for the skew-gradient compo-
nent, that is

(5.9) ∆f ◦ Φ + 1
2
η{g0, ξ} − 1

2
ξ{g0, η}+ {g0, γ} = ∆f0 + 1

2
x∂xg0 + 1

2
y∂yg0,

where { , } is the standard Poisson bracket in R2. The condition (5.8) is well-
understood from the usual two-dimensional coadjoint orbit analysis as in [4, 9, 18].
The simplest case is when g0 is a decreasing radial function with a global maximum
at the origin, such as g0(r) = e−r

2
. We can obtain an area-preserving Φ for a given

g satisfying (5.8) if and only if g satisfies

(5.10) Area
(
{(x, y) : g(x, y) > c}

)
= Area

(
{(x, y) : g0(x, y) > c}

)
for all c ∈ R.

Given such a g, the function Φ satisfying (5.8) is uniquely determined up to pre-
composition with an area-preserving diffeomorphism of R2 that preserves all circles
centered at the origin, i.e., Υ(r, θ) =

(
r, θ + ω(r)

)
for some function ω(r).

To understand the condition (5.9), note that γ is an arbitrary function on R2 and
if g0 is radial then the Poisson bracket is

{g0, γ} = r−1g′0(r)
∂γ(r, ψ)

∂ψ

in polar coordinates (r, ψ); we may solve (5.9) as a PDE for γ if and only if its
integral around any circle centered at the origin is zero. This becomes the condition

(5.11)

∫
Sr

∆f ◦ Φ ds =

∫
Sr

∆f0 ds for all r > 0,
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where Sr is the circle of radius r centered at the origin. It can be checked that this
condition is independent of the choice of Φ, i.e., of the choice of ω(r). Thus, for
radial g0 and arbitrary f0, we get the necessary and sufficient conditions (5.10) and
(5.11) for f and g to give a u ∈ Cu0 .

6. Examples

In this section we describe examples in which the L2 exponential map exhibits
Fredholm properties. In our examples the underlying manifold M is modelled on
one of the eight three-dimensional geometries of Thurston each of which admits a
compact realization, cf. [34]. It is also convenient to assume that M is equipped
with a nonvanishing Killing field, however this is not required as for example in the
well known Euclidean case R3 with symmetry. Along the way we derive a collection
of formulas which are convenient to study the axisymmetric Euler equations on any
Riemannian 3-manifold.

6.1. Axisymmetric vector fields on 3-manifolds. For simplicity we assume that
the Killing field K is smooth and nowhere vanishing. Elementary vector calculus
formulas for Riemannian 3-manifolds give

(6.1) K × curlK = ∇|K|2 and curl(K/|K|2) = ζ K/|K|2.

where ζ is a scalar-valued function. In fact, the first formula in (6.1) is a direct
consequence of the second, since 〈K,∇|K|2〉 = 0. In particular, [K, curlK] = 0.

It is convenient to introduce an analogue of the skew-gradient and the Poisson
bracket for Hamiltonian functions on a symplectic manifold. They will be used
throughout this section to obtain explicit formulas involving axisymmetric vector
fields. Given f : M → R with K(f) = 0 we set

(6.2) ∇⊥f =
K ×∇f
|K|2

.

If, in addition K(g) = 0, then we set

(6.3) {f, g} = 〈∇⊥f,∇g〉 =
〈K,∇f ×∇g〉

|K|2
.

It follows that {g, f} = −{f, g} and ∇f ×∇g = {f, g}K. Furthermore, we have

(6.4) curlK = ζK −∇⊥|K|2.

For example, if M = R3 and K = ∂z on R3 then these definitions reproduce the
usual skew-gradient and Poisson bracket for functions.

Remark 6.1. The function ζ in (6.1) measures the nonintegrability of the distribution
orthogonal to K. Precisely, if we define α = 1

|K|2 K
[, then it is not hard to check

that α ∧ dα = ζ
|K|2 µ where µ is the Riemannian volume form. We omit the proof

since we do not need the result for anything else. Thus if ζ is nowhere zero, then α
is a contact form and K is its Reeb field satisfying α(K) ≡ 1 and ιKdα = 0. If in
addition K is unit, then we have a K-contact metric structure, as in Blair [7]. Note
that typically axisymmetric vector fields are typically not contact vector fields, i.e.,
it is not true that Luα is proportional to α. Roughly speaking, the reason is that a
contact vector field depends only on one function on M , while (as we will see below)
an axisymmetric divergence-free field depends on two K-invariant functions.
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Lemma 6.2. If K(f) = K(g) = 0 then we have

(6.5) div (∇⊥f) = 0 = div (gK)

(6.6) curl (∇⊥f) = (∆Kf)K and curl (gK) = −∇⊥(|K|2g) + ζgK

where

(6.7) ∆Kf = div (∇f/|K|2).

Proof. A straightforward computation. �

The next result is a special case of a Hodge-type decomposition for axisymmetric
vector fields. For simplicity, in what follows we will assume that H1(M) = 0.

Proposition 6.3. Any axisymmetric vector field tangent to the boundary ∂M can
be decomposed as

(6.8) u = ∇⊥f + gK, where K(f) = K(g) = 0 and f |∂M is constant.

Conversely, any u of the form (6.8) is axisymmetric and tangent to the boundary.

Proof. Since [u,K] = 0 and both fields are divergence free, we have curl (K×u) = 0,
which together with the assumption on M implies that K × u = −∇f for some
function f . Clearly, K(f) = 0 and K × (K × u) = −|K|2 u + 〈K, u〉K = K ×∇f .
Setting g = 〈K, u〉/|K|2 and solving for u, we get (6.8).

For the converse, applying the divergence operator to (6.8) and using Lemma 6.2
we obtain div u = 0. Since K and ν × K are tangent to the boundary, we find
that 〈∇⊥f, ν〉 = |K|−2〈∇f, ν ×K〉 = 0 because f |∂M is constant. Finally, a direct
computation gives [K, u] = − curl (K × u) = curl∇f = 0. �

The decomposition (6.8) is a generalization of the “toroidal” and “poloidal” de-
composition for divergence-free vector fields, as described in Chandrasekhar [8]. We
know from Proposition 3.1 that if u and v are axisymmetric, then so is [u, v]. This
commutator can be written explicitly in terms of the decomposition (6.8).

Proposition 6.4. Suppose f and g are functions on M such that K(f) = K(g) = 0.
Then, we have

[∇⊥f,∇⊥g] = ∇⊥{f, g} − {f, g} ζK
|K|2

, [∇⊥f, gK] = {f, g}K, [fK, gK] = 0.

Proof. Follows directly from the definitions. �

Using Proposition 6.4 we can now similarly express the coadjoint operator ad∗vu
for axisymmetric vector fields u and v. This could be done either on TeDs

µ or by
restricting to the subalgebra TeA s

µ of axisymmetric vector fields. That the end result
is the same is a reflection of the fact that the space of axisymmetric diffeomorphisms
is a totally geodesic submanifold, cf. Theorem 3.4.

Proposition 6.5. If u = ∇⊥f + gK and v = ∇⊥h+ jK then

(6.9) ad∗vu = {h, σ} K

|K|2
−∇⊥∆−1

K {j, σ} − ∇
⊥∆−1

K {∆Kf + ζg, h}

where ∆−1
K is defined by the zero Dirichlet boundary condition and σ = |K|2g. In

particular, if u, v ∈ TeA s
µ then ad∗vu ∈ TeA s

µ .
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Proof. First observe that ∆K is an elliptic self-adjoint operator. If M has a boundary
then ∆Kϕ = ψ has a unique solution with ϕ = 0 on the boundary; otherwise, the
solution is unique up to a constant. In either case the operator∇⊥∆−1

K is well-defined.
On TeDs

µ we have ad∗vu = −P (v × curlu); see [12]. By assumption M has no
harmonic fields. Then curl is invertible on TeDs

µ and we may write

ad∗vu = curl−1 curl(−v × curlu) = curl−1[v, curlu].

From (6.6) we have curlu = (∆Kf+ζg)K−∇⊥(|K|2g) and applying the commutator
formula of Proposition 6.4, we obtain

[v, curlu] = −∇⊥{h, |K|2g}+ {h, |K|2g} K
|K|

+ {h,∆Kf + ζg}K + {|K|2g, j}K.

Finally, inverting (6.6) on axisymmetric fields, we get

curl−1(∇⊥p+ qK) = ∇⊥∆−1
K

(
q +

ζp

|K|2
)
− p

|K|2
K.

Combining the above formulas gives (6.9). �

Remark 6.6. Proposition 6.5 can be used to obtain an alternative proof of the com-
pactness result for the operator v 7→ ad∗u0v when u0 is swirl-free, c.f. Lemma 5.8.

Indeed, if v ∈ TeA s
µ and g = 0 then from (6.9) we get ad∗vu0 = −∇⊥∆−1

K {∆Kf, h}
which, since u0 is smooth, is in Hs+1 thus gaining a derivative.

Finally, it is useful to rewrite the Euler equations explicitly in terms of the oper-
ators { , } from (6.3) and ∆K from (6.7). In the next subsection we will explore this
equation in the setting of the eight model geometries of Thurston.

Theorem 6.7. The incompressible Euler equations (1.2) can be written as Euler-
Arnold equations on TeA s

µ in the form

∆K∂tf + {f,∆Kf}+

{
f,

ζσ

|K|2

}
− 1

2

{
1

|K|2
, σ2

}
= 0

∂tσ + {f, σ} = 0

(6.10)

where u = ∇⊥f + σK
|K|2 in terms of the stream function f and the swirl σ.

Proof. The proof follows by substituting for u in the equation ∂tu + ad∗uu = 0 and
using the formula (6.9) with h = f and j = g together with the identity

∇g ×∇(|K|2g) = g∇g ×∇|K|2 = g∇g × (K × curlK) = g curlK(g)K.

By formulas (6.3)–(6.4), together with the fact that K(g) = 0, we obtain

g curlK(g) = gζK(g)− g〈∇⊥|K|2,∇g〉 = −g{|K|2, g}

= − σ

|K|2

{
|K|2, σ

|K|2

}
=

1

2

{
1

|K|2
, σ2

}
.

�

6.2. The Euler equations in Thurston geometries. Each choice of a 3-manifold
M (compact or not) and a Killing vector field K leads to a system of Euler-Arnold
equations (6.10). If K is allowed to vanish then the system (6.10) may be singular
(its coefficients suitably reinterpreted) on the zero set Z of K, just as in the case
of the standard axisymmetric Euler equations in R3. To describe the two simplest
cases, recall that ζ is defined as in the previous section, cf (6.1). Then we have:
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• ζ ≡ 0, or in other words 〈K, curlK〉 = 0. We will see that this is the
integrable case when the swirl-free diffeomorphisms form a subgroup. In this
case the motion is driven by the gradient of |K|2.
• Both ζ and |K| are constant. In this case we get constant-coefficient equa-

tions, and the geometry involves a fibration of a contact manifold over a
symplectic surface.

6.2.1. The integrable case: rotations and translations. We first analyze the case ζ ≡
0. It is worth recalling from Section 4 that depending on the properties of the
normal distribution K⊥ in (4.1) two types of extreme cases that can appear. If
this distribution is integrable on M \ Z then we have a submanifold of swirl-free
diffeomorphisms.

By Proposition 6.3, axisymmetric divergence-free vector fields are expressed in
terms of functions f and g satisfying K(f) ≡ K(g) ≡ 0, and so f and g must be
constant along orbits of K. This imposes very different constraints depending on
whether orbits of K are dense in M or not. In what follows, we will assume that K
is regular, as defined below.

(R) For each x ∈M with K(x) 6= 0, there is a neighborhood U of x such that the
intersection Lx ∩ U is homeomorphic to R, where Lx is the maximal integral curve
of K through x.

This condition ensures that orbits of K cannot be dense in any set, so that they
must be either closed circles in the compact case or lines escaping compact sets in
the noncompact case. If K is not regular, there may be very few axisymmetric
diffeomorphisms.

In light of the formulas derived in Section 6, we revisit the distribution, previously
introduced in Section 4, given by

(6.11) M\Z 3 x→ K⊥x =
{
V ∈ TxM : 〈V,K(x)〉 = 0

}
on all points M\Z outside its zero set Z.

Theorem 6.8. Suppose that the function ζ defined by (6.1) is identically zero on
M\Z. Then, the distribution K⊥ is integrable, and there is a family of submanifolds
Nθ of M\Z on which K[ vanishes. Functions f satisfying K(f) ≡ 0 may be specified
arbitrarily on any individual Nθ and then extended to M\Z using the flow of K.

The integrability claim in Theorem 6.8 follows from the first formula in Proposition
6.4 and the Frobenius theorem. The second claim is clear from our assumption that
the flow of K is transitive on leaves (see Section 4, the discussion after Proposition
4.1).

The doubly-warped metrics mentioned in Definition 5.1 are rich enough to include
the simplest Killing fields in all Thurston geometries for which ζ = 0. We will
write the equations for both rotations and translations in the same form; thus in the
coordinate chart (r, θ, z) below, we will always have K = ∂θ, but the domain of θ
will sometimes be S1 and sometimes R. We will assume M is simply connected for
simplicity, but almost all of this could be done on quotients with more interesting
topology.
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Theorem 6.9. If M has a coordinate chart (r, ψ, θ) with Riemannian metric given
by the doubly-warped product

ds2 = dr2 + α(r)2 dψ2 + β(r)2 dθ2,

then K = ∂θ is a Killing field. Suppose either θ ∈ S1 and α and β satisfy the rotation
conditions as in Definition 5.1, or that θ ∈ R with α nowhere zero, and suppose that
the manifold is oriented so that dV = α(r)β(r) dr ∧ dψ ∧ dθ is the volume form.

Then functions f on M satisfying K(f) = 0 are given by functions of r and ψ,
arbitrary except for the condition that f extends to an even function through r = 0
in the rotational case. The Poisson bracket (6.3) and K-Laplacian (6.7) are given
by

{f, g} =
1

α(r)β(r)

(
∂f

∂r

∂g

∂ψ
− ∂f

∂ψ

∂g

∂r

)
∆Kf =

1

α(r)β(r)

∂

∂r

(α(r)

β(r)

∂f

∂r

)
+

1

α(r)2β(r)2

∂2f

∂ψ2
,

while the axisymmetric Euler equation (6.10) is given by

∂t∆Kf + {f,∆Kf}+
β′(r)

α(r)β(r)4

∂

∂ψ
(σ2), ∂tσ + {f, σ} = 0.

Proof. In this metric an oriented orthonormal basis is given by e1 = ∂r, e2 = 1
α(r)

∂ψ,

and e3 = 1
β(r)

∂θ. We have K[ = β(r)2 dθ, so that d( K[

|K|2 ) = d2θ = 0, which implies

that ζ = 0 in equation (6.1). Functions f with K(f) ≡ 0 are determined by their
values on any set θ = constant. We have ∇f = fr e1 + 1

α(r)
fψ e2, so that the Poisson

bracket (6.3)

{f, g} =
〈K,∇f ×∇g〉

|K|2

=
1

β(r)

〈
e3,
(
fr e1 + 1

α(r)
fψ e2

)
×
(
gr e1 + 1

α(r)
gψ e2

)〉
=
frgψ − fψgr
α(r)β(r)

.

(6.12)

The formula for the K-Laplacian follows from the formula

div

(
∇f
|K|2

)
=

1

µ(r)

∂

∂r

(
µ(r)

β(r)2

∂f

∂r

)
+

1

µ(r)

∂

∂ψ

(
µ(r)

β(r)2

1

α(r)2

∂f

∂ψ

)
,

since here the Riemannian volume form is dV = µ(r) dr∧dψ∧dθ for µ(r) = α(r)β(r).
The Euler equation (6.10) is now straightforward. �

Now we list the examples of the Thurston geometries for which this applies. Note
that in some of these cases the standard orientation is the opposite of the one in
Theorem 6.9, which can be fixed by replacing K with −K. The only effect of this is
to change the sign of the stream function f and of the Poisson bracket (6.3), so that
the sign of the ∂

∂ψ
term changes.

• Euclidean R3. The translation has (r, ψ, θ) ∈ R3 with α(r) = β(r) = 1, while
the rotation has (r, ψ, θ) ∈ R+ × R × S1 with α(r) = 1 and β(r) = r. In
the rotation case, the usual orientation has the opposite sign. Functions with
K(f) = 0 are defined on R2 or the half-plane R+ × R respectively.
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• Unit 3-sphere S3. Here we have rotation with θ ∈ S1, for α(r) = cos r
and β(r) = sin r. Here ψ ∈ S1 and r ∈ (0, π

2
), so the submanifold where

K-invariant functions are defined is equivalent to the upper hemisphere of
radius 1.
• Hyperbolic space H3. The standard isometries are elliptic, hyperbolic, or

parabolic. The choice α(r) = cosh r and β(r) = sinh r with (r, ψ, θ) ∈ R+ ×
R×S1 gives a rotation. Using α(r) = sinh r and β(r) = cosh r with (r, ψ, θ) ∈
R+×S1×R gives a translation which is hyperbolic (corresponding to rescaling
symmetry in the upper half-space model). Finally using α(r) = β(r) = e−2r

for (r, ψ, θ) ∈ R3 gives a parabolic translation (corresponding to translation
symmetry in the upper half-space model). In all three cases, the invariant
functions are defined on the hyperbolic plane H2.
• The product S2 × R. Here α(r) = sin r and β(r) = 1 gives the obvious

translation in the R direction with a 2-sphere as the submanifold domain,
while α(r) = 1 and β(r) = sin r gives the usual rotation of the 2-sphere,
with (r, ψ, θ) ∈ R+×R×S1, so that invariant functions are defined on a flat
half-plane.
• The product H2×R. As on H3 we have three simple choices: α(r) = sinh r and
β(r) = 1 gives the obvious translation. The choice α(r) = 1 and β(r) = e−2r

gives the hyperbolic translation isometry, where the submanifold is flat R2,
while the choice α(r) = e−2r and β(r) = 1 gives the parabolic translation
isometry with submanifold H2.
• The solvable group Sol. Here the metric has α(r) = e−2r and β(r) = e2r with

(r, ψ, θ) ∈ R3. The domain submanifold is H2. Replacing r with −r obviously
has no significant effect; we get translations either way.

Note that the only real difference between rotations and translations is that rota-
tions involve a more singular term in the denominator; even the difference θ ∈ S1

or θ ∈ R is illusory since we can consider periodic translations. The metric on
the surface is always ds2 = dr2 + α(r)2 dψ2, but since the induced area form is
dV = α(r)β(r) dr ∧ dψ (all volume integrals for θ-independent functions will reduce
to area integrals in the (r, ψ) variables), the fluid effectively acts as though it has a
“mass density” of β(r).

6.2.2. The nonintegrable case: fibrations over surfaces. In the previous section the
equations were essentially similar to the standard Euclidean axisymmetric situation.
However the non-Euclidean situation allows also for an essentially different situation
where ζ = −1 and |K| = 1; here the distribution K⊥ is nowhere integrable, and the
Euler equation (6.10) is “driven” by the twisting of a contact structure rather than
the gradient of |K|2. The most famous example is the Hopf fibration of S3 over S2,
but there are similar fibrations of SL2(R) over H2 and of the Heisenberg group Nil
over R2. We will present all three in a unified way.

Theorem 6.10. Let k ∈ {1, 0,−1}, and let M be a simply-connected Lie group
with left-invariant Riemannian metric defined by setting left-invariant vector fields
{e1, e2, e3} to be orthonormal, where the Lie brackets satisfy

(6.13) [e1, e2] = −ke3, [e3, e1] = −ke2, [e2, e3] = −e1.

Then K = e1 is a Killing field of unit length, and there is a smooth projection map
P : M → Nk where Nk is a simply-connected model surface of constant curvature k:
that is, N1 = S2, N0 = R2, and N−1 = H2. Functions f : M → R with K(f) ≡ 0
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descend to functions on Nk. The Poisson bracket (6.3) and K-Laplacian on Nk are
given by the standard ones on Nk, and the Euler equation (6.10) takes the form

(6.14) ∂t∆f + {f,∆f}+ {f, σ} = 0, ∂tσ + {f, σ} = 0.

Proof. To verify K is a Killing field, we check the Killing equation 〈∇uK, v〉 +
〈∇vK, u〉; since K = e1 and the brackets are cyclic, the only nontrivial one is u = e2

and v = e3, for which

〈∇e2e1, e3〉+ 〈∇e3e1, e2〉 = −〈[e1, e2], e3〉+ 〈[e3, e1], e2〉
= k − k = 0.

(6.15)

We compute
ζ = 〈curl e1, e1〉 = de[1(e2, e3) = −〈e1, [e2, e3]〉 = 1,

so that e1 is a curl eigenfield with eigenvalue 1 regardless of k.
Simply-connected Lie groups are completely determined by their Lie brackets, and

we have simple well-known representations of those groups in each case. When k = 1
the Lie group is the special unitary group SU(2), described by complex matrices

SU(2) =
{(

w −z
z w

) ∣∣∣ |w|2 + |z|2 = 1
}

with Lie algebra given by

e1 = 1
2

(
i 0
0 −i

)
, e2 = 1

2

(
0 −1
1 0

)
, e3 = 1

2

(
0 i
i 0

)
,

which satisfies (6.13). The group SU(2) is diffeomorphic to S3, and the Hopf fibration
is P : (w, z) 7→ (2wz, |w|2−|z|2) ∈ C×R, which maps surjectively to S2, with a circle
as the preimage of each point. Each circle is the orbit of K. The left-invariant metric
is defined by ds2 = 4(|dw|2 + |dz|2).

When k = −1 the Lie group is the special linear group SL2(R), described by real
matrices with unit determinant

SL2(R) =
{(

a b
c d

) ∣∣∣ ad− bc = 1
}
,

with Lie algebra given by

e1 = 1
2

(
0 1
−1 0

)
, e2 = 1

2

(
1 0
0 −1

)
, e3 = 1

2

( −1 0
0 −1

)
.

The brackets are easily seen to satisfy (6.13) with k = −1. The left-invariant metric
is given by

ds2 = 2Tr
(
(A−1dA)T (A−1dA)

)
,

and the isometries in theK direction are given by the orthogonal matrices
(

cos θ − sin θ
sin θ cos θ

)
;

the projection map is A 7→ AAT , which maps to the positive-definite symmetric ma-
trices surjectively, with circle fibers, and the trace metric is a Riemannian submersion
onto the hyperbolic plane.

Finally when k = 0 the Lie group is the Heisenberg group of upper triangular 3×3
matrices with 1 on the diagonal

H =
{(

1 x z
0 1 y
0 0 1

) ∣∣∣x, y, z ∈ R
}
.

The Lie algebra can be generated by

e1 =
(

0 0 1
0 0 0
0 0 0

)
, e2 =

(
0 1 0
0 0 0
0 0 0

)
, e3 =

(
0 0 0
0 0 −1
0 0 0

)
,

and again we check the bracket relations (6.13) with k = 0. The projection to R2

comes from forgetting about z; clearly the preimage of any point in R2 is a line. �
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Our choices for the Lie algebra are slightly nonstandard because we want to treat
all three groups the same way, and because we want to obtain spaces of constant
curvature k ∈ {1, 0,−1} as the quotient. Roughly speaking, both the Hopf fibration
and the matrix map A 7→ AAT involve squaring terms, so that vectors will be
stretched by a factor of 2 at the identity; hence we need factors of 1

2
everywhere to

cancel those out.
These formulations are somewhat easier to see in coordinates. For this purpose,

we recall the definition of generalized trigonometric functions:

sk(r) =


sin r k = 1,

r k = 0,

sinh r k = −1,

ck(r) =


cos r k = 1,

1 k = 0,

cosh r k = −1,

tk(r) = sk(r)/ck(r).

These satisfy obvious identities such as s′k(r) = ck(r) and ck(r)
2 + ksk(r)

2 = 1.

Corollary 6.11. We may choose coordinates (r, ψ, θ) on the three Lie groups in
Theorem 6.10 such that

(6.16) ds2 = dr2 + sk(r)
2 dψ2 +

(
dθ + 2sk(

r
2
)2 dψ

)2
.

The map (r, ψ, θ) 7→ (r, ψ) is a Riemannian submersion onto the model space Nk

with metric ds2 = dr2 + sk(r)
2 dψ2 on the quotient surface. The left-invariant vector

fields satisfying (6.13) are given explicitly by

e1 = ∂θ

e2 = cos (ψ + kθ) ∂r −
sin (ψ + kθ)

sk(r)
∂ψ + tk(

r
2
) sin (ψ + kθ) ∂θ

e3 = sin (ψ + kθ) ∂r +
cos (ψ + kθ)

sk(r)
∂ψ − tk( r2) cos (ψ + kθ) ∂θ.

(6.17)

In these coordinates the Poisson bracket (6.3) and K-Laplacian (6.7) are given by

{f, g} = e2(f)e3(g)− e3(f)e2(g) =
frgψ − fψgr

sk(r)

∆f = e2(e2(f)) + e3(e3(f))) =
1

sk(r)

∂

∂r

(
sk(r)

∂f

∂r

)
+

1

sk(r)2

∂2f

∂ψ2
.

Proof. The explicit coordinate charts here are given as follows. For SU(2) we have
w = cos r

2
eiθ/2 and z = sin r

2
eiψeiθ/2. For SL2(R) we have

A = Rψ/2

(
er/2 0
0 e−r/2

)
R−ψ/2Rθ/2,

where Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. Finally for the Heisenberg group we have

A =

1 r cosψ −θ + 1
2
r2 sinψ cosψ

0 1 r sinψ
0 0 1

 .

We can verify directly in the coordinates that the Lie brackets of the fields (6.17)
satisfy the relations (6.13), and that the fields are orthonormal in the metric (6.16),
using the formula sk(r) = 2sk(

r
2
)ck(

r
2
).

Since the projection in each case involves forgetting about θ, vertical vectors are
proportional to ∂θ; horizontal fields in this metric will be spanned by ∂r and ∂ψ −
2sk(

r
2
)2 ∂θ and since the metric of a Riemannian submersion is determined by the
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horizontal vectors, we obtain the quotient metric. The formulas for the Poisson
bracket and Laplacian are standard for Lie groups with orthonormal left-invariant
bases and metrics in constant-curvature spaces with polar coordinates. �

In the language of Riemannian contact geometry, as described in Remark 6.1, the
contact form is α = e[1 = dθ + 2s2

k(
r
2
) dψ since

α ∧ dα = sk(r) dr ∧ dψ ∧ dθ
is the volume form (and in particular nowhere zero). This is a K-contact form and
K is the Reeb field, and the Riemannian metric is associated to the contact form,
while the projection P : M → Nk is a Boothby-Wang fibration.
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