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Abstract. The geodesics in the group of volume-preserving diffeomorphisms

(volumorphisms) of a manifold M , for a Riemannian metric defined by the

kinetic energy, can be used to model the movement of ideal fluids in that man-
ifold. The existence of conjugate points along such geodesics reveal that these

cease to be infinitesimally length-minimizing between their endpoints. In this

work, we focus on the case of the torus M = T2 and on geodesics correspond-
ing to steady solutions of the Euler equation generated by stream functions

ψ = − cos(mx) cos(ny) for integers m and n, called Kolmogorov flows. We
show the existence of conjugate points along these geodesics for all pairs of

strictly positive integers (m,n), thereby completing the characterization of all

pairs (m,n) such that the associated Kolmogorov flow generates a geodesic
with conjugate points.

1. Introduction

1.1. Motivation. Since Arnold in 1966 [1], the Euler equations for ideal fluids have
had a well-known geometric interpretation as geodesics on the group Diffµ(M) of
volume-preserving diffeomorphisms, or volumorphisms, of a manifold M , under a
right-invariant Riemannian metric defined by the kinetic energy. Since this ap-
proach can be made rigorous as in Ebin-Marsden [5] and establishes that the geo-
desic equation is actually a smooth ODE on the group of SobolevHs volumorphisms
on M for s > 1

2 dim(M)+1, it can be shown that the Riemannian exponential map
is C∞, and is invertible near zero. This shows that volumorphisms sufficiently close
in Hs can be joined to the identity by a unique minimizing geodesic. Since then
similar geometric interpretations have been found for a variety of other PDEs of
continuum mechanics; see Arnold-Khesin [2] for a survey and Misio lek-Preston [11]
for an overview of the ODE approach.

On a sufficiently long time interval, a geodesic may cease to minimize the length
between its endpoints (or equivalently, the energy for a constant-speed parameter-
ization). When this happens, the endpoint is called a cut point, and if in addition
the geodesic ceases to be even infinitesimally minimizing between its endpoints, it is
called a conjugate point. The existence of conjugate points is intimately connected
to the existence of positive-curvature sections along a geodesic. On the volumor-
phism group this existence was unclear since curvature computations have seemed
to suggest Diffµ(M) has mostly negative curvature. The question of whether conju-
gate points exist on Diffµ(M) was posed already by Arnold [1] in 1966, but was not
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solved until Misio lek [9] in 1993 found them along rotations on the space Diffµ(M)
of volumorphisms of the 2- and 3-spheres M = S2 and M = S3.

The first example on a flat M was also found by Misio lek [10], who showed that
along the Kolmogorov flow on the torus with stream function ψ = − cos 6x cos 2y,
there is eventually a conjugate point. To do so he devised what is now known as the
Misio lek criterion, giving a sufficient condition for existence of a conjugate point.
This criterion has been successfully used to find conjugate points along other steady
flows on other manifolds, such as the 2D ellipsoid [17], the 3D ellipsoid [8], and
the sphere [3]. In three dimensions, conjugate points have a substantially different
nature [6] and are much more common than in two dimensions, and can be found
using a necessary and sufficient local criterion along any particle path [12, 13], as
shown by the second author. This technique was used in [15] to find conjugate
points along axisymmetric 3D flows.

It is known that the Misio lek criterion cannot capture all conjugate points.
For example Tauchi-Yoneda [17] observed that the Misio lek index never detects
conjugate points along the spherical rotation, in spite of the fact that infinitely
many of them exist. More generally Tauchi-Yoneda [16] showed that the Misio lek
criterion cannot detect conjugate points along an Arnold stable flow. A condition
of the second author [14] is more suitable for detecting conjugate points in such
cases (and particularly along rotational flows).

Specifically on the torus, the problem of finding conjugate points along Kol-
mogorov flows ψ = − cosmx cosny for all positive integer pairs (m,n) was posed
by Drivas et al. [4], generalizing from Misio lek’s original example of m = 6, n = 2.
(We will assume throughout that m ≥ n without loss of generality due to sym-
metry.) They found many additional examples using Misio lek’s criterion, for pairs

(m,n) satisfying a condition equivalent to n ≥ 2 and m > 3n2+6√
3n

. Soon after the

second author [14] found via brute force search several more examples, including
(m, 1) for m ≥ 2, along with (2, 2), (3, 2), and (3, 3), and conjectured that conjugate
points existed for all (m,n) except possibly for (1, 1).

1.2. Contributions. In this paper we prove this conjecture, that conjugate points
exist for all strictly positive integer pairs (m,n), giving an explicit form of a test
function for m > n, and a slightly different test function for m = n ≥ 2, along
with an example due to Drivas in the case m = n = 1. In the case n = 0 with
m > 0, it is known [9] that there are no conjugate points. Hence we have obtained a
complete characterization of all pairs (m,n) ⊂ Z2

≥0 such that the Kolmogorov flow
ψ = − cosmx cosny generates a geodesic in the volume-preserving diffeomorphism
group that infinitesimally minimizes length between its endpoints for all time: if m
and n are both nonzero, the geodesic cannot minimize; if m or n is zero then the
geodesic infinitesimally minimizes.

1.3. Outline. In Section 2 we describe the geometric approach to the Euler equa-
tion of ideal fluids as originally pioneered by Arnold. We also review Kolmogorov
flows, which may be generally defined as those steady solutions of the Euler equa-
tion with stream function ψ satisfying ∆ψ = −λ2ψ, and specifically on the torus of
the form ψ = − cosmx cosny. Finally we recall the index form for detecting conju-
gate points and the Misio lek criterion which greatly simplifies this computation. In
Section 3 we prove Theorem 2 (the m > n case), Theorem 3 (the m = n ≥ 2 case)
and Theorem 4 (the m = n = 1 case), showing the existence of conjugate points. In
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Section 4 we discuss the relationship between the Misio lek index and the Rayleigh
quotient restricted to a closed subspace. Section 5 describes the algorithm we de-
vised to exploit this relationship in order to construct an optimal variation field
numerically; those given in Section 3 are simply truncated versions of these that
still work. In this section we explain why all of the variation test functions we find
have the same basic shape: a perturbation of the simplest Laplacian eigenfunction
cosx or sinx. Finally in Section 6 we suggest some other problems about conjugate
points that one can tackle using the same methods as those presented here. In an
Appendix we present a simple formula that is useful numerically when writing the
Poisson bracket in a Fourier basis, necessary for using standard matrix algorithms
to optimize the Misio lek index.

1.4. Computations. Symbolic computations were performed in Maple 2021, while
numerical computations were performed using Python. Maple code for computing
the index form as in Theorems 2–4, and Python code for numerically minimizing the
index form and obtaining the form of the candidate minimizers, are both available
on github: https://github.com/alebrigant/conjugate-points.

1.5. Acknowledgements. The authors acknowledge support of the Institut Henri
Poincaré (IHP, UAR 839 CNRS-Sorbonne Université), and LabEx CARMIN (ANR-
10-LABX-59-01). This work was done while the second author visited the first
author at IHP for the Geometry and Statistics in Data Sciences (GESDA) thematic
quarter, funded by the French National Center for Scientific Research (CNRS).
Both authors thank the IHP for their hospitality. We also thank Theo Drivas and
Alexander Shnirelman for very helpful discussions and suggestions.

2. Background

2.1. Volumorphisms and the Euler-Arnold equation. Suppose M is a 2-
dimensional manifold equipped with a Riemannian metric ⟨·, ·⟩ inducing an area
form µ. We are interested in diffeomorphisms φ : M → M that preserve the area
form: φ∗µ = µ, called volume-preserving diffeomorphisms of M or volumorphisms
for short. The space Diffµ(M) of volumorphisms of M is (formally) a submanifold
of the space of diffeomorphisms Diff(M). The tangent vectors at φ ∈ Diffµ(M)
are right translations X ◦ φ of divergence-free vector fields X of M tangent to the
boundary. We refer the interested reader to [5] for more details on these manifold
structures in the context of Sobolev spaces.

A volumorphism φ can be seen as describing the positions, at a given time, of
the particles of an ideal fluid (incompressible and inviscid) moving inside of M : the
value φ(x) gives the position of the particle that was at position x ∈ M at t = 0.
The volume-preserving property of φ is a consequence of the incompressibility of
the fluid. With this interpretation, a tangent vector X ◦φ is the velocity field of the
fluid at that time, and the kinetic energy of the fluid defines a Riemannian metric
on Diffµ(M)

(1) gφ(X ◦ φ, Y ◦ φ) =

∫
M

⟨X ◦ φ, Y ◦ φ⟩µ.

Since for any volume-preserving φ ∈ Diffµ(M), the pullback measure is φ∗µ = µ,
we see that

gφ(X ◦ φ, Y ◦ φ) =

∫
M

⟨X,Y ⟩µ = gid(X,Y ),
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and so the kinetic metric is right-invariant on Diffµ(M).
The result shown by Arnold [1] is the following: the geodesics in Diffµ(M) for

the kinetic metric (1) describe the motion of an ideal fluid in M . To see this, we
can consider the geodesic equation on the larger space Diff(M), which is simply
∂2γ/∂t2 = 0, and then orthogonally project it on the submanifold Diffµ(M). In
terms of the velocity field X(t, ·) associated with the geodesic γ(t, ·)

∂γ

∂t
(t, x) = X(t, γ(t, x)),

this gives

P

(
∂2γ

∂t2

)
= P

(
∂X

∂t
+ ∇XX

)
◦ γ = 0,

where ∇ is the Levi-Civita connection associated to the Riemannian metric on M .
The orthogonal projection P on the space of divergence-free vector fields tangent
to the boundary is obtained by the Hodge decomposition of vector fields

(2) P (X) = X − grad f,

where f is a function verifying ∆f = divX and whose normal component along the
boundary equals that of the vector field X. The geodesic equation for the kinetic
metric (1) on Diffµ(M) is therefore given by

(3)
∂X

∂t
+ ∇XX = − grad p,

where p is called the pressure function, defined up to a constant by ∆p = −div(∇XX)
and its component along the normal ν: ⟨grad p, ν⟩ = −⟨X, ν⟩. Equation (3) is the
Euler equation for incompressible fluids, also called the Euler-Arnold equation in
virtue of its interpretation by Arnold as a geodesic equation on the space of volu-
morphisms.

2.2. Kolmogorov flows on the torus. In the two-dimensional case, it can be
shown that the Euler-Arnold equation (3) can be rewritten in terms of the curl as

∂

∂t
(curlX) +X(curlX) = 0.

Now divergence-free vector fields on surfaces can be written as X = sgradψ + W
where ψ : M → R is defined by ∆ψ = curlX and ψ|∂M = 0, while the vector field
W satisfies curlW = 0 and divW = 0. For such a vector field X, the Euler-Arnold
equation becomes

∂

∂t
∆ψ + {ψ,∆ψ} +W (∆ψ) = 0.

Here {·, ·} is the Poisson bracket, which can be defined by the following property
of Hamiltonian vector fields: if sgrad f and sgrad g are Hamiltonian vector fields
generated by mean-zero functions f, g : M → R, then {f, g} is the unique mean-zero
function generating their Lie bracket

[sgrad f, sgrad g] = sgrad{f, g}.

In dimension 2, the Poisson bracket is simply given by

{f, g}µ = df ∧ dg,
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Figure 1. Kolmogorov flows on the torus: level sets of the stream
function ψ(x, y) = − cos(mx) cos(ny) for m = n = 1 (left), m =
n = 2 (middle), m = 3, n = 2 (right). The velocity of the fluid is
tangent to these level sets.

which reduces to {f, g} = ∂xf∂yg − ∂yf∂xg on the torus. We then see that any
function ψ for which

(4) {ψ,∆ψ} = 0,

generates a steady solution X = sgradψ of the Euler-Arnold equation, i.e., a geo-
desic γ with associated velocity field X satisfying ∂X

∂t = 0. The function ψ is called

the stream function. Here we will focus on geodesics on Diffµ(T2) whose velocity
field is generated by the stream functions

(5) ψ(x, y) = − cos(mx) cos(ny), (m,n) ∈ N2.

These are eigenfunctions of the Laplacian for the eigenvalues −λ2 = −(m2 + n2),
and they satisfy (4) to give steady solutions of the Euler equations, the so-called
Kolmogorov flows on the torus M = T2. For these flows, the fluid has a circular
movement inside rectangular grid cells, as shown in Figure 1. The question that
we ask is: can we find conjugate points along any Kolmogorov flow on the torus?
The existence of conjugate points is related to the question of the uniqueness of the
geodesic between its endpoints, and whether a perturbation of the initial condition
of the corresponding flow can lead to the same result as no perturbation at all.

2.3. Conjugate points and the Misio lek criterion. Two volumorphisms φ1

and φ2 are conjugate if there exists a family of geodesics that start at φ1 and end at
φ2 up to first order; more precisely, if there exists γ(s, t) with (s, t) ∈ (−ϵ, ϵ)× [0, 1]
such that for all s, γ(s, ·) is a geodesic in Diffµ(M), γ(s, 0) = φ1, γ(s, 1) = φ2, and

the corresponding Jacobi field J(t) = ∂γ
∂s (0, t) satisfies J(0) = J(1) = 0. We say that

there is a conjugate point along a geodesic γ if there exists a time T > 0 such that
γ(0) and γ(T ) are conjugate points. Conjugate points are particular cases of cut
points. However, they can only happen in manifolds with some positive curvature,
while cut points can occur even in flat manifolds due to non trivial topology.

Conjugate points can be detected using the so-called index form, defined for any
vector field Y (t) along the geodesic γ(t) by

I(Y, Y ) =

∫ T

0

〈
DY

dt
,
DY

dt

〉
− ⟨R(Y, γ̇)γ̇, Y ⟩ dt.

It can be shown [9] that I(Y, Y ) = 0 for some Y satisfying Y (0) = Y (T ) = 0 if and
only if Y is a Jacobi field. Furthermore if I(Y, Y ) < 0 for some such field Y , then
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there is a Jacobi field J along γ vanishing at t = 0 and for t = τ for some τ < T .
Establishing negativity of the index form for some vector field Y is thus an effective
way to show there must be a conjugate point without actually having to find it. In
our setting of volume-preserving diffeomorphisms on a surface, the index form can
be written in the following way.

Proposition 1 (Corollary 9 in [14]). Suppose M is a surface and that X = sgradψ
solves the Euler equation (3) on [0, T ]. For a time-dependent family of functions
g(t) on M , vanishing on the boundary of M and at t = 0 and t = T , the index form
for Y = sgrad g along the geodesic with velocity field X becomes

(6) I(Y, Y ) =

∫ T

0

∫
M

| gradh|2 + ∆ψ{g, h} dµdt, h :=
∂g

∂t
+ {ψ, g}.

The Misio lek criterion consists of computing the index form for a particular
family of deformations, namely g(t) = sin(πt

T )f for some function f : M → R, and
then letting time T go to infinity. If the result is negative for some function f , then
for sufficiently large T the index form will be negative and hence there will be a
conjugate point occurring at some time τ < T .

Consider a steady geodesic in Diffµ(M) generated by a stream function ψ : M →
R satisfying ∆ψ = Υ ◦ ψ for some function Υ: R → R; every steady solution of
(4) can at least locally be expressed in this form. The index form (6) at a vector
field Y = sgrad g generated by a family of deformations g(t) = sin(πt

T )f for a given
function f can be written in terms of the Poisson bracket ϕ = {ψ, f} as

I(g) =
π2

2T

∫
M

| grad f |2dµ+
T

2

∫
M

(
| gradϕ|2 + Υ′(ψ)ϕ2

)
dµ.

The Misio lek criterion states that there is a conjugate point eventually occurring
along the geodesic if

lim
T→∞

2

T
I(g) < 0

for some function f , i.e.,

MI(ϕ) :=

∫
M

(
|gradϕ|2 + Υ′(ψ)ϕ2

)
dµ < 0, ϕ = {ψ, f}.

In the present case, for M = T2, we will take

(7) ψ = − cosmx cosny, with Υ(ψ) = −λ2ψ, where λ2 = m2 + n2.

This leads to the explicit version of the Misio lek index in the form

(8) MI(ϕ) :=

∫
M

(
|gradϕ|2 − (m2 + n2)ϕ2

)
dµ < 0, ϕ = {ψ, f},

which is the version we will use in the remainder of the paper. We will show that
when ϕ = − cosmx cosny for positive integers m,n, there is always a function
f to make MI(ϕ) < 0, leading to both existence of conjugate points and the
indefiniteness of Arnold’s quadratic form.

2.4. Remark on the link with stabillity. Note that the Misio lek index is pre-
cisely the second variation of the Dirichlet energy

∫
M
|gradψ|2 dµ, which is the L2

energy of a vector field, when considered under the action by volume-preserving
diffeomorphisms of a 2D manifold. Here variations are generated by test functions
f , while the actually varied stream function under the action is given by ϕ = {ψ, f}.
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The formula for the second variation of the energy is given in Chapter II, Remark
2.4 of Arnold-Khesin [2], and it agrees with the Misio lek index. Hence the second
variation of energy of this minimization problem is indefinite if and only if there is
a conjugate point that is detectable by the Misio lek criterion. As pointed out by
Tauchi-Yoneda [16], this implies that conjugate points along an Arnold-stable flow
cannot be detected by the Misio lek criterion, although they may exist (as happens
for many rotational flows, such as on the sphere; see [14] for examples).

Indefiniteness of the second variation does not necessarily imply instability of
the steady flow, however, and thus existence of conjugate points detectable by the
Misio lek criterion does not necessarily imply that the linearized Euler equation
has unstable growing solutions. See Arnold-Khesin, Chapter II, Remark 3.7 [2].
It would be very interesting to further clarify the apparent connection between
instability of the linearized Euler equation and the existence of conjugate points
along the corresponding geodesic, particularly since the Arnold criterion for stability
and the Misio lek criterion for conjugate points are both only sufficient but not
necessary, and since the more intuitive connection would be between conjugate
points and stability.

Note that the second variation formula (and thus the Misio lek criterion) apply to
finding infinitesimal energy-decreasing variations of the energy by diffeomorphisms,
in terms of the local analysis of vector fields at the identity. The problem of finding
the global minimizer was studied by Shnirelman and Lan [7], who numerically found
a minimizer that is not smooth in the case (m,n) = (1, 1). It is possible that the
roughness of this optimizer is related to some difficulty in the second variation we
are studying here, but the connection is not completely clear.

3. Main results

We will show that for every pair (m,n) of positive integers with m ≥ n, the
Misio lek criterion (8) detects a conjugate point along the geodesic in Diffµ(T2). It
is easier to handle the three cases m > n, m = n ≥ 2, and m = n = 1 separately.

The formulas presented in the next three theorems were discovered by numerics
we will elaborate on in Section 5. They are finite truncations of infinite Fourier
series, dominated by the lowest-order term (either cosx or sinx), which show up
because they are the eigenfunctions of the Laplacian with smallest eigenvalue −1.

Theorem 2. If m and n are positive integers with m > n, and ψ(x, y) = − cosmx cosny,
then there is a function f : T2 → R such that ϕ = {ψ, f} satisfies the Misio lek cri-
terion (8). Hence if the geodesic γ in Diffµ(T2) has initial conditions γ(0) = id
and γ′(0) = sgradψ, then γ(T ) is conjugate to γ(0) for some T > 0, and γ is not
minimizing beyond T .

Proof. See Maple file in https://github.com/alebrigant/conjugate-points for
details of the computations here.

For numbers a, b ∈ R, define

(9) f(x, y) = cosx
(
1 + a cos (2mx) + b cos (2ny)

)
.



8 CONJUGATE POINTS ALONG KOLMOGOROV FLOWS ON THE TORUS

We compute the Poisson bracket

ϕ(x, y) = ψx(x, y)fy(x, y) − ψy(x, y)fx(x, y)

= 2mn cosx
(
a cos(mx) sin(ny) sin(2mx) − b sin(mx) cos(ny) sin(2ny)

)
+ n cos(mx) sin(ny) sinx

(
1 + a cos(2mx) + b cos(2ny)

)
.

The quantity MI from (8) is then given by

MI =
π2n2

4
H(a, b,m, n),

where

(10) H(a, b,m, n) = 16a2m4 + 16b2m2n2 + 24a2m2 − 12abm2 + 4b2m2 + 4b2n2

+ 8am2 − 8bm2 + a2 − ab+ b2 + 2a− 2b+ 2.

This is quadratic in both a and b, with positive leading-order coefficients, and thus
the critical point must be a global minimizer. However the formula is slightly
complicated, and it is easier to use the points

(11) a0 = − 4m2 + 1

16m4 + 24m2 + 1
and b0 =

1

4n2 + 1
;

here a0 is the minimizer of H(a, 0,m, n) and b0 is the minimizer of H(0, b,m, n).
With these choices we obtain

H(a0, b0,m, n) =
J(m,n)

(16m4 + 24m2 + 1)(4n2 + 1)
, where

J(m,n) = 4n2(16m4 + 40m2 + 1) − 64m6 − 48m4 + 28m2 + 1.

(12)

We want to show that J(m,n) < 0 for every choice of naturals m and n with m > n.
Clearly J is increasing as a function of n, so we have

J(m,n) ≤ J(m,m−1) = −128m5 + 176m4−320m3 + 192m2−8m+ 5 for m ≥ 2.

Writing m = k + 1 for k ≥ 1 this becomes

J(m,n) ≤ J(k + 1, k) = −128k5 − 464k4 − 896k3 − 992k2 − 520k − 83,

which is obviously negative.
We conclude that J(m,n) < 0 for all positive integers m,n with m > n. This

ensures that H(a0, b0,m, n) < 0, and thus that MI < 0 for these choices of a0
and b0. By the Misio lek criterion, there is eventually a conjugate point along the
corresponding geodesic. □

Observe in the proof above that the worst-case scenario is when n = m−1: when
n is smaller than m− 1 the index form is even more negative. This corresponds to
conjugate points being easier to find when m and n are farther apart, as was found
by Drivas et al. [4]. It thus stands to reason that the hardest case is when n = m.
Indeed we need two extra terms in our formula for the variation to make it work in
this case. Note also that we require that n ≥ 2; this variation field does not work
if m = n = 1. We will handle that case separately.

Theorem 3. Suppose n ≥ 2 and ψ(x, y) = − cos (nx) cos (ny). Then there is a
function f : T2 → R such that ϕ = {ψ, f} satisfies (8). Thus there is a time T > 0
such that γ(T ) is conjugate to γ(0) along the corresponding geodesic γ, and γ is
not minimizing past T .
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Proof. See Maple file in https://github.com/alebrigant/conjugate-points for
details of the computations here.

For coefficients a, b, c, d ∈ R, define

(13) f(x, y) = cosx
(
1 + a cos (2ny) + b cos (4ny) + c cos (2nx)

)
+ d sinx sin (2nx).

We again compute

(14) ϕ(x, y) = n sin (nx) cos (ny) cosx
(
− 2an sin (2ny) − 4bn sin (4ny)

)
− n cos (nx) sin (ny)

(
− sinx

[
(1 + a cos (2ny) + b cos (4ny) + c cos (2nx)

]
− 2cn cosx sin (2nx) + d cosx sin (2nx) + 2dn sinx cos (2nx)

)
Computing the Misio lek index (8) now gives

MI =
π2n2

4
H(a, b, c, d, n),

where

(15) H(a, b, c, d, n) = 16a2n4 + 64abn4 + 256b2n4 + 16c2n4 + 16d2n4 + 8adn3

− 64cdn3 + 8a2n2 − 4abn2 − 12acn2 + 32b2n2 + 24c2n2 + 24d2n2 + 6adn− 8an2

− 16cdn+ 8cn2 + a2 − ab− ac+ b2 + c2 + d2 − 8dn− 2a+ 2c+ 2.

Again, this is quadratic in the four unknown coefficients a, b, c, d with positive
leading-order coefficients, so the unique critical point is a global minimum.

In this case there is no simpler formula which works, so we find the critical point
by solving the linear system

∂H

∂a
=
∂H

∂b
=
∂H

∂c
=
∂H

∂d
= 0.

Explicitly this system looks like

(32a+ 64b)n4 + 8dn3 + (16a− 4b− 12c− 8)n2 + 6dn+ 2a− b− c− 2 = 0,

(64a+ 512b)n4 + (−4a+ 64b)n2 − a+ 2b = 0,

32cn4 − 64dn3 + (−12a+ 48c+ 8)n2 − 16dn− a+ 2c+ 2 = 0,

32dn4 + (8a− 64c)n3 + 48dn2 + (6a− 16c− 8)n+ 2d = 0.

There is a unique solution of the system above, given by

a0 =
(8n2 + 1)(256n4 + 32n2 + 1)

6144n8 + 4864n6 + 920n4 + 58n2 + 1
,

b0 = − 512n6 + 32n4 − 12n2 − 1

2(6144n8 + 4864n6 + 920n4 + 58n2 + 1)
,

c0 = − 49152n10 + 59392n8 + 17088n6 + 1952n4 + 88n2 + 1

2(98304n12 + 28672n10 − 18048n8 − 1568n6 + 472n4 + 50n2 + 1)
,

d0 = − n(32768n8 + 19456n6 + 3328n4 + 196n2 + 3)

(16n4 − 8n2 + 1)(6144n8 + 4864n6 + 920n4 + 58n2 + 1)
.
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In spite of how complicated these formulas appear, the value of H at the critical
point is relatively simple in n: we get

(16) H(a0, b0, c0, d0, n) =
−4096n8 + 3584n6 + 1008n4 + 68n2 + 1

12288n8 + 9728n6 + 1840n4 + 116n2 + 2
.

Replacing n with
√

4 + k for some k ≥ 0 (since n ≥ 2 by assumption), this becomes

H(a0, b0, c0, d0,
√

4 + k) =
−4096k4 − 61952k3 − 349200k2 − 868412k − 802799

12288k4 + 206336k3 + 1298224k2 + 3627508k + 3798226
,

and this is obviously negative for all real k ≥ 0.
We conclude that with n ≥ 2, the choice (a, b, c, d) = (a0, b0, c0, d0) leads to a

variation f given by (13) such that ϕ = {ψ, f} satisfies the Misio lek criterion (8).
Hence there is eventually a conjugate point along the geodesic. □

Example 1. In the case m = 3 and n = 2, the formula (9) with a and b given by
(11) becomes

(17) f(x, y) = cosx

(
1 − 37

1513
cos 6x+

1

17
cos 4y

)
.

This is plotted on the left side of Figure 2 below.
On the other hand if m = n = 2, the variation f from (13) becomes

(18) f(x, y) = cosx

(
1 +

139425

1899113
cos 4y − 33231

3798226
cos 8y − 66661217

854600850
cos 4x

)
− 19375654

427300425
sinx sin 4x.

The plot is shown on the right side of Figure 2. Note that especially in the off-
diagonal case, both the formula and graph are substantially simpler than the one
given in the second author’s paper [14]. Also note that the graphs are basically
indistinguishable to the naked eye, although none of the terms in (18) can be
omitted without changing the sign of the index.

Variation fields of the form considered in Theorems 2 and 3, dominated as they
are by the cosx term, do not seem suitable for making the Misio lek index negative
in the case m = n = 1. Instead the following field dominated by sinx, found by
Theodore Drivas (personal communication) and included here with his permission,
gives an energy-reducing variation in that case.

Theorem 4. Suppose ψ(x, y) = − cosx cos y. Then there is a function f : T2 → R
such that ϕ = {ψ, f} satisfies (8). Thus there is a time T > 0 such that γ(T ) is
conjugate to γ(0) along the geodesic γ, and γ is not minimizing past T .

Proof. Define

f(x, y) = sinx+ 1
10 sin (x+ 2y) − 1

20 sin (3x) + 1
100 sin (5x).

We easily compute that the Poisson bracket ϕ = {ψ, f} is

ϕ(x, y) = 1
5 sinx cos y cos (x+ 2y)

− cosx sin y
(

cosx+ 1
10 cos (x+ 2y) − 3

20 cos (3x) + 1
20 cos (5x)

)
.

The Misio lek index (8) is given by

MI =

∫∫
T2

|∇ϕ|2 − 2ϕ2 dA = −3π2

200
,
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Figure 2. On the left, the optimal perturbation f of the form (9)
in the case m = 3 and n = 2, given explicitly by (17). On the
right, the optimal perturbation f of the form (13), given explicitly
by (18), in the case m = n = 2. These perturbations generate
a variation ϕ satisfying the Misio lek criterion (8) for conjugate
points. Note that they appear quite similar at this level.

Figure 3. Local deformation of the stream function ψ induced
by the area-preserving diffeomorphism sgradf , i.e., the function
ψ(x − ϵ∂yf, y + ϵ∂xf), for m = n = 1 (left), m = n = 2 (middle)
and m = 3, n = 2 (right).

and we are done. □

In Figure 3 we show the local deformation of the stream function ψ induced by
the area-preserving diffeomorphism generated by the test function f , in an example
of each of the three cases discussed above. This can be compared to Figure 1
which shows ψ without deformation. The second author [14] showed that any
test function solely supported in a single cell of a Kolmogorov flow on T2 cannot
generate an energy-reducing variation, even if time variation is allowed. Hence one
intuitively expects that the rectangular gridlines must be substantially deformed
by any energy-reducing variation, which is indeed what we see. Unsurprisingly
the most deformation happens at the vertices where gridlines intersect, since there
the fluid has hyperbolic fixed points and the fluid is highly susceptible to small
perturbations.
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4. The minimization principle

In this section we relate the Misiolek criterion to an eigenfunction problem on
the Poisson bracket ϕ = {ψ, f}. Recall that the Misio lek criterion (8) is given by

(19) MI(ϕ) :=

∫
M

|gradϕ|2 − λ2ϕ2 dµ < 0,

where ϕ = {ψ, f} for some function f .

Theorem 5. If ψ : M → R is a fixed smooth function satisfying ∆ψ = −λ2ψ and L
denotes the operator L(f) = {ψ, f}, then ∆−1L is continuous from Ḣ1(M) to itself.

The image Im[L] is a closed subspace of Ḣ1(M), and ∆−1 restricts to a continuous
operator on it. The Misio lek criterion is satisfied if and only if the operator norm
of ∆−1 on Im[L] satisfies

(20) ∥∆−1
∣∣
Im[L]

∥op ≥ 1

λ2
.

This happens if and only if there is a number c ≥ 1/λ2 and a function f : M → R
satisfying

−∆−1L(f) = cL(f).

Proof. Recall that the first-order homogeneous Sobolev metric is given by

⟨f, g⟩Ḣ1 = −
∫
M

f∆g dµ =

∫
M

⟨∇f,∇g⟩ dµ.

To establish continuity it is sufficient to establish boundedness, which follows from

∥L(f)∥L2 = ∥gradψ × grad f∥L2 ≤ ∥ψ∥C1∥grad f∥L2 = ∥ψ∥C1∥f∥Ḣ1 .

As a result the image of L is a closed subspace in Ḣ1(M). Since L is antisym-
metric in the L2 inner product we see that the operator ∆−1L is bounded and
antisymmetric in Ḣ1, via

⟨∆−1L(f), g⟩Ḣ1(M) = −
∫
M

L(f)g dµ = −
∫
M

{ψ, f}g dµ

=

∫
M

{ψ, g}f dµ = −⟨∆−1L(g), f⟩Ḣ1(M).

Now the Misio lek index from (19) rescaled by the Ḣ1 norm is given by

MI(ϕ)

∥ϕ∥2
Ḣ1(M)

= 1 − λ2
∫
M
ϕ2 dµ∫

M
|gradϕ|2dµ

= 1 + λ2
⟨ϕ,∆−1ϕ⟩Ḣ1(M)

∥ϕ∥2
Ḣ1(M)

,

and this can be made negative for some ϕ ∈ Im[L] if and only if

sup
ϕ∈Im[L]

⟨ϕ, (−∆)−1ϕ⟩Ḣ1(M)

∥ϕ∥2
Ḣ1(M)

≥ 1

λ2
,

and the left-hand side is precisely the operator norm of (−∆)−1 restricted to Im[L].

Since (−∆)−1 is positive, compact, and self-adjoint on Ḣ1(M), it is also positive,
compact, and self-adjoint on the closed subspace Im[L]. Hence it has a sequence of
positive eigenvalues converging to zero, and the operator norm of it is the largest
one. So the operator norm is larger than 1/λ2 if and only if there is a c ≥ 1/λ2

such that

(21) (−∆)−1L(f) = cL(f).
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□

Solving the eigenfunction problem (21) is rather difficult since L is quite far
from invertible—its kernel consists of all functions constant on the level sets of
ψ, and in particular any function Φ ◦ ψ for Φ: R → R will be in that kernel.
In principle one could integrate the Green function for ∆−1 along the level sets
to try to solve directly for f , or apply the operator L−1∆−1L repeatedly to a
Fourier basis in hopes that it converges to an eigenfunction, but computationally
this becomes rather difficult. For example, inverting L involves integrating around
the level curves, but since there are always singular hyperbolic points where the
gridlines cross, the local behavior can complicate things substantially. As such we
take a more indirect approach in the next section, using higher-order Sobolev inner
products.

5. Numerics

Here we give some details on the numerics that helped provide the results of
Theorems 2 and 3, and explain the shape of the perturbations generating the vari-
ations that satisfy the Misiolek criterion. First we discuss the general setup for any
surface M possibly with boundary, then we specialize to M = T2. The implemen-
tation described in this section and used to generate Figures 4 and 5 is available
on github: https://github.com/alebrigant/conjugate-points.

5.1. The minimization strategy. Let C∞
0 (M) denote the space of C∞-functions

f : M → R that vanish on the boundary ∂M . We define the following operators
on C∞

0 (M)

(22) Lf := {ψ, f}, Λf := −∆f, Ωf := −L(Λ − λ2I)Lf.

The goal is to find a function f ∈ C∞
0 such that the corresponding Poisson bracket

ϕ = {ψ, f} minimizes some normalized version of the Misio lek index (19). This
index can be rewritten in terms of the previously defined operators (22) as

MI(ϕ) = −
∫
M

ϕ(∆ + λ2I)ϕdµ =

∫
M

Lf(Λ − λ2I)Lf dµ = ⟨f,Ωf⟩L2 ,

where we have used the antisymmetry of the operator L with respect to the L2

inner product on C∞
0 (M). To minimize MI(ϕ) we need to constrain f ; otherwise

the minimum is either zero or negative infinity. The easiest way to do this is to
require that some norm of f be constrained to be 1, which is equivalent to choosing
f so that it minimizes the Rayleigh quotient

RQ(f) =
⟨f,Ωf⟩L2

⟨f,Γf⟩L2

,

where Γ is some positive-definite symmetric operator on C∞
0 (M). If Γ has some

relatively high Sobolev order, the minimizer we find will be smoother. By the usual
calculus of variations method, minimizers of this must satisfy

Ωf = cΓf for some c ∈ R.

Equivalently, f is an eigenfunction of the operator Γ−1Ω, and if we can find an
eigenvalue c which is negative, it proves the index form can be made negative, and
thus that there is eventually a conjugate point along the geodesic. The idea is
therefore to make Γ strong enough as a differential operator that Γ−1 more than
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Figure 4. On the top row, minimizers f : M → R of (23) in the
case m = 3 and n = 2 and for different values of the order p of the
homogeneous Sobolev norm: 0, 1, 2, 3 from left to right. On the
bottom row, minimizers in the case m = 2 and n = 2 for the same
values of p.

compensates all the differential operators in Ω. Choosing Γ = Λp is equivalent to
changing the inner product to the homogeneous Sobolev metric of order p

⟨f, g⟩Ḣp = (−1)p
∫
M

f∆pg dµ = ⟨f,Λpg⟩L2

so that the Rayleigh quotient becomes

(23) RQ(f) =
⟨f,Ωpf⟩Ḣp

⟨f, f⟩Ḣp

,

where

Ωp = Λ−pΩ = −Λ−pL(Λ − λ2I)L.

Replacing the L2-inner product by the Ḣp inner product yields an operator Ωp that
is bounded for p ≥ 2, and compact for p ≥ 3.

The problem of minimizing the Rayleigh quotient (23) can be made finite-
dimensional by decomposing the unknown f in the following spatial Fourier basis

(24) f(x, y) =

N∑
j=0

N∑
k=−N

ajk cos(jx+ ky).

Due to the evenness of the cosine function, it is enough to take only positive k indices
for j = 0 in the above double sum. Then each function f can be represented by
a (N(2N + 2) + 1)-size vector of real coordinates (ajk)j,k, and the operator Ωp

by a square matrix of same size. The matrix representation of Ωp is obtained by
multiplying matrices that are all diagonal except for the Poisson bracket operator
L matrix (for which we give a formula in the Appendix, for the aid of the reader).
Then the problem of minimizing (23) boils down to finding the minimal eigenvalue
of the Ωp matrix, and the function f whose Poisson bracket minimizes the Misio lek
criterion is given by the corresponding eigenvector.
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Figure 5. Minimizers f : M → R of (23) in the case m = 2 and
n = 2 and for different values of the order p of the homogeneous
Sobolev norm: 0, 1, 2, 3 from left to right.

5.2. The minimizing deformations. Figure 4 shows the minimizers found in the
case m = 3 and n = 2 (top row) and the case m = 2 and n = 2 (bottom row), for
different values of the Sobolev order p. The deformations g(t, x, y) = sin(πt

T )f(x, y)
associated to all the spatial deformations f shown in this figure induce vector fields
Y = sgrad g that make the Misio lek index, and thus the index form, negative.
However the “shape” of this minimizing deformation stabilizes only for p ≥ 2, and
for these values we see a characteristic “V-shape” appearing, i.e., a perturbation of
cos(x), which we used to obtain formulas (9) and (13).

In the diagonal case m = n, due to the symmetry in the variables x and y,
another minimizer is given by a perturbation of cos(y), the symmetric perturbation
obtained by exchanging x and y. To obtain the figures of the bottom row of
Figure 4, we constrained the solution to have Fourier coefficient a01 = 0. Without
this constraint, we find the results of Figure 5, where both minimizers appear
separately as well as mixed, as in the case p = 1. This is similar to the minimizer
found by the second author in [14], displayed in Figure 7.

The reason for the dominance of the term cosx in the functions appearing in
Theorem 2–3 is that this is the lowest-eigenvalue eigenfunction of Λ. Roughly
speaking, we first compute

L(cosx) = n sinx cosmx sinny,

then obtain

(Λ − λ2I)L(cosx) = 2mn cosx sinmx sinny

plus a term with a smaller coefficient, and finally

L(Λ − λ2I)L(cosx) = −n
2

4
cosx+ S,

where S is a linear combination of terms of the form cos(jx + ky), which are
eigenfunctions of Λ−p for the eigenvalues (j2+k2)−p, for integers j and k. Therefore,
after applying the inverse Laplacian Λ−p for a high power p, the correction terms
in S all become small as p increases while the cosx term is preserved. This explains
the dominance of the V-shape: although L(cosx) does not involve another cosx
term, L2(cosx) does, and it becomes dominant after applying smoothing operators.

6. Other open questions

We conclude with some possible other directions to pursue these techniques.
An obvious one is to apply this to other steady flows on the torus that come from
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Laplacian eigenfunctions; the Kolmogorov flows we have discussed have rectangular
cells, but one could also consider stream functions of the form

ψ = cos (mx+ ny) + c cos (mx− ny)

which for c ̸= 1 have skew quadrilateral cells. One could also consider stretched
tori where the eigenfunctions look like cos (mx+ αny) for some positive parameter
α, as considered in [4].

We have seen that whenever the Kolmogorov eigenvalue is strictly larger than
the minimal one λ = 1, the Misio lek index can be made negative. When λ = 1, the
question is more delicate. There are some simple eigenfunctions of the Laplacian
such as the shear flows generated by sinx, cosx, sin y, and cos y where the fluid
flows have nonpositive curvature along them, and therefore no conjugate points
by Misio lek [9]. However there are also stream functions like sinx + sin y which
are not shear flows and have nontrivial cells. The Misio lek index must clearly be
nonnegative in this case, but there may still be conjugate points detectable by
methods such as in [14].

It is also easy to see how the same techniques could generate conjugate points
on other surfaces. It would be interesting to try the same methods to find con-
jugate points along other eigenfunctions of the 2-sphere: the smallest-eigenvalue
function generates rigid rotations and its geodesic is known to have many conju-
gate points [9]. It seems likely that every eigenfunction of the Laplacian on S2

generates a geodesic with conjugate points, but no others are actually known con-
cretely. This is connected with work of Benn [3] on conjugate points along nonsteady
Rossby-Haurwitz waves on the sphere.

Appendix

Proposition 6. Let f : M →M be a function and ajk the coefficients of its Fourier
decomposition (24), for (j, k) ∈ {0}×{0, . . . , N}∪{1, . . . , N}×{−N, . . . , N}. Then

Lf = {ψ, f} =
1

8

∞∑
j=−∞

∞∑
k=−∞

(
(mk − nj)(Aj−m,k−n −Aj+m,k+n)

+(mk + nj)(Aj−m,k+n −Aj+m,k−n)
)

cos(jx+ ky)

where

Ajk =


ajk if 0 < j ≤ N, |k| ≤ N,

a−j,−k if −N ≤ j < 0, |k| ≤ N,

aj|k| if j = 0, |k| ≤ N,

0 otherwise.
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