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Abstract. We study the geometry of the space of densities Dens(M), which is
the quotient space Diff(M)/Diffµ(M) of the diffeomorphism group of a compact
manifold M by the subgroup of volume-preserving diffeomorphisms, endowed
with a right-invariant homogeneous Sobolev Ḣ1-metric. We construct an explicit
isometry from this space to (a subset of) an infinite-dimensional sphere and show
that the associated Euler-Arnold equation is a completely integrable system in
any space dimension whose smooth solutions break down in finite time.

We also show that the Ḣ1-metric induces the Fisher-Rao metric on the space
of probability distributions and its Riemannian distance is the spherical version
of the Hellinger distance.
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1. Introduction

The geometric approach to hydrodynamics pioneered by V. Arnold [2] is based
on the observation that the particles of a fluid moving in a compact n-dimensional
Riemannian manifold M trace out a geodesic curve in the infinite-dimensional
group Diffµ(M) of volume-preserving diffeomorphisms (volumorphisms) of M . The
general framework of Arnold turned out to include a variety of nonlinear partial
differential equations of mathematical physics, now often referred to as Euler-
Arnold equations.

Historically the metrics of most interest in infinite-dimensional Riemannian ge-
ometry have been L2 metrics, which correspond to kinetic energy. On the other
hand, in recent years there have appeared a number of interesting nonlinear evo-
lution equations described as geodesic equations on diffeomorphism groups with
respect to weak Riemannian metrics of Sobolev H1-type; see e.g., [3, 13, 15, 26] and
their references. In this paper we focus on the H1 metrics both from a differential-
geometric and a dynamical systems perspective. Our main results concern the
geometry of a subclass of such metrics, namely, degenerate right-invariant Ḣ1 Rie-
mannian metrics on the full diffeomorphism group Diff(M) and the properties of
solutions of the associated geodesic equations. The Ḣ1 metric is given at the
identity diffeomorphism by

(1.1) 〈〈u, v〉〉 = b

∫
M

div u · div v dµ

for some b > 0. It descends to a non-degenerate Riemannian metric on the ho-
mogeneous space of right cosets (densities) Dens(M) = Diff(M)/Diffµ(M). Fur-
thermore, it turns out that the corresponding geometry on densities is spherical
for any compact manifold M . More precisely, we prove that equipped with (1.1)
the space Dens(M) is isometric to (a subset of) an infinite-dimensional sphere in
a Hilbert space.

One motivation for studying this geometry is that such H1 metrics arise natu-
rally on (generic) orbits of diffeomorphism groups in the manifold of all Riemannian
structures on M , using the natural Riemannian metric studied by Ebin [8]. The
induced metric is a special case of the following general form of the right-invariant
(a-b-c) Sobolev H1 metric on Diff(M) given at the identity by

(1.2) 〈〈u, v〉〉 = a

∫
M

〈u, v〉 dµ+ b

∫
M

div u · div v dµ+ c

∫
M

〈du[, dv[〉 dµ,

where u, v ∈ TeDiff(M) are vector fields on M , µ is the Riemannian volume form,1

[ is the isomorphism TM → T ∗M defined by the metric on M and a, b and c are
non-negative real numbers. We derive the Euler-Arnold equations for the metric
(1.2) in the Appendix, which include as special cases the n-dimensional (inviscid)
Burgers equation, the Camassa-Holm equation, as well the Euler-α equation. A
detailed study of the related curvatures will appear in a separate publication [16].

1The volume form µ is denoted by dµ whenever it appears under the integral sign.
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In the special case of the homogeneous Ḣ1-metric (1.1) the Euler-Arnold equa-
tion has the form

ρt + u · ∇ρ+ 1
2
ρ2 = −

∫
M
ρ2 dµ

2µ(M)
,(1.3)

where u = u(t, x) is a time-dependent vector field on M satisfying div u = ρ.2 This
equation is a natural generalization of the completely integrable one-dimensional
Hunter-Saxton equation [14] which is also known to yield geodesics on the homo-
geneous space Diff(S1)/Rot(S1) (the quotient of the diffeomorphism group of the
circle by the subgroup of rotations), see [15].

We prove that the solutions of (1.3) describe the great circles on a sphere in a
Hilbert space, and, in particular, the equation is a completely integrable PDE for
any number n of space variables. The corresponding complete family of conserved
integrals can be constructed in terms of angular momenta. Furthermore, we show
that the maximum existence time for smooth solutions of (1.3) is necessarily finite
for any initial conditions, with the L∞ norm of the solution growing without bound
as t approaches the critical time. On the other hand, the geometry of the problem
points to a method of constructing global weak solutions.

The structure of the paper is as follows. In Section 2 we review the geometric
background on Euler-Arnold equations on Lie groups and describe the space of
densities, as well as reductions to homogeneous spaces, particularly as relates to
Diff(M), its subgroup Diffµ(M), and their quotient Dens(M).

In Section 3 we introduce the homogeneous Ḣ1-metric on the space of densities
and study its geometry. Generalizing the results of [18] for the case of the circle
we show that for any n-dimensional manifold the space Dens(M) is isometric to a
subset of the sphere in L2(M,dµ) with the induced metric. The Ḣ1 metric general-
izes the Fisher-Rao information metric in geometric statistics and its Riemannian
distance is shown to be the spherical analogue of the Hellinger distance.

In Section 4 we study properties of solutions to the corresponding Euler-Arnold
equation. Since for M = S1 our equation reduces to the Hunter-Saxton equation
we thus obtain an integrable generalization of the latter to any space dimension.
We show that all solutions break down in finite time and indicate how to construct
global weak solutions. Finally we describe the construction of an infinite family of
conserved quantities.

In Section 5 we present a geometric approach which yields right-invariant metrics
of the type (1.2) as induced metrics on the orbits of the diffeomorphism group from
the canonical Riemannian L2 structures on the spaces of Riemannian metrics and
volume forms on the underlying manifold M .

We conclude in Section 6 with some applications. First we discuss gradient flow
on the space of densities in the spherical metric as a heat-like equation. Next we
discuss some applications to shape theory and compare with previous work, as well
as to the dual connections in geometric statistics. Finally we discuss Fredholmness
of the Riemannian exponential map. It also turns out that the Ḣ1-metric on the

2We will show that the solution ρ does not depend on the choice of u, which happens precisely
because the metric descends to the quotient space.
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space of densities described in this paper is isometric via the Calabi-Yau map to
the metric on the space of Kähler metrics introduced in the 1950’s by E. Calabi.3

In the Appendix we derive the Euler-Arnold equation for the general a-b-c met-
ric (1.2) and show that several well-known PDE of mathematical physics can be
obtained as special cases.

Acknowledgements. We thank Aleksei Bolsinov, Nicola Gigli, Emanuel Mil-
man, David Mumford and Alan Yuilly for helpful comments and D. D. Holm for
bringing the reference [17] to our attention. BK was partially supported by the
Simonyi Fund and an NSERC research grant. JL acknowledges support from the
EPSRC, UK. GM was supported in part by the James D. Wolfensohn Fund and
Friends of the Institute for Advanced Study. SCP was partially supported by NSF
grant no. 1105660.

2. Geometric background

2.1. The Euler-Arnold equations. In this section we describe the general setup
which is convenient to study geodesics on Lie groups and homogeneous spaces
equipped with right-invariant metrics.

Let G be a possibly infinite-dimensional Lie group with identity element e and
TeG denoting the Lie algebra. (We are primarily concerned with the case where
G is a subgroup of the group of C∞ diffeomorphisms of a compact manifold M
without boundary, under the composition operation.) We equip G with a right-
invariant (possibly weak) Riemannian metric 〈〈·, ·〉〉 which is determined by its value
at e. The Euler-Arnold equation on the Lie algebra for the corresponding geodesic
flow has the form

(2.1) ut = −B(u, u) = −ad∗uu,

where the bilinear operator B on TeG is defined by

(2.2) 〈〈B(u, v), w〉〉 = 〈〈u, advw〉〉,
see [3] for details. In the case where G is a diffeomorphism group, the adjoint
operation is given by advw = −[v, w], i.e., minus the Lie bracket of vector fields v
and w on M .

Equation (2.1) describes the evolution in the Lie algebra of the vector u(t)
obtained by right-translating the velocity along the geodesic η in G starting at the
identity with initial velocity u(0). The geodesic itself can be obtained by solving
the Cauchy problem for the flow equation

dη

dt
= Rη∗eu, η(0) = e.

Example 2.1. Let G = Diffµ(M) be the group of volume-preserving diffeomor-
phisms (volumorphisms) of a closed Riemannian manifold M . Consider the right-
invariant metric on Diffµ(M) generated by the L2 inner product

(2.3) 〈〈u, v〉〉L2 =

∫
M

〈u, v〉 dµ.

3We are grateful to B. Clarke and Y. Rubinstein for drawing our attention to this point, see
more details in [?].
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In this case the Euler-Arnold equation (2.1) is the Euler equation of an ideal
incompressible fluid in M

(2.4) ut +∇uu = −∇p, div u = 0,

where u is the velocity field and p is the pressure function, see [2]. In the vorticity
formulation the 3D Euler equation becomes

ωt + [u, ω] = 0 , where ω = curlu .

Example 2.2. Another source of examples are right-invariant Sobolev metrics on
the group G = Diff(S1) of circle diffeomorphisms; see e.g., [15]. Of particular
interest are those metrics whose Euler-Arnold equations turn out to be completely
integrable. On Diff(S1) with the metric defined by the L2 product the Euler-Arnold
equation (2.1) becomes the (rescaled) inviscid Burgers equation

(2.5) ut + 3uux = 0 ,

while the H1 product yields the Camassa-Holm equation

(2.6) ut − utxx + 3uux − 2uxuxx − uuxxx = 0 .

We also mention that if G is the Virasoro group, a one-dimensional central exten-
sion of Diff(S1), equipped with the right-invariant L2 metric then the Euler-Arnold
equation is the periodic Korteweg-de Vries equation.

Now let H be a closed subgroup of G, and let G/H denote the homogeneous
space of right cosets. The following proposition characterizes those right-invariant
Riemannian metrics on G which descend to a metric on G/H.

Proposition 2.3. A right-invariant metric 〈〈·, ·〉〉 on G descends to a right-invariant
metric on the homogeneous space G/H if and only if the inner product restricted
to T⊥e H (the orthogonal complement of TeH) is bi-invariant with respect to the
action by the subgroup H, i.e., for any u, v ∈ T⊥e H ⊂ TeG and any w ∈ TeH one
has

(2.7) 〈〈v, adwu〉〉+ 〈〈u, adwv〉〉 = 0 .

The proof repeats with minor changes the proof for the case of a metric that is
degenerate along a subgroup H; see [15].

Example 2.4. Let G = Diff(S1) and H = Rot(S1), with right-invariant metric
given at the identity by

〈〈u, v〉〉Ḣ1 =

∫
S1

uxvx dx.

The tangent space to the quotient Diff(S1)/Rot(S1) at the identity coset [e] can be
identified with the space of periodic functions of zero mean, and the corresponding
Euler-Arnold equation is given by the Hunter-Saxton equation

(2.8) utxx + 2uxuxx + uuxxx = 0 ,

see [15]. In [18] the second author constructed an explicit isometry between the
quotient Diff(S1)/Rot(S1) and a subset of the unit sphere in L2(S1) and described
the corresponding solutions of Equation (2.8) in terms of the geodesic flow on the
infinite-dimensional sphere. Below we show that this observation is a part of a
general phenomena valid for manifolds of any dimension.
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2.2. The optimal transport framework. Given a volume form µ on M there is
a natural fibration of the diffeomorphism group Diff(M) over the space of volume
forms of fixed total volume µ(M) = 1. More precisely, the projection onto the
quotient space Diff(M)/Diffµ(M) defines a smooth ILH principal bundle4 with
fibre Diffµ(M) and whose base is diffeomorphic to the space Dens(M) of normalized
smooth positive densities (or, volume forms)

Dens(M) =

{
ν ∈ Ωn(M) : ν > 0,

∫
M

dν = 1

}
,

see Moser [21]. Alternatively, let ρ = dν/dµ denote the Radon-Nikodym derivative
of ν with respect to the reference volume form µ. Then the base (as the space
of constant-volume densities) can be regarded as a convex subset of the space
of smooth positive functions ρ on M normalized by the condition

∫
M
ρ dµ = 1.

In this case the projection map π can be written explicitly as π(η) = Jacµ(η−1)
where Jacµ(η) denotes the Jacobian of η computed with respect to µ, that is,
η∗µ = Jacµ(η)µ. The projection π satisfies π(η ◦ξ) = π(η) whenever ξ ∈ Diffµ(M),
i.e., whenever Jacµ(ξ) = 1. Thus π is constant on the left cosets and descends to
an isomorphism between the quotient space of left cosets to the space of densities.

The group Diff(M) carries a natural L2-metric

(2.9) 〈〈u ◦ η, v ◦ η〉〉L2 =

∫
M

〈u ◦ η, v ◦ η〉 dµ =

∫
M

〈u, v〉Jacµ(η−1) dµ

where u, v ∈ TeDiff(M) and η ∈ Diff(M). This metric is neither left- nor right-
invariant, although it becomes right-invariant when restricted to the subgroup
Diffµ(M) of volumorphisms and becomes left-invariant only on the subgroup of
isometries. Following Otto [22] one can then introduce a metric on the base
Dens(M) for which the projection π is a Riemannian submersion: vertical vec-
tors at TηDiff(M) are those fields u ◦ η with div (ρu) = 0, and horizontal fields are
of the form ∇f ◦ η for some f : M → R, since the differential of the projection is
π∗(v ◦ η) = − div (ρv) where ρ = π(η).5

The associated Riemannian distance in Diff(M)/Diffµ(M) between two measures
ν and λ has an elegant interpretation as the L2-cost of transporting one density
to the other

(2.10) dist2
W (ν, λ) = inf

η

∫
M

dist2
M(x, η(x)) dµ

with the infimum taken over all diffeomorphisms η such that η∗λ = ν and where
distM denotes the Riemannian distance on M ; see [4] or [22]. The function distW
is called the L2-Wasserstein (or Kantorovich-Rubinstein) distance between µ and
ν in optimal transport theory.

Remark 2.5. While the non-invariant L2 metric (2.9) on Diff(M) descends to
Otto’s metric on the quotient space Dens(M) = Diff(M)/Diffµ(M), one verifies

4In the Sobolev category Diffs(M) → Diffs(M)/Diffsµ(M) is a C0 principal bundle for any

sufficiently large s > n/2 + 1, see [9].
5The construction in [22] actually comes from Jacµ(η−1), which is important since it is left-

invariant, not right-invariant.
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that among non-invariant H1 metrics of this type it is the only one descending to
the quotient Dens(M).

The situation is different for invariant metrics. Recall that the general condition
for a right-invariant metric on a group G to descend to the quotient G/H with
respect to a closed subgroup H was given in Proposition 2.3. Note that this
condition is precisely what one needs in order for the projection map from G to
G/H to be a Riemannian submersion, i.e., that the length of every horizontal
vector is preserved under the projection.

It turns out that the degenerate right-invariant Ḣ1 metric (1.1) on Diff(M)
descends to a non-degenerate metric on Dens(M). The skew symmetry condition
(2.7) in this case will be verified in Theorem 4.1. On the other hand, one can check
that the right-invariant L2-metric (2.3) does not verify (2.7) and hence does not
descend. Similarly, the full H1 metric on Diff(M) obtained by right-translating
the a-b-c product (1.2) also fails to descend to a metric on Dens(M). This is
summarized in the following table.

Table 1. The geometric structures associated with L2 and Ḣ1 op-
timal transport.

Diff(M) Diffµ(M) Dens(M) = Diff(M)/Diffµ(M)
L2-metric

(non-invariant)

L2-right invariant metric

(ideal hydrodynamics)

Wasserstein distance

(L2-optimal transport)

Ḣ1-metric

(right-invariant)

Degenerate

(identically vanishing)

Spherical Hellinger distance

(Ḣ1-optimal transport)

3. The Ḣ1-spherical geometry of the space of densities

In this section we study the homogeneous space of densities Dens(M) on a closed
n-dimensional Riemannian manifold M equipped with the right-invariant metric
induced by the Ḣ1 inner product (1.1), that is

(3.1) 〈〈u ◦ η, v ◦ η〉〉Ḣ1 =
1

4

∫
M

div u · div v dµ

for any u, v ∈ TeDiff(M) and η ∈ Diff(M). It corresponds to the a = c = 0 term
in the general (a-b-c) Sobolev H1 metric (1.2) of the Introduction in which, to
simplify calculations, we set b = 1/4. (We will return to the case of b > 0 in
Section 5 and Appendix A.)

The geometry of this metric on the space of densities turns out to be particu-
larly remarkable. Indeed, we prove below that Dens(M) endowed with the metric
(3.1) is isometric to a subset of a round sphere in the space of square-integrable
functions on M .6 Moreover, we show that (3.1) corresponds to the Bhattacharyya
coefficient (also called the affinity) in probability and statistics and that it gives rise
to a spherical variant of the Hellinger distance. Thus the right-invariant Ḣ1-metric

6This construction has an antecedent in the special case of the group of circle diffeomorphisms
considered in [18].
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provides good alternative notions of distance and shortest path for (smooth) prob-
ability measures on M to the ones obtained from the L2-Wasserstein constructions
used in standard optimal transport problems.

3.1. An infinite-dimensional sphere S∞r . We begin by constructing an isom-
etry between the homogeneous space of densities Dens(M) and a subset of the
sphere of radius r

S∞r =

{
f ∈ L2(M,dµ) :

∫
M

f 2 dµ = r2

}
in the Hilbert space L2(M,dµ). As before, we let Jacµ(η) be the Jacobian of η
with respect to µ and let µ(M) stand for the total volume of M .

Theorem 3.1. The map Φ : Diff(M)→ L2(M,dµ) given by

Φ : η 7→ f =
√

Jacµη

defines an isometry from the space of densities Dens(M) = Diff(M)/Diffµ(M)

equipped with the Ḣ1-metric (3.1) to a subset of the sphere S∞r ⊂ L2(M,dµ) of
radius

r =
√
µ(M)

with the standard L2 metric.
For s > n/2 + 1 the map Φ is a diffeomorphism between Diffs(M)/Diffsµ(M)

and the convex open subset of S∞r ∩ Hs−1(M) which consists of strictly positive
functions on M .

Proof. First, observe that the Jacobian of any orientation-preserving diffeomor-
phism is a strictly positive function. Next, using the change of variables formula,
we find that∫

M

Φ2(η) dµ =

∫
M

Jacµη dµ =

∫
M

η∗ dµ =

∫
η(M)

dµ = µ(M)

which shows that Φ maps diffeomorphisms into S∞r . Furthermore, observe that
since for any ξ ∈ Diffµ(M) we have

Jacµ(ξ ◦ η)µ = (ξ ◦ η)∗µ = η∗µ = Jacµ(η)µ;

it follows that Φ is well-defined as a map from Diff(M)/Diffµ(M).
Next, suppose that for some diffeomorphisms η1 and η2 we have Jacµ(η1) =

Jacµ(η2). Then (η1 ◦ η−1
2 )∗µ = µ from which we deduce that Φ is injective. More-

over, differentiating the formula Jacµ(η)µ = η∗µ with respect to η and evaluating
at U ∈ TηDiff(M), we obtain

Jacη∗µ(U) = div(U ◦ η−1) ◦ η Jacµη.

Therefore, letting π : Diff(M)→ Diff(M)/Diffµ(M) denote the bundle projection,
we find that

〈〈(Φ ◦ π)∗η(U), (Φ ◦ π)∗η(V )〉〉L2 =
1

4

∫
M

(div u ◦ η) · (div v ◦ η) Jacµη dµ

=
1

4

∫
M

div u · div v dµ = 〈〈U, V 〉〉Ḣ1 ,
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for any elements U = u ◦ η and V = v ◦ η in TηDiff(M) where η ∈ Diff(M). This
shows that Φ is an isometry.

When s > n/2 + 1 the above arguments extend to the category of Hilbert
manifolds modelled on Sobolev Hs spaces, see Remark 3.3 below. The fact that
any positive function in S∞r ∩Hs−1(M) belongs to the image of the map Φ follows
from Moser’s lemma [21] whose generalization to the Sobolev setting can be found
for example in [9]. �

As an immediate consequence we obtain the following result.

Corollary 3.2. The space Dens(M) = Diff(M)/Diffµ(M) equipped with the right-
invariant metric (3.1) has strictly positive constant sectional curvature equal to
1/µ(M).

Proof. As in finite dimensions, sectional curvature of the sphere S∞r equipped with
the induced metric is constant and equal to 1/r2. The computation is straightfor-
ward using for example the Gauss-Codazzi equations. �

It is worth pointing out that the bigger the volume µ(M) of the manifold the
bigger the radius of the sphere S∞r and therefore, by the above corollary, the smaller
the curvature of the corresponding space of densities Dens(M). Thus, in the case
of a manifold M of infinite volume one would expect the space of densities with
the Ḣ1-metric (3.1) to be “flat.” Observe also that rescaling the metric (3.1) to

b

∫
M

div u · div v dµ

changes the radius of the sphere to r = 2
√
b
√
µ(M).

Remark 3.3 (Hilbert manifold structures for diffeomorphism groups). As we
pointed out in the Introduction, even though for our purposes it is convenient
to work with C∞ maps, the constructions of this paper can be carried out in the
framework of Sobolev spaces. Now we describe this setup briefly and refer the
reader to [8], [9] or [20] for further details.

For a compact Riemannian manifold M , the set Hs(M,M) consists of maps
f : M → M such that for any p ∈ M and for any local chart (U, φ) at p and any
local chart (V, φ) at f(p), the composition φ◦f◦φ−1 belongs toHs(φ(U),Rn). Using
the Sobolev Lemma, one shows that if s > n/2, then this definition is independent
of the choice of charts on M . The tangent space at f ∈ Hs(M,M) is defined as
the set of all Hs-sections of the pull-back bundle TfH

s(M,M) = Hs(f−1TM). A
differentiable atlas for Hs(M,M) is constructed using the Riemannian exponential
map on M . For example, to find a chart at the identity map f = e consider
Exp : TM →M ×M given by Exp(v) =

(
π(v), expπ(v) vπ(v)

)
where π : TM →M

is the tangent bundle projection. Since Exp is a diffeomorphism from an open
subset U containing the zero section in TM onto a neighbourhood of the diagonal
in M ×M , one can define a bijection from the set

Ue = {v ∈ Hs(TM) : v(M) ⊂ U}

onto a neighbourhood of the identity map in Hs(M,M) by

Φ : Ue ⊂ TeH
s(M,M)→ Hs(M,M), v → Φ(v) = Exp ◦ v.
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!

Figure 3.4. The fibration of Diff(M) with fiber Diffµ(M) determined by the ref-

erence density µ together with the Ḣ1-metric.

The pair (Ue,Φ) gives a chart in Hs(M,M) around f = e. Compactness, properties
of exp and standard facts about compositions of Sobolev maps ensure that the
charts are well-defined and independent of the Riemannian metric on M , with
smooth transition functions on the overlaps.

For any s > n/2 + 1 the group of Hs diffeomorphisms can be now defined as

Diffs(M) = C1Diff(M) ∩Hs(M,M),

where C1Diff(M) is the set of C1 diffeomorphisms of M . Since C1Diff(M) forms an
open set in C1(M,M), it follows by the Sobolev Lemma that Diffs(M) is also open
as a subset of the Hilbert manifold Hs(M,M) and hence itself a smooth manifold.
Furthermore, it is a topological group under composition of diffeomorphisms. In
fact, right multiplications Rη(ξ) = ξ ◦ η are smooth in the Hs topology, whereas
left multiplications Lη(ξ) = η ◦ ξ and inversions η → η−1 are continuous but not
Lipschitz continuous. The subgroup of volume-preserving diffeomorphisms

Diffsµ(M) = {η ∈ Diff(M) : η∗µ = µ}

is a closed C∞ submanifold of Diffs(M). This follows essentially from the implicit
function theorem for Banach manifolds and the Hodge decomposition.

3.2. The metric space structure of Diff(M)/Diffµ(M). The right invariant
metric (3.1) induces a distance function between densities (measures) of fixed total
volume on M that is analogous to the Wasserstein distance (2.10) induced by the
non-invariant L2 metric used in the standard optimal transport. It turns out that
the isometry Φ constructed in Theorem 3.1 makes the computations of distances
in Dens(M) with respect to (3.1) simpler than one would expect by comparison
with the Wasserstein case.
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Consider two (smooth) measures λ and ν on M of the same total volume µ(M)
which are absolutely continuous with respect to the reference measure µ. Let
dλ/dµ and dν/dµ be the corresponding Radon-Nikodym derivatives of λ and ν
with respect to µ.

Theorem 3.5. The Riemannian distance defined by the Ḣ1-metric (3.1) between
measures λ and ν in the density space Dens(M) = Diff(M)/Diffµ(M) is

(3.2) distḢ1(λ, ν) =
√
µ(M) arccos

(
1

µ(M)

∫
M

√
dλ

dµ

dν

dµ
dµ

)
.

Equivalently, if η and ζ are two diffeomorphisms mapping the volume form µ to
λ and ν, respectively, then the Ḣ1-distance between η and ζ is

distḢ1(η, ζ) = distḢ1(λ, ν) =
√
µ(M) arccos

(
1

µ(M)

∫
M

√
Jacµη · Jacµζ dµ

)
.

Proof. Let f 2 = dλ/dµ and g2 = dν/dµ. If λ = η∗µ and ν = ζ∗µ then using
the explicit isometry Φ constructed in Theorem 3.1 it is sufficient to compute the
distance between the functions Φ(η) = f and Φ(ζ) = g considered as points on
the sphere S∞r with the induced metric from L2(M,dµ). Since geodesics of this
metric are the great circles on S∞r it follows that the length of the corresponding
arc joining f and g is given by

r arccos

(
1

r2

∫
M

fg dµ

)
,

which is precisely formula (3.2). �

We can now compute precisely the diameter of the space of densities using
standard formula

diamḢ1 Dens(M) := sup
{

distḢ1(λ, ν) : λ, ν ∈ Dens(M)
}
.

Corollary 3.6. The diameter of the space Dens(M) equipped with the Ḣ1-metric

(3.1) equals π
2

√
µ(M), or one quarter the circumference of S∞r .

Proof. The upper bound follows easily from formula (3.2), since the argument of
the arccosine is always between 0 and 1. To prove it is arbitrarily close to 0, we
choose the positive functions f and g as in the proof of Theorem 3.5 with supports
concentrated in disjoint areas. �

The Riemannian distance function distḢ1 on the space of densities Dens(M)
introduced in Theorem 3.5 is very closely related to the Hellinger distance in
probability and statistics. Recall that given two probability measures λ and ν on
M that are absolutely continuous with respect to a reference probability µ the
Hellinger distance between λ and ν is defined as

dist2
Hel(λ, ν) =

∫
M

(√
dλ

dµ
−

√
dν

dµ

)2

dµ .

As in the case of distḢ1 one checks that distHel(λ, ν) =
√

2 when λ and ν are
mutually singular and that distH(λ, ν) = 0 when the two measures coincide. It can
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α

0

f = Φ(λ) g = Φ(ν)
Φ(e) = 1

distHel(λ, ν)

distḢ1(λ, ν)

r = 1

S∞1 ⊂ L2(M,dµ)

Figure 3.9. The Hellinger distance distHel(λ, ν) and the spherical Hellinger dis-
tance distḢ1(λ, ν) between two points f = Φ(λ) and g = Φ(ν) in S∞1 . The thick
arc represents the image of Diff(M) under the map Φ.

also be expressed by the formula dist2
Hel(λ, ν) = 2 (1−BC(λ, ν)) , where BC(λ, ν)

is the so-called Bhattacharyya coefficient (affinity) used to measure the “overlap”
between statistical samples; see e.g., [6] for more details.

In order to compare the Hellinger distance distHel with the Riemannian distance
distḢ1 defined in (3.2) recall that probability measures λ and ν are normalized by
the condition λ(M) = ν(M) = µ(M) = 1. As before, we shall consider the square
roots of the respective Radon-Nikodym derivatives as points on the (unit) sphere
in L2(M,dµ). One can immediately verify the following two corollaries of Theorem
3.1.

Corollary 3.7. The Hellinger distance distHel(λ, ν) between the normalized den-
sities dλ = f 2dµ and dν = g2dµ is equal to the distance in L2(M,dµ) between the
points on the unit sphere f, g ∈ S∞1 ⊂ L2(M,dµ).

Corollary 3.8. The Bhattacharyya coefficient BC(λ, ν) for two normalized den-
sities dλ = f 2dµ and dν = g2dλ is equal to the inner product of the corresponding
positive functions f and g in L2(M,dµ)

BC(λ, ν) =

∫
M

√
dλ

dµ

dν

dµ
dµ =

∫
M

fg dµ.

Let 0 < α < π/2 denote the angle between f and g viewed as unit vectors in
L2(M,dµ). Then we have

distHel(λ, ν) = 2 sin(α/2) and BC(λ, ν) = cosα ,

while

distḢ1(λ, ν) = α = arccosBC(λ, ν).
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Thus, we can refer to the Riemannian distance distḢ1(λ, ν) on Dens(M) as the
spherical Hellinger distance between λ and ν, see Fig. 3.9.

3.3. The Fisher-Rao metric in infinite dimensions. It is remarkable that the
right-invariant Ḣ1 metric (3.1) provides an appropriate geometric framework for
an infinite-dimensional Riemannian approach to mathematical statistics. Efforts
directed toward finding suitable differential geometric approaches to statistics go
back to the work of Fisher, Rao [23] and Kolmogorov.

In the classical approach one considers finite-dimensional families of probabil-
ity distributions on M whose elements are parameterized by subsets E of the
Euclidean space Rk,

S =
{
ν = νs1,...,sk ∈ Dens(M) : (s1, . . . , sk) ∈ E ⊂ Rk

}
.

When equipped with a structure of a smooth k-dimensional manifold such a family
is referred to as a statistical model. Rao [23] showed that any S carries a natural
structure given by a k × k positive definite matrix

(3.3) Iij =

∫
M

∂ log ν

∂si

∂ log ν

∂sj
ν dµ (i, j = 1, . . . , k) ,

called the Fisher-Rao (information) metric.7

In our approach we shall regard a statistical model S as a k-dimensional Rie-
mannian submanifold of the infinite-dimensional Riemannian manifold of proba-
bility densities Dens(M) defined on the underlying n-dimensional compact mani-
fold M . The following theorem shows that the Fisher-Rao metric (3.3) is (up to
a constant multiple) the metric induced on the submanifold S ⊂ Dens(M) by the
(degenerate) right-invariant Sobolev Ḣ1-metric (1.1) we introduced originally on
the full diffeomorphism group Diff(M).

Theorem 3.10. The right-invariant Sobolev Ḣ1-metric (3.1) on the quotient space
Dens(M) of probability densities on M coincides with the Fisher-Rao metric on
any k-dimensional statistical submanifold of Dens(M).

Proof. We carry out the calculations directly in Diff(M). Given any v and w in
TeDiff(M), consider a two-parameter family of diffeomorphisms (s1, s2)→ η(s1, s2)
in Diff(M) starting from the identity η(0, 0) = e with ∂

∂s1
η(0, 0) = v, ∂

∂s2
η(0, 0) =

w. Let

v(s1, s2) ◦ η(s1, s2) = ∂
∂s1
η(s1, s2) and w(s1, s2) ◦ η(s1, s2) = ∂

∂s2
η(s1, s2)

be the corresponding variation vector fields along η(t, s).
If ρ is the Jacobian of η(s1, s2) computed with respect to the fixed measure µ,

then (3.3) takes the form

Ivw =

∫
M

∂

∂s1

(
log Jacµη(s1, s2)

) ∂

∂s2

(
log Jacµη(s1, s2)

)
Jacµη(s1, s2) dµ.

7The significance of this metric for statistics was also noted by Chentsov [6]. An infinite-
dimensional version was perhaps first mentioned by Dawid in a commentary [7] on the paper of
Efron [10].
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Recall that

∂

∂s1

Jacµη(s1, s2) = div v(s1, s2) ◦ η(s1, s2) · Jacµη(s1, s2)

and similarly for the partial derivative in s2. Using these and changing variables
in the integral, we now find

Ivw =

∫
M

∂
∂s1

Jacµη(s1, s2) ∂
∂s2

Jacµη(s1, s2)

Jacµη(s1, s2)

∣∣
s1=s2=0

dµ

=

∫
M

(
div v ◦ η

)
·
(
divw ◦ η

)
Jacµη dµ

=

∫
M

div v · divw dµ = 4〈〈v, w〉〉Ḣ1 ,

from which the theorem follows. �

Theorem 3.10 suggests that the Ḣ1 counterpart of optimal transport with its
associated spherical Hellinger distance is the infinite-dimensional version of geo-
metric statistics sought in [1] and [6].

4. The geodesic equation: solutions and integrability

In the preceding sections we studied the geometry of the Ḣ1-metric (3.1) on the
space of densities Dens(M). In this section we shall focus on obtaining explicit for-
mulas for solutions of the Cauchy problem for the associated Euler-Arnold equation
and prove that they necessarily break down in finite time.

4.1. Local smooth solutions and explicit formulas. First we derive the geo-
desic equation induced on the quotient Dens(M) by the Riemannian metric (1.1).

Theorem 4.1. If a = c = 0 then the a-b-c metric (1.2) satisfies condition (2.7)
and therefore descends to a metric on the space of densities Dens(M). The corre-
sponding Euler-Arnold equation is

(4.1) ∇ div ut + div u∇ div u+∇〈u,∇ div u〉 = 0

or, in the integrated form,

(4.2) ρt + 〈u,∇ρ〉+ 1
2
ρ2 = −

∫
M
ρ2 dµ

2µ(M)

where ρ = div u.

Proof. We verify (2.7) for G = Diff(M), H = Diffµ(M) and adwv = −[w, v], where
[·, ·] is the Lie bracket of vector fields on M . Given any vector fields u, v and w
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with divw = 0, we have

〈〈adwv, u〉〉Ḣ1 + 〈〈v, adwu〉〉Ḣ1 = −b
∫
M

(
div [w, v] div u+ div [w, u] div v

)
dµ

= −b
∫
M

((
〈w,∇ div v〉 − 〈v,∇ divw〉

)
div u

+
(
〈w,∇ div u〉 − 〈u,∇ divw〉

)
div v

)
dµ

= b

∫
M

divw · div v · div u dµ = 0 ,

which shows that (1.2) descends to Diff(M)/Diffµ(M).
The Euler-Arnold equation on the quotient can be now obtained from (A.4) in

the form (4.1). In integrated form it reads

div ut + 〈u, div u〉+ 1
2
(div u)2 = C(t)

where C(t) may in general depend on time. Integrating this equation over M
determines the value of C(t). �

Note that in the special case M = S1 differentiating Equation (4.2) with respect
to the space variable gives the Hunter-Saxton equation (2.8). The gradient of (4.2),
augmented by terms arising from an additional L2 term in (1.1), was derived as a
2D water wave equation in [17] thus representing a limiting case.

Remark 4.2. The right-hand side of Equation (4.2) is independent of time for
any initial condition ρ0 because the integral

∫
M
ρ2 dµ corresponds to the energy

(the squared length of the velocity) in the Ḣ1-metric on Dens(M) and is constant
along a geodesic. This invariance will also be verified by a direct computation in
the proof below.

Consider an initial condition in the form

ρ(0, x) = div u0(x).(4.3)

We already have an indirect method for solving the initial value problem for Equa-
tion (4.2) by means of Theorem 3.1. We now proceed to give explicit formulas for
the corresponding solutions.

Theorem 4.3. Let ρ = ρ(t, x) be the solution of the Cauchy problem (4.2)-
(4.3) and suppose that t 7→ η(t) is the flow of the velocity field u = u(t, x), i.e.,
∂
∂t
η(t, x) = u(t, η(t, x)) where η(0, x) = x. Then

(4.4) ρ
(
t, η(t, x)

)
= 2κ tan

(
arctan

div u0(x)

2κ
− κt

)
,

where

(4.5) κ2 =
1

4µ(M)

∫
M

(div u0)2 dµ.

Furthermore, the Jacobian of the flow is

(4.6) Jacµ
(
η(t, x)

)
=
(

cosκt+
div u0(x)

2κ
sinκt

)2

.
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Proof. For any smooth real-valued function f(t, x) the chain rule gives

d

dt

(
f(t, η(t, x))

)
=
∂f

∂t
(t, η(t, x)) +

〈
u
(
t, η(t, x)

)
,∇f

(
t, η(t, x)

)〉
.

Using this we obtain from (4.2) an equation for f = ρ ◦ η

(4.7)
df

dt
+ 1

2
f 2 = −C(t) ,

where C(t) = (2µ(M))−1
∫
M
ρ2dµ, as remarked above, is in fact independent of

time. Indeed, direct verification gives

µ(M)
dC(t)

dt
=

∫
M

ρρt dµ =

∫
M

div u div ut dµ

= −
∫
M

〈u,∇ div u〉 div u dµ− 1

2

∫
M

(div u)3 dµ = 0 ,

where the last cancellation follows from integration by parts.
Set C = 2κ2. Then, for a fixed x ∈M the solution of the resulting ODE in (4.7)

with initial condition f(0) has the form

f(t) = 2κ tan
(

arctan (f(0)/2κ)− κt
)
,

which is precisely (4.4).
In order to find an explicit formula for the Jacobian we first compute the time

derivative of Jacµ(η)µ to obtain

d

dt

(
Jacµ(η)µ

)
=

d

dt
(η∗µ) = η∗(Luµ) = η∗(div uµ) = (ρ ◦ η) Jacµ(η)µ .

This gives a differential equation for Jacµη, which we can now solve with the help
of (4.4) to get the solution in the form of (4.6). �

Note that (4.6) completely determines the Jacobian regardless of any “ambi-
guity” in the velocity field u satisfying div u = ρ in equation (4.2). The rea-
son is that the Jacobians can be considered as elements of the quotient space
Dens(M) = Diff(M)/Diffµ(M). (A convenient way to resolve the ambiguity is by
choosing velocity as the gradient field u = ∇∆−1ρ.)

Remark 4.4 (Great circles on S∞r ). We emphasize that formula (4.6) for the Ja-
cobian Jacµη of the flow is best understood in light of the correspondence between
geodesics in Dens(M) and those on the infinite-dimensional sphere S∞r established
in Theorem 3.1. Indeed, the map

t→
√

Jacµ
(
η(t, x)

)
= cosκt+

div u0(x)

2κ
sinκt

describes the great circle on the unit sphere S∞1 ⊂ L2(M,dµ) passing through the
point 1 with initial velocity 1

2
div u0.
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4.2. Global properties of solutions. The explicit formulas of Theorem 4.3 make
it possible to give a fairly complete picture of the global behavior of solutions to
the Ḣ1 Euler-Arnold equation on Dens(M) for any manifold M . It turns out for
example that any smooth solution of equation (4.2) has finite lifespan and the
blowup mechanism can be precisely described.

By the result of Moser [21], the function on the right side of formula (4.6) will
be the Jacobian of some diffeomorphism as long as it is nowhere zero. Hence up
to the blowup time we have a smooth path in the space of densities, which lifts to
a smooth path in the diffeomorphism group; see Proposition 4.6. Geodesics leave
the set of positive densities and hit the boundary corresponding to the boundary
of the diffeomorphism group. The latter consists of Hs maps from M to M , which
are degenerations of diffeomorphisms. To make sense of weak solutions of (4.2),
one would need a way of lifting the curve (4.6) to a smooth curve in Hs(M,M).

First, we note that there can be no global smooth (classical) solutions of the
Euler-Arnold equation (4.2). As in the case of the one-dimensional Hunter-Saxton
equation all solutions break down in finite time.

Proposition 4.5. The maximal existence time of a (smooth) solution of the Cauchy
problem (4.2)-(4.3) constructed in Theorem 4.3 is

(4.8) 0 < Tmax =
π

2κ
+

1

κ
arctan

(
1

2κ
inf
x∈M

div u0(x)

)
.

Furthermore, as t↗ Tmax we have ‖u(t)‖C1 ↗∞.

Proof. This follows at once from formula (4.4) using the fact that div u = ρ.
Alternatively, from formula (4.6) we observe that the flow of u(t, x) ceases to be a
diffeomorphism at t = Tmax. �

Observe that before a solution reaches the blow-up time it is always possible to
lift the corresponding geodesic to a smooth flow of diffeomorphisms using a slight
variation of the classical construction of Moser [21].

Proposition 4.6. If div u0 is smooth, then there exists a family of smooth dif-
feomorphisms η(t) in Diff(M) satisfying (4.6), i.e., such that Jacµ(η(t)) = ϕ(t)
where

(4.9) ϕ(t, x) =
(

cosκt+
div u0(x)

2κ
sinκt

)2

,

provided that 0 ≤ t < Tmax. Furthermore η is smooth in time as a curve in Diff(M).
If u0 is in Hs for s > n/2 + 1, the curve η(t) is in Diffs(M).

Proof. It is easy to check that
∫
M
ϕ(t, x) dµ is constant in time, which allows one

to solve the equation ∆f(t, x) = −∂ϕ/∂t(t, x) for f , for any fixed time t. Using
the explicit formula (4.9), we easily see that f is smooth in time and spatially in
Hs+1 if u0 is in Hs.

For t in [0, Tmax), we define a time-dependent vector field by the formulaX(t, x) =
∇f(t, x)/ϕ(t, x). Let t 7→ ξ(t) denote the flow of X starting at the identity (which
exists for t ∈ [0, Tmax) and x ∈ M by compactness of M). Using the definition of
f and LX(ϕµ) = div (ϕX)µ, we compute

d

dt
ξ∗(ϕµ) = ξ∗

(
∂ϕ

∂t
µ+ LX(ϕµ)

)
= 0.
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Since ϕ(0) = 1 and ξ(0) = e we have ξ∗(ϕµ) = µ for any 0 ≤ t < Tmax. Denoting
by η(t) the inverse of the diffeomorphism ξ(t), we find that η∗µ = ϕµ, from which
it follows that Jacµ(η(t, x)) = ϕ(t, x) as desired. �

The method of Proposition 4.6 gives a particular choice of a diffeomorphism flow
η, and hence a velocity field appearing in (4.2) and satisfying div u = ϕ. The flow
must break down at the critical time Tmax, since the vector field X becomes singular
(when ϕ reaches zero). The difficulty here is that one constructs η indirectly, by
first constructing ξ = η−1, and it is this inversion procedure that breaks down at
the blowup time Tmax.

For the Hunter-Saxton equation on Diff(S1)/Rot(S1) the related construction
of weak solutions was explained in [19]. In this case the flow is determined (up to
rotations of the base point) by its Jacobian. If the initial velocity is not constant in
any interval, then the singularities of the flow are isolated so that it is a homeomor-
phism (but not a diffeomorphism past the blowup time). In terms of the spherical
picture, the square root map Φ from Theorem 3.1 maps only onto a small portion
of the space of functions with fixed L2 norm, but its inverse can be defined on the
entire sphere. In higher dimensions if the Jacobian is not everywhere positive the
situation is much more complicated. Nevertheless, in this case it may be possible
to apply the techniques of Gromov and Eliashberg [12] in order to construct a map
with a prescribed Jacobian. It would be interesting to extend Moser’s argument
to construct a global flow of homeomorphisms out of this flow of maps (past the
blowup time).

4.3. Complete integrability. For a 2n-dimensional Hamiltonian system, com-
plete integrability means the existence of n functionally independent integrals
H1, · · · , Hn in involution (one of which is the Hamiltonian of the system); in such
a case the motion can be determined by quadrature. In infinite dimensions the
situation is more subtle: the existence of infinitely many constants of motion may
not suffice to determine the motion. Infinite-dimensional systems have been stud-
ied intensively since the discovery of the complete integrability of the Korteweg-
de Vries equation. Other examples include one-dimensional equations like the
Camassa-Holm and Hunter-Saxton equations, and two-dimensional examples like
the Kadomtsev-Petviashvili, Ishimori, and Davey-Stewartson equations.

In addition to having an explicit formula for solutions (see Theorem 4.3), one
can also construct infinitely many independent constants of motion, using the fact
that geodesic motion on a sphere of any dimension is completely integrable. First
consider the unit sphere Sn−1 ⊂ Rn, given by the equation

∑n
j=1 q

2
j = 1 with

q = (q1, . . . , qn) ∈ Rn and equipped with its standard round metric. The geodesic
flow in this metric is defined by the Hamiltonian H =

∑n
j=1 p

2
j on the cotangent

bundle T ∗Sn−1. It is a classical example of a completely integrable system, which
has the property that all of its orbits are closed.

Proposition 4.7. (see e.g., [5])

(i) The functions hij = piqj − pjqi, 1 ≤ i < j ≤ n on T ∗Rn (as well as their
reductions to T ∗Sn−1) commute with the Hamiltonian H =

∑n
j=1 p

2
j and

generate the Lie algebra so(n).
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(ii) ii) The functions

Hk :=
∑

1≤i<j≤k

h2
ij =

k∑
j=1

p2
j

k∑
j=1

q2
j −

( k∑
j=1

qjpj

)2

for k = 2, ..., n form a complete set of independent integrals in involution
for the geodesic flow on the round sphere Sn−1 ⊂ Rn, that is {Hi, Hj} = 0,
for any 2 ≤ i, j ≤ n.

Proof. The Hamiltonian functions hij in T ∗Rn generate rotations in the (qi, qj)-
plane in Rn, which are isometries of Sn−1. These rotations commute with the
geodesic flow on the sphere and hence {hij, H} = 0. A direct computation gives
{hij, hjk} = hik, which are the commutation relations of so(n).

The involutivity of Hk is a routine calculation. �

Alternatively, one can consider the chain of subalgebras so(2) ⊂ so(3) ⊂ ... ⊂
so(n). Then Hk is one of the Casimir functions for so(k) and it therefore commutes
with any function on so(k)∗. In particular, it commutes with all the preceding
functions Hm for m < k. They are functionally independent because at each step
Hk involves new functions hjk. Note that on the cotangent bundle T ∗Sn−1 the
functionHn coincides with the HamiltonianH since

∑n
j=1 q

2
j = 1 and

∑n
j=1 piqi = 0

(“the tangent plane equation”).
The same procedure allows one to construct integrals in infinite dimensions, for

S∞r ⊂ L2(M,dµ). Similarly, on the cotangent space T ∗S∞r with position coor-
dinates qi and momentum coordinates pi, Hamiltonians hij = piqj − pjqi gener-
ate rotations of the sphere in the (qi, qj)-plane. They now form the Lie algebra
so(∞) of the group of unitary operators on L2 and generate an infinite sequence
of functionally independent first integrals {Hk}∞k=2 in involution. This sequence
corresponds to the infinite chain of embeddings so(2) ⊂ so(3) ⊂ ... ⊂ so(∞) and
provides infinitely many conserved quantities for the geodesic flow on the unit
sphere S∞r ⊂ L2(M,dµ). We summarize the above consideration in the following

Theorem 4.8. The Euler-Arnold equation (4.2) of the right-invariant Ḣ1-metric
on the space of densities Dens(M) is an infinite-dimensional completely integrable
dynamical system.

Remark 4.9. In 1981 V.Arnold posed a problem of finding equations of mathe-
matical physics which realize geodesic flows on infinite-dimensional ellipsoids (see
Problem 1981-29 in Arnold’s Problems). The Ḣ1-geodesic equation on Dens(M)
can be viewed as an example of such, being the geodesic flow on an infinite-
dimensional sphere and manifesting a high degree of integrability, since all of its
orbits are closed.

Furthermore, the geodesic flow on an n-dimensional ellipsoid (and sphere as
the limiting case) is known to be a bi-hamiltonian dynamical system and its first
integrals can be obtained by a procedure similar to the Lenard-Magri scheme. On
the other hand, the one-dimensional Hunter-Saxton equation has a bi-Hamiltonian
structure. It would be interesting to find explicitly a bi-Hamiltonian structure for
the higher-dimensional equation (1.3) and relate the Hk functionals to the Lenard-
Magri type invariants.
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5. The space of metrics and the diffeomorphism group

Apart from the fact that the Euler-Arnold equations of H1 metrics yield a num-
ber of interesting evolution equations of mathematical physics discussed above
there is also a purely geometric reason to study them. Below we show that right-
invariant Sobolev metrics of the type studied in this paper arise naturally on orbits
of the diffeomorphism group acting on the space of all Riemannian metrics and
volume forms on M . Our main references for the constructions recalled are [8, 11].

Given a compact manifold M consider the set Met(M) of all (smooth) Rie-
mannian metrics on M . This set acquires in a natural way the structure of
a smooth Hilbert manifold.8 The group Diff(M) acts on Met(M) by pull-back
g 7→ Pg(η) = η∗g and there is a natural geometry on Met(M) which is invariant
under this action. If g is a Riemannian metric and A,B are smooth sections of
the tensor bundle S2T ∗M , then the expression

(5.1) 〈〈A,B〉〉g =

∫
M

Tr
(
g−1Ag−1B

)
dµg

defines a (weak Riemannian) L2-metric on Met(M). Here µg is the volume form
of g. This metric is invariant under the action of Diff(M), see [8].

The space Vol(M) of all (smooth) volume forms on M also carries a natural
(weak Riemannian) L2-metric

(5.2) 〈〈α, β〉〉ν =
4

n

∫
M

dα

dν

dβ

dν
dν,

where ν ∈ Vol(M) and α, β are smooth n-forms and which appeared already in
the paper [11].9 It is also invariant under the action of Diff(M) by pull-back
µ→ Pµ(η) = η∗µ.

There is a map Ξ: Met(M) → Vol(M) which assigns to a Riemannian met-
ric g the volume form µg. One checks that Ξ is a Riemannian submersion in
the normalization of (5.2). Furthermore, for any g in Met(M) there is a map
ιg : Vol(M)× {g} → Met(M) given by

ιg(ν) =
( dν
dµg

)2/n

g ,

which is an isometric embedding.
For any µ ∈ Vol(M) the inverse image Metµ(M) = Ξ−1[µ] can be given a

structure of a submanifold in the space of Riemannian metrics whose volume form
is µ. The metric (5.1) induces a metric on Metµ(M), which turns it into a globally
symmetric space. The natural action on Metµ(M) is again given by pull-back by
elements of the group Diffµ(M).

The sectional curvature of the metric (5.1) on Met(M) was computed in [11]
and found to be nonpositive. The corresponding sectional curvature of Metµ(M)
is also nonpositive. On the other hand, the space Vol(M) equipped with L2-metric
(5.2) turns out to be flat.

8Indeed, the closure of C∞ metrics in any Sobolev Hs norm with s > n/2 is an open subset
of Hs(S2T ∗M).

9The space Vol(M) of volume forms on M contains the codimension 1 submanifold Dens(M) ⊂
Vol(M) of those forms whose total volume is normalized.
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We now explain how these structures relate to our paper. Observe that the
pull-back actions of Diff(M) on Met(M) and Vol(M) (and similarly, the action of
Diffµ(M) on Metµ(M)) leave the corresponding metrics (5.1) and (5.2) invariant.
This allows one to construct geometrically natural right-invariant metrics on the
orbits of a (suitably chosen) metric or volume form.

We first consider the action of the full diffeomorphism group Diff(M) on the
space of Riemannian metrics Met(M).

Theorem 5.1. If g ∈ Met(M) has no nontrivial isometries, then the map Pg : Diff(M)→
Met(M) is an immersion, and the metric (5.1) induces a right-invariant metric
on Diff(M) given at the identity by

〈〈u, v〉〉 = 〈〈Lug,Lvg〉〉g

= 2

∫
M

〈du[, dv[〉 dµ+ 4

∫
M

〈δu[, δv[〉 dµ− 4

∫
M

Ric(u, v) dµ,
(5.3)

for any vector fields u, v ∈ TeDiff(M) and where Ric stands for the Ricci curvature
of M .

Remark 5.2. If the metric g is Einstein then Ric(u, v) = λ〈u, v〉 for some constant
λ and the induced metric in (5.3) becomes a special case of the Sobolev a-b-c metric
(1.2) with a = −4λ, b = 4 and c = 2.

Proof. First, observe that the differential of the pull-back map Pg(η) with respect
to η is given by the formula

(Pg)astη(v ◦ η) = η∗(Lvg),

for any v ∈ TeDiff(M) and η ∈ Diff(M), where Lv stands for the Lie derivative.
If g has no nontrivial isometries then it has no Killing fields and therefore the
differential Pg∗ is a one-to-one map. The last identity in (5.3) involving the Ricci
curvature is obtained by rewriting the inner product 〈〈u, v〉〉 =

∫
M
〈Lug,Lvg〉 dµ

explicitly in terms of d and δ. Right-invariance follows from invariance of the
metric under the action of diffeomorphisms. �

Remark 5.3. More generally, if g has non-trivial isometries, then the above pro-
cedure yields a right-invariant metric on the homogeneous space Diff(M)/Isog(M);
see the diagram (5.5) below.

In exactly the same manner we obtain an immersion of the volumorphism group
Diffµ(M) into Metµ(M).

Corollary 5.4. If g ∈ Metµ(M) has no nontrivial isometries then the map Pg : Diffµ(M)→
Metµ(M) is an immersion and (5.1) restricts to a right-invariant metric on Diffµ(M).

Finally, we perform an analogous construction for the action of Diff(M) on the
space of volume forms Vol(M). In this case the isotropy subgroup is Diffµ(M) and
we obtain a metric on the quotient space Diff(M)/Diffµ(M).

Proposition 5.5. If µ is a volume form on M then the map Pµ : Diff(M) →
Vol(M) defines an immersion of the homogeneous space Dens(M) into Vol(M)
and the right-invariant metric induced by (5.2) has the form

(5.4) 〈〈u, v〉〉 = 〈〈Luµ,Lvµ〉〉µ =
4

n

∫
M

div u · div v dµ.
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Proof. The differential of the pullback map is

(Pµ)∗η(v ◦ η) = η∗(Lvµ)

for any v ∈ TeDiff(M) and η ∈ Diff(M). Right-invariance and the fact that
Lvµ = (div v)µ yields the desired formula. �

The three immersions described in Theorem 5.1, Corollary 5.4 and Proposition
5.5 can be summarized in the following diagram.

(5.5)

Isog(M)
emb−−−→ Diffµ(M)

proj−−−→ Diffµ(M)/Isog(M)
Pg−−−→ Metµ(M)∥∥∥ yemb

yemb

yemb

Isog(M)
emb−−−→ Diff(M)

proj−−−→ Diff(M)/Isog(M)
Pg−−−→ Met(M)yemb

∥∥∥ yproj

yΞ

Diffµ(M)
emb−−−→ Diff(M)

proj−−−→ Diff(M)/Diffµ(M)
Pµ−−−→ Vol(M)

The first three terms of each row in (5.5) form smooth fiber bundles in the
obvious way. The third column is a smooth fiber bundle since Isog(M) ⊂ Diffµ(M).
The fourth column is a trivial fiber bundle which already appeared in [11].

Remark 5.6. While curvatures of the spaces Met(M), Metµ(M) and Vol(M)
have relatively simple expressions, the induced metrics above on the corresponding
homogeneous spaces

Diff(M)/Isog(M), Diffµ(M)/Isog(M) and Diff(M)/Diffµ(M)

turn out to have complicated geometries (with the exception of Dens(M) discussed
in the previous sections). For example, one can show that the sectional curvature
of Diff(M)/Isog(M) in the induced metric assumes both signs, see [16].

6. Applications and discussion

Here we discuss connections of the above metrics on the space of densities to
gradient flows, shape theory, and Fredholmness.

6.1. Gradient flows. The L2-Wasserstein metric (2.10) on the space of densities
was used to study certain dissipative PDE (such as the heat and porous medium
equations) as gradient flow equations on Dens(M), see [22, 25]. It turns out that
the Ḣ1-metric yields the heat-like equation as a gradient equation on the infinite-
dimensional L2-sphere.

Proposition 6.1. The Ḣ1-gradients of the potentials

H(f) =

∫
M

h(f) dµ and F (f) = −1

2

∫
M

〈∇f,∇f〉 dµ

where f ∈ S∞r ∩ Hs−1(M) is the square root of the Radon-Nikodym derivative,
f 2 = dλ/dµ, on the space of densities and s > n/2 + 2, are given by the formulas

gradH(f) = h′(f)− chf and gradF (f) = ∆f − cf
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for any function h ∈ C∞(R) with bounded derivatives and where ∇ and ∆ denote
the gradient and the Laplace-Beltrami operator on M . Here the constants ch and
c are given by

ch = µ(M)−1

∫
M

h′(Jac1/2
µ η) Jac1/2

µ η dµ,

c = −µ(M)−1

∫
M

|∇Jac1/2
µ η|2 dµ.

Sketch of proof. For a small real parameter ε and any mean-zero function β on M ,
write the expression

H(f + εβ) =

∫
M

h(f + εβ) dµ =

∫
M

h(f) dµ+ ε

∫
M

h′(f)β dµ+O(ε2) .

Using the L2 metric on S∞r ⊂ L2(M,dµ) to identify the variational derivative
δH/δf of H with its gradient gradH, compute〈δH

δf
, β
〉

=
d

dε
H(f + εβ)

∣∣
ε=0

=

∫
M

h′(f)β dµ ,

which gives the gradient δH/δf = h′(f) of H in the ambient L2-space. To find
the gradient of H on the space of densities, we need to project δH/δf to the
tangent space TfS

∞
r . This is equivalent to subtracting chf with an appropriate

coefficient ch to make the result L2-orthogonal to f itself. Under our assumptions,
the difference h′(f) − chf still belongs to Hs−1, and the whole argument can be
carried out in the Sobolev framework. The computation of the gradient of F is
similar. �

It follows from the above proposition that the associated gradient flow equation
on the space S∞r ∩Hs−1(M) can be interpreted as the heat-like equation

∂tf = gradF (f) = ∆f − cf.
Observe that the heat equation can be obtained from the Boltzmann (relative) en-
tropy functional E(λ) =

∫
M
λ log λ dµ in the L2-Wasserstein metric on the density

space Dens(M); see e.g., [22].

6.2. Shape theory. It is tempting to apply the distance distḢ1 to problems of
computer vision and shape recognition. Given a bounded domain E in the plane
(a 2D “shape”) one can mollify the corresponding characteristic function χE and
associate with it (up to a choice of the mollifier) a smooth measure νE normalized
to have total volume equal to 1. One can now use the above formula (3.2) to
introduce a notion of “distance” between two 2D “shapes” E and F by integrating
the product of the corresponding Radon-Nikodym derivatives with respect to the
2D Lebesgue measure.

In this context it is interesting to compare the spherical metric to other right-
invariant Sobolev metrics that have been introduced in shape theory. For example,
in [24] the authors proposed to study 2D “shapes” using a certain Kähler metric
on the Virasoro orbits of type Diff(S1)/Rot(S1). This metric is particularly impor-
tant because it is related to the unique complex structure on the Virasoro orbits.
Furthermore, it has negative sectional curvature, which provides uniqueness of the
corresponding geodesics.
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The paper of Younes et al. [27] discusses a metric on the space of immersed
curves which is also isometric to an infinite-dimensional round sphere and hence
has explicit geodesics. Its relation with the above metric is similar to the relation of
distances between the characteristic functions of shapes and between their bound-
ary curves. In [26] a one-dimensional version of (3.2) is used to define distances
between densities on an interval.

6.3. Affine connections and duality. One of the problems in geometric statis-
tics is to construct an infinite-dimensional theory of so-called dual connections (see
[1], Section 8.4). In this section we describe a family of such connections ∇(α), as
well as their geodesic equations, on the density space Dens(M) in the case when
M = S1, which generalize the α-connections of Chentsov [6].

Identify the space of densities with the set of circle diffeomorphisms which fix a
prescribed point: Dens(S1) ' {η ∈ Diff(S1) : η(0) = 0}. Set A = −∂2

x and given a
smooth mean-zero periodic function u define the operator A−1 by

A−1u(x) = −
∫ x

0

∫ y

0

u(z) dzdy + x

∫ 1

0

∫ y

0

u(z) dzdy.

Let v and w be smooth mean-zero functions on the circle and denote by V = v◦η
and W = w ◦ η the corresponding vector fields on Dens(S1). For any α ∈ R define

η → (∇(α)
V W )(η) =

(
wxv + Γ(α)

e (v, w)
)
◦ η ,

where

(6.6) Γ(α)
e (v, w) =

1 + α

2
A−1∂x(vxwx).

Following [1] we say that two connections ∇ and ∇∗ on Dens(S1) are dual with
respect to 〈〈·, ·〉〉 if U〈〈V,W 〉〉 = 〈〈∇UV,W 〉〉 + 〈〈V,∇∗UW 〉〉 for any smooth vector
fields U , V and W . One can prove the following result.

Theorem 6.2. i) For each α ∈ R the map ∇(α) is a right-invariant torsion-free
affine connection on Dens(S1) with Christoffel symbols Γ(α).

ii) ∇(0) is the Levi-Civita connection of the Ḣ1-metric (3.1) and ∇(−1) is flat.
iii) The connections ∇(α) and ∇(−α) are dual with respect to the Ḣ1-metric for

any α ∈ R.
iv) The equation of geodesics of the affine α-connection ∇(α) coincides with the

generalized Proudman-Johnson equation

utxx + (2− α)uxuxx + uuxxx = 0.

The cases α = 0 and α = −1 correspond to one-dimensional completely integrable
systems: the HS equation (2.8) and the µ-Burgers equation, respectively.

For the latter statement we note that the equation for geodesics of ∇(α) on
Dens(S1) reads

η̈ + Γ(α)
η (η̇, η̇) = 0

where Γ
(α)
η is the right-translation of Γ

(α)
e . Substituting η̇ = u ◦ η gives

ut + uux + Γ(α)
e (u, u) = 0
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and using (??) and differentiating both sides of the equation twice in the x variable
completes the proof. The generalized Proudman-Johnson equation can be found
e.g. in [?].

Remark 6.3. From the formula (??) we see that the Christoffel symbols Γ(α)

do not lose derivatives. In fact, with a little extra work it can be shown that
this implies that ∇(α) is a smooth connection on the Hs Sobolev completion of
Dens(S1) for s > 3/2. Consequently, one establishes the existence and uniqueness
in Hs of local (in time) geodesics of ∇(α) using the methods of [20].

Dual connections of Amari have not yet been fully explored in infinite dimen-
sions. We add here that as in finite dimensions [1] there is a simple relation between
the curvature tensors of ∇(α) i.e. R(α) = (1− α2)R(0) where R(0) is the curvature
of the round metric on Dens(S1). It follows that the dual connections ∇(−1) and
∇(1) are flat and in particular there is a chart on Dens(S1) in which the geodesics
of the latter are straight lines.

6.4. The exponential map on Diff(M)/Diffµ(M). Finally we describe the

structure of singularities of the exponential map of our right-invariant Ḣ1-metric on
the space of densities. Recall from Proposition 3.6 that the diameter of Dens(M)

with respect to the metric (3.1) is equal to π
√
µ(M)/2. This immediately implies

the following.

Proposition 6.4. Any geodesic in Dens(M) = Diff(M)/Diffµ(M) through the
reference density is free of conjugate points.

Using the techniques of [20] one can show that the Riemannian exponential map
of (3.1) on Dens(M) is a nonlinear Fredholm map. In other words, its differential is
a bounded Fredholm operator (on suitable Sobolev completions of tangent spaces)
of index zero for as long as the solution is defined. The fact that this is true for
the general right-invariant a-b-c metric given at the identity by (1.2) on Diff(M) or
Diffµ(M) also follows from the results of [20]. More precisely, we have the following

Theorem 6.5. For a sufficiently large Sobolev index s > n/2 + 1 the Riemannian
exponential map of (3.1) on the quotient Diffs(M)/Diffsµ(M) of the Hs completions
is Fredholm up to the blowup time t = Tmax given in (4.8).

The proof of Fredholmness given in [20] is based on perturbation techniques.
The basic idea is that the derivative of the exponential map along any geodesic
t 7→ η(t) = expe(tu0) can be expressed as (expe)∗tu0 = t−1dLη(t)Ψ(t), where Ψ(t) is
a time dependent operator satisfying the equation

(6.7) Ψ(t) =

∫ t

0

Λ(τ)−1 dτ +

∫ t

0

Λ(τ)−1B
(
u0,Ψ(τ)

)
dτ,

and where Λ = Ad∗ηAdη (as long as t < Tmax). If the linear operator w 7→ B(u0, w)
is compact for any sufficiently smooth u0 then Ψ(t) is Fredholm being a compact

perturbation of the invertible operator defined by the integral
∫ t

0
Λ(τ)−1 dτ . In the

same way one can check that this is indeed the case for the homogeneous space of
densities with the right-invariant metric (3.1). We will not repeat the argument
here and refer to [20] for details.
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Remark 6.6. We emphasize that the perturbation argument described above
works only for sufficiently short geodesic segments in the space of densities. Recall
that for the round sphere in a Hilbert space the Riemannian exponential map
cannot be Fredholm for sufficiently long geodesic because any geodesic starting at
one point has a conjugate point of infinite order at the antipodal point. In the
case of the metric (3.1) on the space of densities one checks that ‖Λ(t)−1‖ ↗ ∞
as t ↗ Tmax since it depends on the C1 norm of η via the adjoint representation.
Therefore the argument of [20] breaks down here past the blowup time as equality
(6.6) becomes invalid.10

Appendix A. The Euler-Arnold equation of the a-b-c metric

In this Appendix we compute the general Euler-Arnold equation for the a-b-c
metric (1.2) on the full diffeomorphism group Diff(M), and consider the degenera-
tions of the metric in case one or more of the parameters vanish. It is convenient to
proceed with the derivation of the Euler-Arnold equation in the language of differ-
ential forms. As usual, the symbols [ and ] = [−1 denote the isomorphisms between
vector fields and one-forms induced by the Riemannian metric on M . While we
use d and δ notations throughout, we will continue to employ the more familiar
formulas when available. For example, in any dimension we have δu[ = − div u
for any vector field u, while if n = 1 then du[ = 0. For n = 1 the metric (1.2)
simplifies to

〈〈u, v〉〉 = a

∫
S1

uv dx+ b

∫
S1

uxvx dx .

Recall also that the (regular) dual T ∗e Diff(M) of the Lie algebra TeDiff(M) ad-
mits the orthogonal Hodge decomposition11

(A.1) T ∗e Diff(M) = dΩ0(M)⊕ δΩ2(M)⊕H1,

where Ωk(M) and Hk denote the spaces of smooth k-forms and harmonic k-forms
on M , respectively.

We now proceed to derive the Euler-Arnold equation of the a-b-c metric (1.2).
Let A : TeDiff(M)→ T ∗e Diff(M) be the self-adjoint elliptic operator

(A.2) Av = av[ + bdδv[ + cδdvb

(the inertia operator) so that

(A.3) 〈〈u, v〉〉 =

∫
M

〈Au, v〉 dµ,

for any pair of vector fields u and v on M .

10It is tempting to interpret this phenomenon as the infinite multiplicity of conjugate points
on the Hilbert sphere forcing the classical solutions of (4.2) to break down before the conjugate
point is reached.

11Orthogonality of the components in (A.1) is established for suitable Sobolev completions
with respect to the induced metric on differential forms 〈〈α], β]〉〉.
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Theorem A.1. The Euler-Arnold equation of the general Sobolev H1 metric (1.2)
on Diff(M) has the form

Aut = −a
(
(div u)u[ + ιudu

[ + d〈u, u〉
)
− b
(
(div u) dδu[ + dιudδu

[
)

− c
(
(div u) δdu[ + ιudδdu

[ + dιuδdu
[
)

(A.4)

where A is given by (A.2) and u is assumed to be a time-dependent vector field of
Sobolev class Hs with s > n

2
+ 1 on the manifold M .

Proof. By definition (2.2) of the bilinear operator B, for any vectors u, v and w in
TeDiff(M) we have

(A.5) 〈〈B(u, v), w〉〉 = 〈〈u, advw〉〉 = −
∫
M

〈Au, [v, w]〉 dµ.

Integrating over M the following identity

〈Au, [v, w]〉 =
〈
d〈Au,w〉, v

〉
−
〈
d〈Au, v〉, w

〉
− dAu(v, w)

and using ∫
M

〈
d〈Au,w〉, v

〉
dµ = −

∫
M

〈Au,w〉 div v dµ

we get

〈〈u, advw〉〉 =

∫
M

〈
(div v)Au+ d〈Au, v〉+ ιvdAu,w

〉
dµ.

On the other hand, we have

〈〈B(u, v), w〉〉 =

∫
M

〈AB(u, v), w〉 dµ

and, since w is an arbitrary vector field on M , comparing the two expressions
above, we obtain

(A.6) B(u, v) = A−1
(
(div v)Au+ d〈Au, v〉+ ιvdAu

)
.

Setting v = u, isolating the coefficients a, b, and c, and using (2.1) yields the
equation (A.4). The simplification in the b term comes from d2 = 0.

The requirements on the smoothness of vector fields u follow from the Hilbert
manifold structure on diffeomorphism groups, see Remark 3.3. �

Remark A.2 (Wellposedness of the Cauchy problem). In order to study well-
posedness of the Cauchy problem for Euler-Arnold equation (A.4), it is convenient
to switch to Lagrangian coordinates and consider the corresponding geodesic equa-
tion in the Hs Sobolev framework on Diffs(M), with a suitably large Sobolev index
s (s > n

2
+ 1). The right-invariant metric defined by (A.3) admits a smooth Levi-

Civita connection on Diffs(M), and therefore its geodesics can be constructed by
Picard iterations as solutions to an ordinary differential equation on a smooth
Hilbert manifold (cf. Remark 3.3). This approach has been employed in several
particular cases listed in the remark below.

We point out however that the two Cauchy problems in the Lagrangian and
Eulerian formulations are not equivalent. For example, for the Lagrangian frame-
work, as a consequence of the fundamental theorem of ODE the geodesics η in
Diffs(M) will depend smoothly (with respect to Hs norms) on the initial data
u0. On the other hand, in the Eulerian setting the solution map u0 → u(t) for
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the corresponding PDE (A.4) viewed as a map from Hs into C([0, T ], Hs), while
retaining continuity in general, may not be even Lipschitz. This is essentially due
to derivative loss which occurs upon changing back from Lagrangian to Eulerian
coordinates, as it involves the inversion map u(t) = η̇(t) ◦ η−1(t).

Remark A.3. Special cases of the Euler-Arnold equation (A.4) include several
well-known evolution PDE.

• For n = 1 and a = 0, we obtain the Hunter-Saxton equation (2.8).
• For n = 1 and b = 0, we get the (inviscid) Burgers equation ut + 3uux = 0.
• For n = 1 and a = b = 1, we obtain the Camassa-Holm equation ut−utxx+

3uux − 2uxuxx − uuxxx = 0.
• For any n when a = 1 and b = c = 0 we get the multi-dimensional (right-

invariant) Burgers equation ut +∇uu + u(div u) + 1
2
∇|u|2 = 0, referred to

as the template matching equation.
• For any n and a = b = c = 1 we get the EPDiff equation mt + Lum +
m div u = 0, where m = u[ −∆u[; see e.g., [13].

Now observe that if a = 0 then the a-b-c metric becomes degenerate and can only
be viewed as a (weak) Riemannian metric when restricted to a subspace. There
are three cases to consider.

(1) a = 0, b 6= 0, c = 0: the metric is nondegenerate on the homogeneous space
Dens(M) = Diff(M)/Diffµ(M) which can be identified with the space of
volume forms or densities on M . This is our principal example of the paper,
studied in Sections 3 and 4.

(2) a = 0, b = 0, c 6= 0: the metric is nondegenerate on the group of (exact)
volumorphisms and the Euler-Arnold equation is (A.8), see Corollary A.5
below.

(3) a = 0, b 6= 0, c 6= 0: the metric is nondegenerate on the orthogonal com-
plement of the harmonic fields. This is neither a subalgebra nor the com-
plement of a subalgebra in general and thus the approach of taking the
quotient modulo a subgroup developed in the other cases cannot be ap-
plied here. However, in the special case when M is the flat torus Tn the
harmonic fields are the Killing fields which do form a subalgebra (whose
subgroup Isom(Tn) consists of the isometries). In this case we get a genuine
Riemannian metric on the homogeneous space Diff(Tn)/Isom(Tn).

In cases (1) and (3) above one needs to make sure that the degenerate (weak
Riemannian) metric descends to a non-degenerate metric on the quotient. This can
be verified using the general condition (2.7) in Proposition 2.3. We have already
done this for case (1) in Theorem 4.1; the proof for case (3) is similar.

We now return to the nondegenerate a-b-c metric (a 6= 0) and restrict it to the
subgroup of volumorphisms (or exact volumorphisms). Observe that one obtains
the corresponding Euler-Arnold equations with b = 0 directly from (A.4) using
appropriate Hodge projections.

Corollary A.4. The Euler-Arnold equation of the a-b-c metric (1.2) restricted to
the subgroup Diffµ(M) has the form

(A.7) au[t + cδdu[t + aιudu
[ + cιudδdu

[ = d∆−1δ
(
aιudu

[ + cιudδdu
[
)
.
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The Euler-Arnold equation (A.7) is closely related to the H1 Euler-α equation
which was proposed as a model for large-scale motions by Holm, Marsden and
Ratiu [13]; in fact if the first cohomology is trivial they are identical (with α2 =
c/a).

There is also a “degenerate analogue” of the latter equation which corresponds
to the case where a = b = 0:

Corollary A.5. The Euler-Arnold equation of the right-invariant metric (1.2)
with a = b = 0 on the subgroup of exact volumorphisms is

(A.8) δdu[t + PLu(δdu[) = 0,

where P is the orthogonal Hodge projection onto δΩ2(M).

This represents a limiting case of the Euler-α equation as α→∞.
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