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Abstract. In this paper, we compute the sectional curvature of the group whose Euler-Arnold
equation is the quasi-geostrophic (QG) equation in geophysics and oceanography, or the Hasegawa-
Mima equation in plasma physics: this group is a central extension of the quantomorphism group
Dq(M). We consider the case where the underlying manifold M is rotationally symmetric, and the
fluid flows with a radial stream function. Using an explicit formula for the curvature, we will also
derive a criterion for the curvature operator to be nonpositive and discuss the role of the Froude
number and the Rossby number on curvature. The main technique to obtain a usable formula is
a simplification of Arnold’s general curvature formula in the case where a vector field is close to a
Killing field, and then use the Green’s function explicitly together with a criterion for nonnegativity
of a general bilinear form. We show that nonzero Froude number and Rossby numbers typically
both tend to stabilize flows in the Lagrangian sense, although there are counterexamples in general.

The Euler equation on a surface M for a divergence-free velocity field X = sgradf is given by

∆ft + {f,∆f} = 0, f(0, x) = f0(x).

Together with the flow equation ∂η
∂t = X◦η, this defines a geodesic in the group of volume-preserving

diffeomorphisms Diffµ(M) under the right-invariant L2 kinetic energy Riemannian metric, and thus
we can compute sectional curvatures of this group to determine stability of Lagrangian perturba-
tions. Arnold [1] computed this in the case M = T2 with f(x, y) = cos kx for k ∈ N, showing that
〈R(Y,X)X,Y 〉 ≤ 0 for every Y ∈ TidDiffµ(T2); in other words the curvatures of all planar sections
containing the vector X are nonpositive. This indicates that all Lagrangian perturbations of the
steady velocity field X = −k sin kx ∂y grow at least linearly in time.

This work was generalized by Misio lek [9] who showed that 〈R(Y,X)X,Y 〉 ≤ 0 for all Y whenever
X is of the form X = u(x) ∂y for any u. Surveys of similar work on the sign of the sectional curvature
for other diffeomorphism groups with other right-invariant metrics are given in the book by Arnold-
Khesin [2] and the more recent survey paper [7]. The recent paper [15] studies this problem on the
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group of axisymmetric volume-preserving diffeomorphisms of a solid torus, classifying those X for
which 〈R(X,Y )Y,X〉 > 0 for all Y . In particular we note the second author’s paper [12], which
classified the steady velocity fields X (i.e., those arising from f satisfying {f,∆f} = 0) such that
〈R(Y,X)X,Y 〉 ≤ 0 for all Y . The present paper generalizes this result.

We consider a two-dimensional central-extension of the group Diffµ(M): the first dimension
corresponds to using the full stream function f : M → R and not merely its skew-gradient, while
the second dimension is an additional real parameter as arises in Vizman [13]. Vectors in the Lie
algebra G take the form X = (f, β) for β ∈ R, and if Y = (g, γ) is another such vector, then the
Lie bracket is defined by

(1) [X,Y ] =
(
{f, g},

∫
M
χ{f, g} dA

)
for some function χ, while the Riemannian metric at the identity is given by

(2) 〈X,Y 〉 =

∫
M
α2fg + 〈∇f,∇g〉 dA+ βγ.

The Lie algebra determines the Lie group, and the metric is extended by right-translation to this
group. The geodesic equation then splits into the flow equation and the Euler-Arnold equation,
here given by

(3) α2ft −∆ft − {f,∆f} − βfθ = 0, βt = 0.

This is called the Hasegawa-Mima equation or the quasigeostrophic equation (not to be confused
with the unrelated surface quasigeostrophic equation), and the parameters α and β represent cor-
rection effects as detailed below.

Theorem 1. Suppose M has rotationally symmetric metric ds2 = dr2 + ϕ(r)2 dθ2 for θ ∈ S1 and
r ∈ [0, R], where ϕ > 0 on (0, R). Let X =

(
f(r), β

)
for some function f : [0, R] → R and some

β ∈ R; assume that f and its derivatives have only isolated zeroes. Consider X as a steady solution
of the Euler-Arnold equation (3) on the group G with Lie bracket (1) and right-invariant metric

(2), and let u(r) = f ′(r)
ϕ(r) denote the corresponding velocity field profile. Then the sectional curvature

in all sections containing X is nonnegative iff the function Q given by

(4) Q :=
d
dr (ϕ′u)− 1

2ϕ(β + α2u)

u′

is well-defined everywhere (i.e., u′ is nowhere zero without the numerator also being zero) and
satisfies the differential inequality

(5) ϕ(r)Q′(r) +Q(r)2 ≤ α2ϕ(r)2 + 1

for every r ∈ [0, R].

The main differences between our approach here and the approach of [12] are as follows: first,
we cannot use the submanifold geometry as in [9], so we need to use the general Arnold formula for
sectional curvature, which we rewrite in the more convenient form (19). We also avoid the assump-
tion that u is real-analytic and present simpler and cleaner proofs, particularly of the criterion in
Theorem 12 for a bilinear form of the type

B(g, g) = 2

∫ R

0

∫ r

0
ξ1(r)ξ0(s)Re

(
g(s)g(r)

)
ds dr

to be nonnegative. Because our differential operator (α−∆) is more complicated, we do not have
an explicit Green function, but we show that this is not necessary to perform the computations.

We discuss the background of this equation in Section 1; the rest of the paper is devoted to
computing the curvature in order to prove Theorem 1, and we conclude with a couple of examples
in Section 4 to illustrate the effect of the parameters α and β.
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1. Background

There are two classical viewpoints on the motion of a fluid. First, the Eulerian perspective
concerns u(t, x), the velocity of a fluid particle located at the point x at time t, and one studies
the evolution equation of u with the prescribed initial/boundary conditions. In the Lagrangian
formalism, one considers the function η(t, x), which is the position at time t of a fluid particle
which at time zero was at x. So one can think of the collection of η(t, ·) as giving the configuration
of the particles at each time t and can recover the Eulerian description via u(t, ·) = ηt ◦ η−1. In the
case of ideal fluid on a Riemannian manifold M , the configuration space is Dµ(M), the group of
volume preserving diffeomorphisms on M where µ is the volume form on M . In his beautiful paper
in 1966, Arnold [1] observed that the Euler equation for ideal fluid can be realized as the geodesic
equation on Dµ(M) endowed with the right-invariant kinetic energy metric, and this observation
was rigorously justified by Ebin and Marsden in 1970 [4]. Since then, geodesic equations on the
diffeomorphism groups endowed with an invariant metric have been studied extensively. Invariance
leads to a reduction of order to a first-order equation on the Lie algebra, which is called the Euler-
Arnold equation.

The quasi-geostrophic equation (QG) describes large scale flows in atmosphere and ocean which
have large horizontal to vertical aspect ratio. Here, quasi-geostrophy means that Coriolis force and
horizontal pressure gradient forces are nearly in balance, which allows the momentum equation for
the flow to be prognostic and include nonlinear dynamics. In terms of the stream function ψ(t, x, y)
of the velocity u of the barotropic fluid, the QG equation in the β-plane approximation is given by

(6) ∂t
(
∆ψ − α2ψ

)
+ {ψ,∆ψ}+ βψx = 0,

where α2 denotes the Froude number and β is the Rossby number, the gradient for the Coriolis
parameter. Here, {·, ·} is the Poisson bracket, i.e., {g, h} = hygx − gxhy. The Coriolis parameter f
is approximated in the β-plane by f = f0 + βy with constants f0 and β. The case when β = 0 is
the f -plane approximation. The Froude number α2 is a nondimensionalized parameter defined by

α :=
u0√
g0l0

,

where u0 is the velocity scale, g0 is the gravitational constant, and l0 is the horizontal length scale.
So α measures the effect of gravity and α � 1 in the mesoscale motions of the atmosphere and
oceans in the midlatitudes. Additionally for α and β both nonzero, equation (6) is the Hasegawa-
Mima equation arising in plasma dynamics [16]. The equation (6) can also be written in terms of
the potential vorticity as

(7) ∂tω + {ψ, ω} = 0, ω = ∆ψ − α2ψ + βy,

which is similar to the vorticity-stream formulation of the 2-dimensional incompressible Euler equa-
tion. The QG equation can be derived as the inviscid limit of the rotating shallow-water equations,
as well. For more mathematical theory of atmospheric and oceanic fluid, see Majda [8]. For more
comprehensive background on the geostrophical fluid dynamics, see Pedlosky [10]. It is important
to note that equation (7) is not the “surface quasi-geostrophic” (SQG) equation; the SQG equation
is when ω =

√
−∆ψ, and it has completely different properties. See [3] and [14] for the geometric

approach to SQG, and references therein for other aspects.
From the geometric point of view, the QG equation is of interest since it is an example of the

Euler-Arnold equation. In 1994, Zeitlin-Pasmanter [16] showed that the QG equation can arise as
the Euler-Arnold equation in the infinite dimensional Lie algebra and its central extension, without
constructing the full group. They also computed the sectional curvature and showed that it is
negative in the section spanned by the cosinusoidal stationary flows. In 1998, Holm-Zeitlin [6]
showed that the QG equation in the f - and β-plane approximations are the geodesic equations on
the group of symplectic diffeomorphisms by using variational principles for QG dynamics. Also,



4 J. LEE AND S.C. PRESTON

in 2008, Vizman [13] showed that the equation (6) is the Euler-Arnold equation on the central
extension of the group of Hamiltonian diffeomorphisms in the case when α = 0. Finally, Ebin-
Preston [5] showed in 2015 that the QG equation is the geodesic equation on a central extension of
the quantomorphism group (thus constructing the group corresponding to the Lie algebra in [16]).

On a contact manifold (M, θ), the quantomorphism group Dq(M) is defined as the space of
diffeomorphisms on M that preserve the contact form θ exactly. So the quantomorphisms group is
a subgroup of the contactomorphism group Dθ(M), whose elements preserve the contact structure,
i.e., η∗θ = eλθ for some λ : M → R. If the contact form is regular, then Dθ(M) is related to a
symplectic manifold by a Boothby-Wang fibration and the tangent space of Dq(M) can be identified
with the space of functions f : M → R such that E(f) = 0, where E is the Reeb field. Furthermore,
one can show that Dq(M) ⊂ Dθ(M) is a totally geodesic submanifold. For more Riemannian
geometry of the contactomorphism group in general, see Ebin-Preston [5].

Let M be a 2-dimensional manifold with symplectic form ω (a nowhere-zero 2-form). On top of
M , there is a 3-dimensional manifold N with a contact form φ such that φ ∧ dφ is nowhere-zero,
and a projection map π : N →M satisfying π∗ω = dφ. Recall that for the contact form φ, there is
a unique vector field E, called the Reeb field, satisfying the two conditions φ(E) = 1 and ιEdφ = 0.
In the simplest case M is the flat cylinder M = [0, R] × S1 with N = [0, R] × S1 × S1, where
S1 = R/2πZ, with φ = dz − y dx and ω = dx ∧ dy. In this case, the Reeb field is E = ∂z.

The space of quantomorphisms Dq(N) consists of diffeomorphisms η on N that preserve the
contact form exactly, i.e., η∗φ = φ. Its tangent space at the identity consists of vector fields X such
that LXφ = 0, and such a vector field X is uniquely determined by the function ψ = φ(X) via the
formula ιXdφ + dψ = 0, and we can write X = Sφψ, following [5]. That is, Sφ is a Lie algebra
homomorphism. In the case with φ = dz − y dx, we have

X = Sφψ = −ψy ∂x + ψx ∂y + (ψ + yψy) ∂z.

This preserves the contact form iff ψz = 0, and conversely any such function with ψz = 0 gives a
quantomorphism vector field. That is, we can identify elements X ∈ TIdDq(M) with E-invariant
functions on N , which are identified with all functions on M . In this way the one-dimensional
trivial central extension of Diffµ(M) is interpreted as the group Diffq(N). We will not need this
machinery for the present situation however; it is sufficient to know the formulas (1) and (11).

As in the finite dimensional Lie group case, the sectional curvature of the diffeomorphism group
provides information about the stability of geodesics, which we call the Lagrangian stability. For
example, positive curvature in all sections implies that geodesics with close initial data locally
converge (stability) while negative sectional curvature implies that the geodesics spread apart (in-
stability). Eulerian and Lagrangian stability are different but related: for example if a fluid is
stable in the Eulerian sense, then the linearized Lagrangian perturbations can grow at most poly-
nomially in time; see the second author’s paper [11]. For more discussions on the curvature of the
Euler-Arnold equations in general, see Khesin et al. [7].

2. The coadjoint computation

On a domain M described in (r, θ) coordinates by 0 ≤ r ≤ R and θ ∈ S1, we assume the metric
is given by

ds2 = dr2 + ϕ(r)2 dθ2

for a function ϕ which is positive on (0, R) and may collapse to zero at r = 0 or at both r = 0 and
r = R (due to a coordinate singularity).

• If ϕ(0) > 0 and ϕ(R) > 0, e.g., ϕ(r) = 1, then M is an annulus.
• If ϕ(0) = 0 and ϕ(R) > 0, e.g., ϕ(r) = r, then M is a disc.
• If ϕ(0) = 0 and ϕ(R) = 0, e.g., ϕ(r) = sin r for R = π, then M is a sphere.
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We assume that if ϕ(0) = 0 then ϕ′(0) = 1, while if ϕ(R) = 0 then ϕ′(R) = −1. This ensures that
the metric is locally Euclidean.

The area element is then dA = ϕ(r) dr dθ, and the Poisson bracket of functions f, g : M → R is

(8) {f, g} =
1

ϕ(r)

(
∂f

∂r

∂g

∂θ
− ∂f

∂θ

∂g

∂r

)
.

We construct a function

(9) χ : (0, R)→ R, such that χ′(r) = ϕ(r).

The Lie algebra will then be defined in terms of stream functions f : M → R. Such functions must
be constant on the boundary components r = 0 and r = R (if ϕ is nonzero there), although we
may have two different constants: this ensures that the Hamiltonian velocity field is tangent to the
boundary.

Definition 2. For functions f, g : M → R which are constant on the boundary (if any) of M , and
real numbers β, γ, let X = (f, β) and Y = (g, γ) be vectors. We define a Lie bracket by the formula

(10) [X,Y ] =
(
{f, g},

∫
M
χ{f, g} dA

)
.

We denote the Lie algebra by G.

That equation (10) does indeed define a Lie algebra is easy to check: antisymmetry is obvious,
and the Jacobi identity for the Lie bracket is an easy consequence of the Jacobi identity for the
Poisson bracket. Finally the fact that {f, g} is constant on the boundary components r = constant
follows directly from the formula (8). The Lie algebra G thus defined is a two-dimensional central
extension of the Lie algebra of Hamiltonian vector fields, since [sgradf, sgradg] = sgrad{f, g}.

We define an inner product on the Lie algebra G by

(11) 〈(f, β), (g, γ)〉 =

∫
M

(
α2fg + 〈∇f,∇g〉

)
dA+ βγ.

From the Lie bracket (10) and inner product (11), we determine the ad-star operator, upon which
all the geometry depends.

Proposition 3. Let f, g be functions on M which are constant on the boundary (if any) of M ,
and let β, γ ∈ R. Set X = (f, β) and Y = (g, γ). If α 6= 0, then the ad-star operator defined by the
condition

〈ad?X Y,Z〉 = −〈[X,Z], Y 〉 for every Z ∈ G

is given explicitly by ad?X Y = (j, 0), where j is a function given in terms of the Poisson bracket
(8) and the function χ given by (9), by the following conditions:

(12) α2j −∆j = {f, α2g + γχ−∆g},
and on any boundary component, j is constant and jr integrates to zero.

This j exists and is unique unless α = 0, in which case it is unique only up to a constant.

Proof. We first note that the integral of any Poisson bracket {f, g} on M is zero, using the fact
that ∫

M
{f, g} dA =

∫ R

0

∫ 2π

0

(
frgθ − fθgr

)
dθ dr = −

∫ 2π

0

∫ R

0

∂

∂r

(
g
∂f

∂θ

)
dθ dr

= −
∫ 2π

0
g
∂f

∂θ
dθ
∣∣∣r=R
r=0

= 0,

since f is constant on both boundary components.



6 J. LEE AND S.C. PRESTON

Now let Z = (h, δ) be another vector in G with h constant on the boundary. Then we compute
using the definition:

〈ad?X Y, Z〉 = −〈[X,Z], Y 〉 = −
〈(
{f, h},

∫
M
χ{f, h} dA

)
, (g, γ)

〉
= −

∫
M
α2{f, h}g dA−

∫
M
〈∇{f, h},∇g〉 dA− γ

∫
M
χ{f, h} dA

= −
∫
M
{f, h}(α2g + γχ−∆g) dA−

∫
∂M
{f, h}∂rgϕ dθ,

by the Divergence Theorem. However since f and h are both constant on any boundary components
r = 0 or r = R, we see from formula (8) that {f, h} must in fact be zero on the boundary. So this
boundary integral vanishes in any case.

Using the Leibniz rule {f, h}q = {f, hq} − {f, q}h, and the fact that Poisson brackets integrate
to zero, we get

(13) 〈ad?X Y, Z〉 =

∫
M
{f, q}h dA, where q = α2g + γχ−∆g.

On the other hand, if ad?X Y = (j, ε) for some function j : M → R and ε ∈ R, then we would
have

(14) 〈ad?X Y,Z〉 =

∫
M

(α2j −∆j)h dA+

∫
∂M

ϕh∂rj dθ + δε.

The boundary term simplifies, since both h and ϕ are constant on the boundary, to∫
∂M

ϕh∂rj dθ = h(R)ϕ(R)

∫
S1

jr(R, θ) dθ − h(0)ϕ(0)

∫
S1

jr(0, θ) dθ.

Since (14) must equal the right side of (13) for every choice of constant δ and function h constant
on the boundary, we see that ε = 0, while j satisfies

(15) α2j −∆j = {f, α2g + γχ−∆g},
with boundary conditions that j is constant on the boundary components and

∫
S1 jr dθ = 0 for

r = 0 or r = R. These boundary conditions only apply when ϕ 6= 0 at either r = 0 or r = R.
To finish off the proof, we need to verify that there actually is such a function j satisfying these

boundary conditions. In general, when boundaries are involved, it is not guaranteed that there
even is an operator ad?X Y for any given Lie algebra and inner product. If the right side of (15)
is written in a Fourier series as p(r, θ) =

∑
n∈Z pn(r)einθ, and we similarly expand j, then the

functions jn(r) satisfy

− 1

ϕ(r)

d

dr

(
ϕ(r)j′n(r)

)
+

(
α2 +

n2

ϕ(r)2

)
jn(r) = pn(r).

The boundary conditions become jn(0) = 0 and jn(R) = 0 for n 6= 0, and the usual results for
ODEs with boundary conditions show that there is a unique solution jn(r). If we have ϕ(0) = 0
or ϕ(R) = 0, then requiring that jn(0) or jn(R) respectively remain finite also ensures a unique
solution. Finally for n = 0 the Neumann boundary condition kicks in to give j′0(0) = j′0(R) = 0,
which has a unique solution as long as α 6= 0. When α = 0 and n = 0, there is a nonunique solution
for j0 (and thus j is only unique up to a constant). The solution does exist as a consequence of the
fact that

∫
M p dA = 0 since p is a Poisson bracket. �

Remark 4. If α = 0, then the inner product (11) is degenerate on the space of all functions (e.g.,
when χ ≡ 0). In this case it is only defined on the space of gradients of functions, and constants
are killed, which is the situation when we deal with divergence-free vector fields. This makes things
slightly more complicated when we try to obtain limiting cases when α = 0 from the other results,
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since we genuinely lose a dimension (corresponding to an overall constant in a stream function,
e.g., the integral of it over the manifold). For the most part this does not matter, but we must be
cautious about it.

The Euler-Arnold equation on the corresponding Lie group, where the inner product (11) is
extended by right-translations to a right-invariant Riemannian metric, can now be computed using
the general formula dX

dt + ad?X X = 0; see [2] or [7].

Corollary 5. The Euler-Arnold equation on the Lie algebra G with inner product (11) is given by

(16) α2ft −∆ft − {f,∆f} − βfθ = 0, βt = 0.

Proof. The formula (12) says (with g = f and γ = β) that

(17) ft + j = 0, where α2j −∆j = {f, α2f + βχ−∆f},
such that j is constant and jr integrates to zero on each boundary component.

Here we note that {f, α2f} vanishes, while {f, χ} = − 1
ϕ(r)

∂f
∂θχ

′(r) = −∂f
∂θ . Hence equation (17)

becomes (16) upon applying the operator (α2 −∆) to both sides of ft + j = 0. �

Note that (16) is simpler and reduces to the 2D Euler equation in case α = β = 0, but it is not
fully deterministic: equation (17) is needed to determine the evolution of f on the boundary of M .
For us this will not matter, since we only need the following obvious consequence.

Corollary 6. If f = f(r) is any radial function, then f is a steady solution of the Euler-Arnold
equation (16).

3. Application of the curvature formula

Recall that Arnold’s curvature formula is (see [2] or [7])

〈R(X,Y )Y,X〉 = 1
4

(
|ad?X Y + ad?Y X|2 + 2〈adX Y, ad?Y X − ad?X Y 〉(18)

− 3|adX Y |2 − 4〈ad?X X, ad?Y Y 〉
)
.

The sectional curvature of the plane σ spanned by X and Y is given by

K(σ) =
〈R(X,Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2
.

A slightly simpler version of this formula can easily be obtained and will prove more convenient
for our calculations.

(19) 〈R(X,Y )Y,X〉 = 1
4 |ad?X Y+ad?Y X+adX Y |2−〈adX Y, adX Y+ad?X Y 〉−〈ad?X X, ad?Y Y 〉.

Remark 7. The advantage of writing the curvature in terms of the combination (ad?X Y + adX Y )
is that this simplifies when X generates isometries of the Riemannian metric g defined by (11).
Indeed, for any right-invariant fields Y and Z, the Lie derivative of the metric g is given by

0 = LXg(Y, Z) = 〈∇YX,Z〉+ 〈∇ZX,Y 〉 = 〈[Y,X], Z〉+ 〈[Z,X], Y 〉
= 〈adX Y, Z〉+ 〈adX Z, Y 〉 = 〈adX Y + ad?X Y, Z〉.

So we see that X generates isometries of the metric iff (adX Y + ad?X Y ) = 0 for all Y . Thus if X
is relatively simple as in our case, then the curvature should also be relatively simple to compute.

We now suppose X = (f, β) and Y = (g, γ), where f = f(r) is a purely radial function, so that
X is steady solution of (16) as in Corollary 6. The first term in the curvature formula (19) is the
most complicated, so we will simplify it here; the second term is relatively easy, and the third term
vanishes.
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Lemma 8. Suppose X = (f, β) and Y = (g, γ) with f a function of r alone. Set u(r) = f ′(r)/ϕ(r).
Then the first term of the curvature formula (19) takes the form

(20) ad?X Y + ad?Y X + adX Y =
(
η, 0
)
, where

(α2 −∆)η = 2u′(r)
∂2g

∂θ∂r
+ ζ(r)

∂g

∂θ
and ζ(r) =

2

ϕ(r)

d2

dr2
(
ϕ(r)u(r)

)
− β − α2u(r).

Here η satisfies the same boundary conditions as in Proposition 3.

Proof. We use the fact that adX Y = −[X,Y ] = (−{f, g},−
∫
M χ{f, g} dA) from Definition 2. As

in the proof of Proposition 3, the Poisson bracket integral can be written∫
M
χ{f, g} dA =

∫
M
{χf, g} dA−

∫
M
g{f, χ} dA.

The first integral is zero as the integral of a Poisson bracket; the second is zero since {f, χ} = 0,
because f and χ are both functions of r alone. Hence adX Y = (−{f, g}, 0).

Let ad?X Y + ad?Y X =
(
ρ, 0
)
. From Proposition 3, we see that

(α2 −∆)
(
ρ− {f, g}

)
= {f, α2g + γχ−∆g}+ {g, α2f + βχ−∆f} − (α2 −∆){f, g}
= −{f,∆g}+ β{g, χ} − {g,∆f} − α2{f, g}+ ∆{f, g},

(21)

using the fact that {f, χ} = 0 again, and the antisymmetry of the bracket.
We easily compute from the Poisson bracket formula (8) that

{g, χ} = −χ
′(r)

ϕ(r)

∂g

∂θ
= −∂g

∂θ
,

using the assumption (9) on χ. Furthermore we have

{f, g} =
f ′(r)

ϕ(r)

∂g

∂θ
= u(r)

∂g

∂θ
,

so that equation (21) with η = ρ− {f, g} becomes

(22) (α2 −∆)η = ∆(ugθ)− u∆(gθ)− βgθ − α2ugθ +
(∆f)′

ϕ
gθ.

Using the formulas ∆f = 1
ϕ
d
dr (ϕf ′) = 2ϕ′u+ϕu′ and ∆(ugθ)−u∆gθ = (∆u)gθ+2u′grθ, equation

(22) simplifies to

(α2 −∆)η =
(

(∆u)− (β + α2u) +
1

ϕ

d

dr
(2ϕ′u+ ϕu′)

)
gθ + 2u′grθ,

which then simplifies to (20). �

The second term in the curvature formula (19) simplifies substantially.

Lemma 9. Suppose X = (f, β) and Y = (g, γ) with f a function of r alone, and g constant on
the boundary (if any) of M . Set u(r) = f ′(r)/ϕ(r). Then the second term of the curvature formula
(19) may be written as

〈adX Y, adX Y + ad?X Y 〉 =

∫
M
u′(r)2

(∂g
∂θ

)2
dA.

Proof. Recall from the proof of Lemma 8 that adX Y =
(
− {f, g}, 0

)
=
(
− u(r)gθ, 0

)
. Write

ad?X Y = (φ, 0) where φ satisfies

(α2 −∆)φ = {f, α2g + γχ−∆g} = α2{f, g} − {f,∆g},
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as in Proposition 3. Since f and g are both constant on the boundary of M , we know that {f, g}
vanishes on this boundary, and thus an integration by parts gives

〈adX Y, adX Y + ad?X Y 〉 =

∫
M
{f, g}(α2 −∆)

(
{f, g} − φ

)
dA

=

∫
M
{f, g}

(
α2{f, g} −∆{f, g} − α2{f, g}+ {f,∆g}

)
dA

=

∫
M
ugθ

(
−∆(ugθ) + u∆(gθ)

)
dA

=

∫
M
ugθ

(
− (∆u)gθ − 2u′grθ

)
dA

= −
∫
M
u∆u(gθ)

2 dA−
∫
M
uu′

∂

∂r

(
g2θ
)
dA.

We now integrate the second term by parts, using the fact that gθ vanishes on boundary components,
to get

〈adX Y, adX Y + ad?X Y 〉 =

∫
M

(
− u

ϕ

d

dr
(ϕu′) +

1

ϕ

d

dr
(ϕuu′)

)
g2θ dA =

∫
M

(u′)2g2θ dA.

�

As mentioned already, the last term in the curvature formula (19) vanishes since X is a steady
solution of the Euler equation. The curvature thus takes the form

(23) 〈R(X,Y )Y,X〉 =
1

4

∫
M

(
α2η2 + |∇η|2 − (u′)2g2θ

)
dA,

where η satisfies (20). Heuristically (to highest order) we have ηr ∼ −2u′gθ, which suggests there
is another cancellation here. To see it, we need to solve the PDE (20), and the easiest way to do
this is using a Fourier expansion.

Proposition 10. Suppose X = (f, β) and Y = (g, γ), with f depending only on r and g expressed
in a Fourier series as

g(r, θ) =
∑
n∈Z

gn(r)einθ,

with boundary conditions ϕ(r)gn(r) = 0 at r = 0 and r = R for n 6= 0 (i.e., g is constant on the
boundary, if any).

Let h0 and h1 be solutions of

(24)
1

ϕ

d

dr

(
ϕ(r)h′i(r)

)
−
(
α2 +

n2

ϕ(r)2

)
hi(r) = 0

satisfying h0(0) = 0 and h1(R) = 0, and with Wronskian

(25) ϕ(r)
(
h1(r)h

′
0(r)− h0(r)h′1(r)

)
= 1.

Define functions ξ0 and ξ1 by

(26) ξi(r) =
(

2
d

dr
(ϕ′u)− ϕ(β + α2u)

)
hi(r)− 2ϕ(r)u′(r)h′i(r).

Finally define

(27) H0,n(r) =

∫ r

0
ξ0(s)gn(s) ds and H1,n(r) =

∫ R

r
ξ1(s)gn(s) ds.

Then the function η defined by Lemma 8 is given by

η(r, θ) =
∑
n∈Z

ηn(r)einθ,
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where the components satisfy

(28) ηn(r) = in
[
h1(r)H0,n(r) + h0(r)H1,n(r)

]
.

Proof. The Wronskian is constant for two solutions of (24). If ϕ(r) > 0 for all r ∈ [0, R], then we
may obviously choose functions h0 and h1 unique up to a constant with h0(0) = 0 and h1(R) = 0
and scaled so that (25) is satisfied. If ϕ(0) = 0 then the condition ϕ′(0) = 1 implies, by the usual
theory of ODEs at singular points, that h1(r) ∼ r−n and h0(r) ∼ rn as r → 0, so that (25) can still
be satisfied as r → 0. Similarly if ϕ(R) = 0, we get the same asymptotics on the right side.

The equation (20) becomes, in Fourier components,

(29)

(
α2 +

n2

ϕ(r)2

)
ηn(r)− 1

ϕ(r)

d

dr

(
ϕ(r)η′n(r)

)
= in

(
2u′(r)g′n(r) + ζ(r)gn(r)

)
,

with solution given for n 6= 0 by

ηn(r) = in
[
h1(r)

∫ r

0
h0(s)ϕ(s)

(
2u′(s)g′n(s) + ζ(s)gn(s)

)
ds

+ h0(r)

∫ R

r
h1(s)ϕ(s)

(
2u′(s)g′n(s) + ζ(s)gn(s)

)
ds
]
.

We can easily check that this satisfies the boundary conditions ηn(0) = ηn(R) whether ϕ is zero
at the endpoints or not, and direct differentiation using (24) shows that it satisfies the differential
equation as well.

Finally we integrate by parts to remove the g′n(s) term, using the fact that ϕ(s)gn(s) vanishes
at s = 0 or s = R. We get

(30) ηn(r) = in
[
h1(r)

∫ r

0

(
h0(s)ϕ(s)ζ(s)− 2

d

ds

(
h0(s)ϕ(s)u′(s)

)
gn(s) ds

+ h0(r)

∫ R

r

(
h1(s)ϕ(s)ζ(s)− 2

d

ds

(
h1(s)ϕ(s)u′(s)

))
gn(s) ds

]
.

Using the definition of ζ from (20), we get

hi(r)ϕ(r)ζ(r)− 2
d

dr

(
hi(r)ϕ(r)u′(r)

)
= hi(r)ϕ(r)

(
2

ϕ(r)

d2

dr2
(
ϕ(r)u(r)

)
− β − α2u(r)

)
− 2

d

dr

(
hi(r)ϕ(r)u′(r)

)
=
(

2
d

dr

(
ϕ′(r)u(r)

)
− ϕ(r)

(
β + α2u(r)

))
hi(r)− 2ϕ(r)u′(r)h′i(r)

= ξi(r)

(31)

by the definition (26) of ξi. Plugging into (30) gives (28) in case n 6= 0.
If n = 0, recall that the boundary conditions are different, and we require ϕ(0)η′0(0) = 0 and

ϕ(R)η′0(R) = 0. But if n = 0, then the right side of (29) vanishes, and so the unique solution is
η0(r) = 0, which still fits (trivially) the formula (28). �

Combining the results of Lemmas 8 and 9, using the explicit solution for η from Proposition 10,
the curvature formula (23) simplifies to the following form.

Theorem 11. Suppose X = (f, β) and Y = (g, γ) with f = f(r) and g =
∑

n∈Z gn(r)einθ. Then
the curvature from formula (23) is given by

(32) 〈R(X,Y )Y,X〉 = π
∑
n∈Z

n2Re

∫ R

0

∫ r

0
ξ1(r)ξ0(s)gn(s)gn(r) ds dr,

where ξi is defined by formula (26).



NONPOSITIVE CURVATURE OF THE QUANTOMORPHISM GROUP AND QUASIGEOSTROPHIC MOTION 11

Proof. Using Lemmas 8 and 9, the curvature formula (19) can be expressed in terms of the Fourier
components as

(33) 〈R(Y,X)X,Y 〉 = 2π
∑
n∈Z

1

4

(∫ R

0

((
α2 + n2

ϕ(r)2

)
|ηn(r)|2 + |η′n(r)|2

)
ϕ(r) dr

− n2
∫ R

0
u′(r)2|gn(r)|2ϕ(r) dr

)
.

Integrate the first term by parts, using the fact that if n 6= 0 we have ηn(0) = ηn(R) = 0, to get∫ R

0

((
α2 + n2

ϕ(r)2

)
|ηn(r)|2 + |η′n(r)|2

)
ϕ(r) dr

=

∫ R

0
ηn(r)

((
α2 + n2

ϕ(r)2

)
ηn(r)− 1

ϕ(r)

d

dr

(
ϕ(r)η′n(r)

))
ϕ(r) dr

= −in
∫ R

0
ηn(r)

(
2u′(r)g′n(r) + ζ(r)gn(r)

)
ϕ(r) dr,

(34)

using (29).
Now we insert the solution (28) into (34) and integrate by parts to get

− in
∫ R

0
ηn(r)

(
2u′(r)g′n(r) + ζ(r)gn(r)

)
ϕ(r) dr

= −in
∫ R

0
gn(r)

([
ϕ(r)ζ(r)− 2 d

dr

(
ϕ(r)u′(r)

)]
ηn(r)− 2ϕ(r)u′(r)

)
η′n(r)

)
dr

= n2
∫ R

0
gn(r)

([
ϕ(r)ζ(r)− 2 d

dr

(
ϕ(r)u′(r)

)][
h1(r)H0,n(r) + h0(r)H1,n(r)

]
− 2ϕ(r)u′(r)η′n(r)

)
dr,

(35)

Formula (28) for ηn gives

(36) η′n(r) = in
[
h′1(r)H0,n(r) + h′0(r)H1,n(r) + h1(r)H

′
0,n(r) + h0(r)H

′
1,n(r)

]
.

The last two terms can be simplified using the definition (27) of H0 and H1 to get

h1(r)H
′
0,n(r) + h0(r)H

′
1,n(r) =

[
h1(r)ξ0(r)− h0(r)ξ1(r)

]
gn(r)

= −2ϕ(r)u′(r)
[
h1(r)h

′
0(r)− h0(r)h′1(r)

]
gn(r)

= −2u′(r)gn(r),

(37)

using the Wronskian condition (25) in the last line. Inserting (37) into (36), then inserting that
into (35) and using the formula (31) for ξi gives

− in
∫ R

0
ηn(r)

(
2u′(r)g′n(r) + ζ(r)gn(r)

)
ϕ(r) dr

= n2
∫ R

0
gn(r)

(
ξ1(r)H0,n(r) + ξ0(r)H1,n(r)

]
+ 4ϕ(r)u′(r)2gn(r)

)
dr.

(38)
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Finally inserting (38) into (33) gives the cancellation of the |gn(r)|2 term and the simplification

〈R(Y,X)X,Y 〉 = 2π
∑
n∈Z

1

4

∫ R

0
gn(r)

[
ξ1(r)H0,n(r) + ξ0(r)H1,n(r)

]
dr

=
π

2

∑
n∈Z

∫ R

0

[
H1,n(r)H ′0,n(r)−H ′1,n(r)H0,n(r)

]
dr.

One final integration by parts, using the fact that H1,n(r)H0,n(r) vanishes at both r = 0 and r = R,
establishes

〈R(Y,X)X,Y 〉 = −π
2

∑
n∈Z

∫ R

0

[
H ′1,n(r)H0,n(r) +H ′1,n(r)H0,n(r)

]
dr,

which is (32). �

We have now obtained the most complete simplification possible of the original curvature formula
(18) into the series (32) given by Theorem 11. Since all the Fourier components gn may be chosen
independently, the curvature 〈R(Y,X)X,Y 〉 is nonnegative or nonpositive iff the same is true of
every component of (32). The criterion for this to be true is given by the following theorem, which
is of independent interest.

Theorem 12. Suppose ξ0, ξ1 : [0, R] → R are given functions with only isolated zeroes in (0, R),
and define Ψ(r) = ξ1(r)/ξ0(r). Then the bilinear form

(39) g 7→ B(g, g) := 2

∫ R

0

∫ r

0
ξ1(r)ξ0(s)Re

(
g(s)g(r)

)
ds dr

is nonpositive for all g : [0, L] → C if and only if Ψ is nowhere zero or infinite in (0, R), and the
function Ψ is increasing and nonpositive on [0, R].

Proof. Suppose Ψ(r) is well-defined on [0, L]. Let H0(r) =
∫ r
0 ξ0(s)g(s) ds. Then we have

B(g, g) =

∫ R

0
Ψ(r)H ′0(r)H0(r) + Ψ(r)H ′0(r)H0(r) dr

=

∫ R

0
Ψ(r)

d

dr
|H0(r)|2 dr = Ψ(R)|H0(R)|2 −

∫ R

0
Ψ′(r)|H0(r)|2 dr.

(40)

If Ψ(R) ≤ 0 and Ψ′(r) ≥ 0, then B(g, g) ≤ 0 for every g.

Conversely, suppose that B(g, g) ≤ 0 for every g. We first claim that the function Ψ cannot
have any zero in (0, R). For suppose Ψ(r0) = 0 for some r0 ∈ [a, b] ⊂ (0, R), and that Ψ is nonzero
otherwise on [a, b]. The integral (40) can be written as

B(g, g) = Ψ(b)|H0(b)|2 −
∫ b

a
Ψ′(r)|H0(r)|2 dr.

We know Ψ(r0) = 0 for a unique r0 ∈ [a, b], and we consider the sign of Ψ(b), since by assumption
Ψ(a) 6= 0.

• If Ψ(b) > 0 then we may clearly choose g so that |H0(b)| is large compared to ‖H0‖L2(a,b)

and obtain positivity of B(g, g).
• If Ψ(b) < 0 then Ψ′ must be negative at some c0 ∈ (r0, b), and we may choose g so that H0

is supported in a small neighborhood of c0 and again obtain positivity of B(g, g).

Thus if B(g, g) ≤ 0 for every g, then Ψ cannot have a zero in (0, R).
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Reversing the order of integration and defining H1(r) =
∫ R
r ξ1(s)g(s) ds allows us to write

B(g, g) = 2

∫ R

0

∫ R

r
ξ1(s)ξ0(r)Re

(
g(r)g(s)

)
ds dr

=

∫ R

0

∫ R

r
ξ1(s)ξ0(r)

(
g(r)g(s) + g(s)g(r)

)
ds dr

= −
∫ R

0

1

Ψ(r)

d

dr
|H1(r)|2 dr

= Ψ−1(0) |H1(0)|2 +

∫ R

0
(Ψ−1)′(r)|H1(r)|2 dr.

Hence the reciprocal of Ψ also cannot have a zero by the same reasoning. So Ψ must be well-defined
in (0, R).

Lastly, we claim that the function Ψ is increasing and nonpositive on [0, R]. If there is any
point r0 ∈ (0, R) with Ψ′(r0) < 0, in a small neighborhood of r0 we can choose H0 nonzero in this
neighborhood and zero outside, and obtain a contradiction in the nonpositivity of (40). Hence we
must have Ψ′(r) ≥ 0 everywhere in [0, R] by continuity. Meanwhile if Ψ(L) > 0, then we can choose
H0 such that |H0(R)| is large but ‖H0‖L2 is small on [0, R], and again obtain a contradiction. This
completes the proof of the converse. �

To help understand what the condition in Theorem 12 means when we try to make it more
explicit, we write the definition (26) as

(41) ξi(r) = κ(r)hi(r)− 2ϕ(r)u′(r)h′i(r), κ := 2
d

dr
(ϕ′u)− ϕ(β + α2u)

We will need to ensure that neither ξ0 nor ξ1 is ever zero in the interior. Since the functions hi and
h′i satisfy (24), with boundary conditions h0(0) = 0 and h′0(0) ≥ 0 and h1(R) = 0 and h′1(R) ≤ 0,
they are both convex and nowhere zero in the interior. Hence everything must depend on the
behavior of the two functions κ(r) and u′(r) in the interior. The following Corollary is helpful.

Corollary 13. Suppose ξ0 and ξ1 are defined as in (26) and κ is defined by (41). If the bilinear

form (39) is nonnegative for all functions g, then u′

κ has no zeroes on (0, R).

Proof. We want to show that Z := u′

κ cannot approach zero; note that it is possible u′ and κ are
both zero at the same point, as long as the limit of the ratio is nonzero. It is also possible for κ to
approach zero without u′ approaching zero.

Suppose that limr→r0 Z(r) = 0 for some r0 ∈ (0, R). In a small neighborhood (r0− ε, r0 + ε), we
may write

ξ1(r)

ξ0(r)
=
h1(r)− 2Z(r)ϕ(r)h′1(r)

h0(r)− 2Z(r)ϕ(r)h′0(r)
=
h1(r)

h0(r)
+O(ε).

Consider functions g with support in (r0 − ε, r0 + ε). Then formula (39) becomes, using the same
integration by parts trick as in the proof of Theorem 12,

(42) B(g, g) =

[
h1(r0 + ε)

h0(r0 + ε)
+O(ε)

]
|H0(r0 + ε)|2 −

∫ R

0

[
d

dr

(
h1(r)

h0(r)

)
+O(ε)

]
|H0(r)|2 dr.

We know that h1
h0

is a positive function with negative derivative everywhere in (0, R), and thus for

sufficiently small ε both terms in (42) are positive, giving a contradiction. �

We are now ready to prove our main Theorem 1.
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Proof of Theorem 1. By Corollary 13, the function Q(r) given by (4) is well-defined on (0, R). The
ratio Ψ(r) = ξ1(r)/ξ0(r) from Theorem 12, with ξi defined by (26) can be written in terms of Q as

Ψ(r) =
Q(r)h1(r)− ϕ(r)h′1(r)

Q(r)h0(r)− ϕ(r)h′0(r)
.

If Q(r) > 0, then the numerator of Ψ is positive while the denominator is negative if Q(r) <
ϕ(r)h′0(r)
h0(r)

. Similarly if Q(r) < 0, then the denominator is negative while the numerator is positive

if |Q(r)| > ϕ(r)|h′1(r)|
h1(r)

. We will investigate these inequalities in a moment, but clearly we need them

satisfied in order for the condition Ψ < 0 to hold on (0, R) as in Theorem 12.
The derivative of Ψ is

Ψ′ =
(Qh0 − ϕh′0)

(
Qh′1 +Q′h1 − d

dr (ϕh′1)
)
− (Qh1 − ϕh′1)

(
Qh′0 +Q′h0 − d

dr (ϕh′0)
)

(Qh0 − ϕh′0)2

=
(Qh0 − ϕh′0)

(
Qh′1 +Q′h1 − ϕ(α2 + n2

ϕ2 )h1
)
− (Qh1 − ϕh′1)

(
Qh′0 +Q′h0 − ϕ(α2 + n2

ϕ2 )
)

(Qh0 − ϕh′0)2

=
(h0h

′
1 − h′0h1)

(
Q2 + ϕQ′ − (α2ϕ2 + n2)

)
(Qh0 − ϕh′0)2

= −Q
2 + ϕQ′ − (α2ϕ2 + n2)

ϕ(Qh0 − ϕh′0)2
,

using the formulas (24) for the ODE satisfied by hi and (25) for the Wronskian simplification. We
find that Ψ′ ≥ 0 iff

(43) Q2 + ϕQ′ − (α2ϕ2 + n2) ≤ 0 for all r ∈ (0, R).

The condition (43) must be satisfied in order for the nth term in the curvature formula given
by Theorem 11 to be nonnegative. But all components gn may be chosen independently, and thus
for the entire expression to be nonpositive, every term must be. Thus (43) must be true for every
nonzero integer n, and in particular it is true for n = 1, which is sufficient to satisfy it for all other
n. (Note that when n = 0 the entire expression in (32) disappears anyway.) This yields the main
inequality (5).

We now return to the issue of the sign ofQ. If (43) is satisfied, then we want to showQ(r) < P0(r),

where P0(r) =
ϕ(r)h′0(r)
h0(r)

; this ensures that Ψ < 0 and is well-defined. Observe that P0 satisfies the

Riccati equation

ϕ(r)P ′0(r) + P0(r)
2 = α2 +

n2

ϕ2(r)
,

which is the same as (43) with equality instead of inequality. Thus we can write

ϕ
d

dr
(Q− P0) + (Q− P0)(Q+ P0) ≤ 0,

which integrates to give the inequality[
P0(r)−Q(r)

]
≥
[
P0(r0)−Q(r0)

]
exp

[
−
(∫ r

r0

Q(s) + P0(s)

ϕ(s)
ds

)]
,

showing that if Q < P0 is true anywhere, then it is true everywhere in (0, R). Similarly we want to

show that (43) implies Q(r) < P1(r), where P1(r) =
ϕ(r)h′1(r)
h1(r)

. Clearly the same proof works. �
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4. Examples

Example 1 (ϕ ≡ 1). The most important example is the flat case on a rectangle, where ϕ(r) ≡ 1.
In this case the formula (4) reduces to

Q(r) = −1

2

β + α2u(r)

u′(r)
,

and the condition (5) becomes

(44) (6α2 + 4)u′(r)2 −
[
β + α2u(r)

]2 − 2
[
β + α2u(r)

]
u′′(r) ≥ 0.

If both α and β are zero, the condition (44) reduces to 4u′(r)2 ≥ 0 which is always satisfied;
this reproduces the result known from [12], that every ideal shear velocity field X = u(r) ∂θ has
nonpositive curvature in all sections containing it. If α = 0 and β 6= 0, the condition becomes

4u′(r)2 − 2βu′′(r)− β2 ≥ 0 for all r,

and for sufficiently large values of |β| this is impossible; in other words large values of β stabilize
the fluid in the sense of giving more directions in which curvature is positive (and thus Lagrangian
perturbations remain bounded). The same thing happens in the case when β = 0 while α 6= 0: the
nonpositivity condition is

(6α2 + 4)u′(r)2 − 2u(r)u′′(r)α2 − u(r)2α4 ≥ 0,

which again becomes impossible to satisfy for sufficiently large α.

Writing β+α2u(r) = v(r)k for k = − α2

2(α2+1)
, and assuming v(r) > 0 for simplicity, the inequality

(44) becomes

v′′(r) ≥ (α2 + 1)v(r).

Thus velocity fields that are “critical” for this inequality take the form

(45) u(r) =
1

α2

(
c coshk (ar + b))− β

)
, a =

√
α2 + 1, k = − α2

2(α2 + 1)
, b, c > 0.

Here we have chosen c ≥ 0 so that v(r) > 0 on [0, R], while b > 0 so that u′(r) > 0 on [0, R].
Graphs of some of these functions are shown in Figure 4.

Example 2 (ϕ(r) = r). Similarly on the disc where ϕ(r) = r, we would have Q(r) ≡ 1 in the case
where α = β = 0, so that (5) would automatically be satisfied. On the other hand for nonzero
values of either α or β, the inequality becomes harder to satisfy and thus positive curvature is
created. Specifically if we write β + α2u(r) = v(r)−1/2, then the inequality (5) becomes

(46) 3v′(r) + rα2v(r)− rv′′(r) ≤ 0.

Critical functions (when (46) becomes equality) satisfy v(r) = r2K2(αr) where K2 is the modified
Bessel function. We graph these for β = 0 and several values of α in Figure 4.

We note that despite the general sense that α and β being nonzero tends to create directions of
positive sectional curvature, this is not always true. In some circumstances an appropriate choice
of α and β can make a steady flow have nonpositive curvature even though the curvature would
take both signs for α = β = 0.

Example 3. Let ϕ(r) = 1 + 1
2r

2 and u(r) = r, with β = 0 and R = 1. A picture is shown in Figure
4. Then

Q(r) = 2r − α2r

4
(r2 + 2).

The inequality (5) becomes

(47) r2(r2 + 2)2α4 − (26r4 + 64r2 + 24)α2 + 80r2 + 16 ≤ 0.
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Figure 1. Graphs of the critical velocity profile (45) from Example 1 on the flat
cylinder, for β = 0 and various values of α ∈ (0, 1). Lighter shades represent larger
values of α.

Figure 2. Critical velocity field profiles u(r) =
1

α2r
√
K2(αr)

on the disc with

ϕ(r) = r from Example 2, for values of α between 0 and 3. Lighter shades represent
larger values of α.
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If α = 0 then (47) is obviously never satisfied on [0, 1]. Meanwhile if α = 1 then (47) becomes

r6 − 22r4 + 20r2 − 8 ≤ 0,

which is true for r ∈ [0, 1]. In this case we get negative sectional curvature for all directions in the
perturbed metric, while some directions have positive curvature in the unperturbed metric.

Figure 3. The velocity field X = r ∂θ on a surface with ϕ(r) = 1 + r2

2

from Example 3, represented as a surface of revolution in R3 parametrized as
〈ϕ(r) cos θ, ϕ(r) sin θ, g(r)〉 for g(r) = 1

2

(
arcsin r + r

√
1− r2

)
. This velocity field

has stable perturbations when α = 0, but all curvatures are negative along it when
α = 1.

Example 4 (ϕ(r) = sin r). In the case of a sphere with u(r) = cos(r) and R = π, first consider
the case when α = β = 0. From the result of [12], there is no steady flow that satisfy nonpositive
criterion (5) on the entire sphere. In fact, we have Q(r) = 2 cos(r) and the condition (5) becomes
3 cos(2r) ≤ 0, which is not satisfied on [0, π]. If we set α or β nonzero, the condition (5) becomes

6(2 + α2)u′(r)2 + 6 cot r
(
β + (2 + α2)u(r)

)
u′(r)−

(
β + (2 + α2)u(r)

)2
− 2

(
β + (2 + α2)u(r)

)
u′′(r) ≥ 0

Again, this inequality is impossible to satisfy when |α| or |β| are sufficiently large. Thus, in this case
it appears that nonzero values of α or β have a stabilizing effect on the Lagrangian perturbations
of the quasi-geostrophic flow.
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