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1. Introduction

The purpose of this paper is to explore the geometry of the inextensible string
(or whip) in Euclidean space RN , and its application as an alternative geometry in
shape recognition to the geometries proposed by Michor-Mumford [MM1, MM2],
Younes et al. [YMSM], Klassen et al. [KSMJ], and others. Generally N ¥ 2,
although we will assume whenever convenient that N � 2; this simplifies formulas
but does not substantially change any of the results.

In the absence of external forces, the string is a geodesic motion in the space
of unit-speed curves in RN ; hence it is another of the examples of partial dif-
ferential equations arising as geodesic motion on an infinite-dimensional manifold
which have been discovered in the wake of Arnold’s [A] approach to hydrodynamics
(other examples include the Korteweg-deVries equation [OK], the Camassa-Holm
equation [M], and the Hunter-Saxton equation [KM]). The equations of motion are

B2η
Bt2 � B

Bs
�
σ
Bη
Bs



,(1)

B2σ
Bs2 �

∣∣∣∣B2ηBs2
∣∣∣∣2 σ � �

∣∣∣∣ B2ηBsBt
∣∣∣∣2 ,(2)

with initial conditions ηp0, sq � γpsq and ηtp0, sq � wpsq, assumed to satisfy the
compatibility conditions |γ1psq| � 1 and xγ1psq, w1psqy � 0. Here t is the time
parameter, s is the length parameter along the curve, and σ is the tension. We
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will suppose the curves have one fixed and one free endpoint. We will discuss other
boundary conditions in Appendix A.

As shown in the author’s companion paper [Pr] (where a slightly different nota-
tion was used to make the estimates more convenient), the easiest way to handle the
fixed point is to extend the curve through the fixed point by oddness to get a curve
with two free endpoints. So we have a curve η : r0, T q � r�1, 1s Ñ RN satisfying
ηp�sq � �ηpsq, and the boundary conditions for (2) are then σp�1q � σp1q � 0. We
then automatically have, for any sufficiently smooth solution, that σp�sq � σpsq,
so that all even derivatives of η and all odd derivatives of σ vanish at s � 0. Using
a spatial discretization (the method of lines), the author proved local existence and
uniqueness in the weighted energy norm

(3) Em �
m̧

j�0

» 1

�1

p1� s2qj |Bjsηt|2 � p1� s2qj�1|Bj�1
s η|2 ds

for m ¥ 3. Our aim in this paper is to explore the geometric interpretation of
this result, and on the way we will obtain a result on the dependence of solutions
on the initial conditions. Specifically, we show that for a fixed γ, the solution is
differentiable but not C1 as a function of w.

The system (1)–(2) have been known and studied for hundreds of years, although
only recently has there been a rigorous proof of well-posedness for the full nonlinear
system (see [Pr]). Thess et al. [TZN] studied these equations on the circle as
a toy model of hydrodynamical blowup, and one of our motivations in studying
the geometrical aspects was to see just how far this analogy goes (comparing to
Arnold’s geometrical approach to hydrodynamics [A]). See also Serre [S] and Reeken
[R1, R2, R3] for analytical aspects of these equations, and references cited in [Pr]
for physical discussions of their properties.

First, in Section 2 we define precisely the manifold structure on the space of
curves and show that the inextensible curves form a smooth submanifold. Since
we want to use the implicit function theorem to do this, we want to work on a
Hilbert manifold, and the result (3) suggests the appropriate Sobolev topology is
the weighted space

(4) Km � tη : r�1, 1s Ñ RN : Rη � η and ‖η‖j,j   8 for 0 ¤ j ¤ mu
where R is the odd reflection operator pRηqpsq � �ηp�sq (which is bounded in any
weighted Sobolev topology) and the weighted energy norm is defined by

(5) ‖η‖2j,k �
» 1

�1

p1� s2qj |Bks ηpsq|2 ds.

We will first prove that the configuration space

(6) Am � tη P Km : |η1| � 1 and Rη � ηu
is a smooth submanifold of Km for m ¥ 4, with tangent space given by

(7) TγAm � tv P Km : xv1, γ1y � 0 and Rv � vu.
(The space Am is a smooth manifold as long as m ¥ 2, but it fails to be a subman-
ifold of Km if m � 3 or m � 4.)
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In Section 3 we define a weak Riemannian metric on Km (and hence Am), given
for vector fields u and v along a curve η, by

(8) xxu, vyyη �
» 1

�1

xupsq, vpsqy ds.

Although we have a smooth metric on a smooth manifold, the Levi-Civita connec-
tion is not smooth, and thus the geodesic equation is not an ordinary differential
equation. (This is typical behavior for a weak metric on an infinite-dimensional
manifold; the Levi-Civita connection is unique if it exists, but it is not even guar-
anteed to exist if the Riemannian metric does not generate the topology of the
manifold; see [EM].) This is reflected in the fact that the right side of (1) is un-
bounded in any Sobolev topology. Hence we cannot get solutions of (1) by Picard
iteration, and thus we are not guaranteed smooth dependence on initial conditions.

In Section 4 we study the dependence of a solution ηp1, sq on the initial velocity
field wpsq, given a fixed initial position γpsq. The Riemannian exponential map on
Am is given by

(9) expγpwq � ηp1q, where η solves (1)–(2).

We will prove that for m ¥ 3, as long as γ P Am�1, the exponential map is defined
and continuous as a map from some open subset of TγAm into Am. In fact we
will show the exponential map is differentiable but not continuously differentiable.
Our method is similar to that of Constantin-Kolev [CK] and Constantin-Kappeler-
Kolev-Topalov [CKKT]: after establishing bounds on the linearized equation (to
prove differentiability), we show that there are conjugate points arbitrarily close to
0 by working out a very explicit special case (a string rotating like a rigid rod).
If the exponential map were C1, then the fact that pd expγq0 is the identity would
imply by the inverse function theorem that there is a neighborhood of 0 on which
there are no conjugate points.

The failure of the exponential map to be C1 has two consequences: one is that
no geodesic can be minimizing, no matter how short (a conjugate point always
implies the existence of a length-shortening variation); and the other is that we
do not necessarily have geodesics joining two arcs (even nonminimizing geodesics),
since the inverse function theorem is normally used to obtain this result. Hence
the geometry of Am experiences some genuinely infinite-dimensional phenomena.
On the other hand, the distance function generated is nondegenerate, since Am is
a Riemannian submanifold of the geometrically flat space Km.

In Section 5 we compute the sectional curvature of Am, showing that it is always
positive. Intuitively, this implies stability of geodesics by the Rauch comparison
theorem [CE]; however, the fact that it is unbounded above implies that the rigor-
ous study of stability via curvature estimates faces some technical difficulties. In
fact even if we could apply the Rauch theorem, the presence of conjugate points
arbitrarily close to the identity makes it impossible to get any rigorous information
about the growth of Jacobi fields.

Finally in Section 6 we compare the geometry of A in the metric (8) to other ge-
ometries on spaces of unparametrized curves, especially the L2 metric on the space
of parametrized curves modulo reparametrizations, studied by Michor-Mumford in
[MM1]. Both metrics are too weak to preserve all the properties one expects in
finite-dimensional geometry, but the metric (8) has a nondegenerate distance while
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the Michor-Mumford metric gives a degenerate distance. We compare the geo-
desic equation (1)–(2) with the geodesic equation on A obtained from the Michor-
Mumford metric: the primary difference is that our metric is essentially a sub-
manifold metric, while the Michor-Mumford metric is essentially a Riemmanian
submersion metric on a homogeneous space. Since the submanifold metric (8) is
related to the physical L2 metric and has a nondegenerate distance, we hope it may
be of interest in shape recognition applications.

In Appendix A we show how the results of this paper change if we consider
periodic boundary conditions for the system (1)–(2). Many results actually become
easier (for example, we can work in ordinary Sobolev spaces on the circle rather
than weighted Sobolev spaces on the interval), and the essential features are the
same. Then in Appendix B we explore what happens if we remove the constraint
that all our odd curves have length 1; we see that many of the results break down
in this case.

Some of these results (in particular the nonnegativity of the sectional curvature
in Theorem 5.1) were first obtained by Victor Yudovich, but not to my knowledge
published. Alexander Shnirelman introduced me to this problem, and I thank him
for many useful discussions on it.

2. The manifold structure of the arc space Ak

For this section we assume all curves map into R2, for simplicity. The space Km
of odd curves in R2 with the topology (4) is obviously a manifold, as a linear space.
The topology defined by the seminorms (4) is sufficiently strong to make Am a
submanifold of Km when m ¥ 4, but when m � 2 or m � 3 the topology is almost
but not quite strong enough. The difficulty here is that a bound on the norms ‖η‖j
for 0 ¤ j ¤ 3 is not sufficient to ensure boundedness of sup�1 s 1|η1psq|, as shown
by the example

(10) η1psq � arctan
�

ln p1� s2q�.
First we recall the following lemma from [Pr], relating the weighted Sobolev

norms (5) and the weighted supremum norm

(11) ~f~2
j,k � sup

�1¤s¤1
p1� s2qj |f pkqpsq|2.

Lemma 2.1. For any real j ¡ 0 and any nonnegative integer k, and any smooth
function f , we have the following estimates for the norms (5) and (11):

‖f‖2j�1,k À ‖f‖2j,k � ‖f‖2j�1,k�1,(12)

~f~2
j,k À ‖f‖2j,k � ‖f‖2j�1,k�1.(13)

Theorem 2.2. If m ¥ 1, then the space Am�1 defined by (6) is a C8 Hilbert
manifold. If m ¥ 3, then Am�1 is a C8 Hilbert submanifold of the space Km�1

defined by (4).

Proof. If η P K2, then we have
³1
�1
p1� s2q2|η2psq|2 ds   8. Hence by the standard

Sobolev inequality on r�1�ε, 1�εs for any ε ¡ 0, we see that η is in C1r�1�ε, 1�εs.
Hence it makes sense to impose the condition |η1psq| � 1 for s P p�1, 1q, so that A2

is a closed subset of K2.
Furthermore for any such η, we can write η1psq � �

cos θpsq, sin θpsq�, where θ is
uniquely determined once θp0q is chosen. (Since η1 is continuous on p�1, 1q, so is
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θ.) We can easily compute that we have η P A2 if and only if θ P F1rRs, where

(14) FmrFs �
!
f : r�1, 1s Ñ F :

» 1

�1

p1� s2qj�1|f pjqpsq|2 ds   8 for 0 ¤ j ¤ m
)

for F � R or C. Now F1 is a Hilbert space, and the map η ÞÑ θ defines coordinate
charts (for example, on the set of η with η1p0q � v for any fixed unit vector v),
for which the coordinate transition maps are trivially C8. In this way we get a
smooth Hilbert manifold structure on A2, and the same process will give a manifold
structure on any Am�1: we just have to check that η P Am�1 if and only if θ P
FmrRs, which will follow from the next result.

To actually obtain Am�1 as a submanifold of Km�1, we can construct a co-
ordinate chart on Km�1 which makes this obvious. We simply write η1psq ��
eψpsq cos θpsq, eψpsq sin θpsq� for functions ψ and θ. Obviously if we think of R2

as C, this is just the exponential η1psq � eξpsq where ξpsq � ψpsq � iθpsq. Now our
claim is that if ψ is bounded (equivalently, if |η1| is bounded both above and below
away from zero), then η P Km if and only if ξ P Fm�1rCs. This is relatively easy to
check using the Fàa di Bruno formula for the derivative of a composition: we have
η1 � eξ and ξ � ln η1, so that for m ¥ 1 the formula yields

dm�1η

dsm�1
� eξ

¸ m!

k1! � � � km!

m¹
j�1

�
ξpjqpsq
j!


kj
,(15)

dmξ

dsm
�

¸ m!

k1! � � � km!
p�1q`�1p`� 1q!pη1q`

m¹
j�1

�
ηpj�1q

j!


kj
,(16)

where in the second sum we set ` � k1 � � � � � km, and where both sums are taken
over all nonnegative integers kj such that 1 � k1 � � � � �m � km � m.

We can now prove for m ¥ 1 that ξ P FmrCs and sup<ξ   8 implies η P Km�1.
Ignoring the specific constants and using Cauchy-Schwarz, (15) yields

‖η‖2m�1,m�1 À sup e2<ξ
¸» 1

�1

p1� s2qm�1
m¹
j�1

|ξpjqpsq|2kj ds

À sup e2<ξ
¸» 1

�1

p1� s2q
m¹
j�1

�
p1� s2qj |ξpjqpsq|2

	kj
ds.

Now if j ¤ m � 2, we can pull out the term |p1 � s2qj |ξpjq|2, using Lemma 2.1 to
get

~ξ~2
j,j À ‖ξ‖2j,j � ‖ξ‖2j�1,j�1 À ‖ξ‖2j�1,j � ‖ξ‖2j�2,j�1 � ‖ξ‖2j�3,j�2   8

since j � 2 ¤ m and ξ P Fm. Hence we only need to worry about bounding

(17)

» 1

�1

p1� s2qm�1|ξpm�1qpsq|2km�1 |ξpmqpsq|2km ds.

Since pm � 1qkm�1 �mkm ¤ m, we cannot have both km�1 and km nonzero. It
is then easy to check that in all possible cases, the term (17) can be bounded in
terms of the Fm norm of ξ.

We can similarly prove for m ¥ 1 that η P Km�1 and inf|η1| ¡ 0 implies ξ P Fm,
by using formula (16). We note as a consequence that when ξ is purely imaginary
(corresponding to η P Am), we get a bijective correspondence between an open
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subset of Am�1 and an open subset of t0u � FmrRs for any m ¥ 1. This yields
coordinate charts on Am�1 for m ¥ 1.

Now to show that Am�1 is a submanifold of Km�1 for m ¥ 3, we want to show
that m ¥ 3 implies that the coordinate chart η1 Ñ eξ gives a bijection between
Km�1 and FmrCs, and the only thing remaining after the above estimates is getting
upper and lower bounds on |η1| and <ξ. Ideally we would use (13), but that estimate
fails since our case corresponds to j � 0 (as mentioned in (10)). Instead we use the
usual (unweighted) Sobolev inequality on r�1, 1s to get

sup
�1¤s¤1

|ψpsq|2 À
» 1

�1

|ψpsq|2 �
» 1

�1

|ψ1psq|2 ds � ‖ψ‖20,0 � ‖ψ‖20,1,

and then apply (12) to get

~ψ~2
0,0 À ‖ψ‖21,0 � ‖ψ‖22,1 � ‖ψ‖21,1 � ‖ψ‖22,2

À ‖ψ‖21,0 � ‖ψ‖22,1 � ‖ψ‖23,2 � ‖ψ‖24,3.
(18)

Thus if ψ � <ξ, the fact that ξ P F3rCs implies ψ is bounded. Similarly |η1| can be
bounded in terms of the norm of K4, so that the space of curves with |η1| bounded
away from zero is an open subset of K4.

We conclude that for m ¥ 3, the map η ÞÑ ξ is a coordinate chart on Km�1 which
models Km�1 on the Hilbert space FmrCs. Furthermore locally the set Am�1 is
mapped bijectively under this coordinate chart to the closed subspace t0u�FmrRs,
so that Am�1 is a Hilbert submanifold of Km�1. �

We note that on the way, we actually establish that Am�1 is a Banach subman-

ifold of the slightly modified space Km�1
for m ¥ 1, where the topology on Km�1

is given by the Banach norm

m̧

j�0

‖η‖2j,j � ~η~2
0,1.

For m ¥ 3 the spaces Km�1 and Km�1
are isomorphic since the extra term ~η~2

0,1

becomes redundant due to (18).
We can show directly that A2 is not a Hilbert submanifold of K2 (and similarly

that A3 is not a Hilbert submanifold of K3) by the following calculation: we give A2

the coordinate chart F1 and view K2 as a Hilbert space with the identity coordinate
chart, and then the embedding of A2 into K2 is given in coordinates by the map
I : θ ÞÑ pcos θ, sin θq. The derivative of I at ω P TθF1 � F1 must be given by

ζ � DIpθqpωq � �� ω sin θ, ω cos θ
�
.

However if ω P F1 and θ P F1, we do not necessarily have ζ P K2, since

‖ζ‖22,2 �
» 1

�1

p1� s2q2
�
ωpsq2 � ω1psq2 � ωpsq2θ1psq2

	
ds,

and we need a bound on supω in order for the last term to be bounded by ‖θ‖22,1.

But there is no reason any ω P F1 has to have bounded supremum, due to examples
like (10). Hence the embedding of A2 into K2 is not even differentiable, and so A2

cannot be a smooth submanifold of K2.
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3. The geodesic equation

Since the space Km defined by (4) is a Hilbert space, it has an obvious Rie-
mannian metric given by the Hilbert norm. Geodesics in this metric are always of
the form ηptq � ηp0q � η1p0qt, so the exponential map is expγpwq � γ � tw. This
formula is the same regardless of whether we define the Riemannian metric by the
weighted Sobolev norm (5), as in

(19) xxu, vyyγ,m �
» 1

�1

m̧

j�0

p1� s2qjxDjupsq, Djvpsqy ds,

or the weaker norm given by the kinetic energy,

(20) xxu, vyyγ �
» 1

�1

xupsq, vpsqy ds,

which of course is (19) when m � 0. However, geodesics on the submanifold Am

will be different depending on which choice we make. The natural choice from the
perspective of physics is (20), which is a weak metric (it is not equivalent to the
Hilbert norm).

Formula (20) obviously gives a smooth metric on the manifold Km, while as
discussed in Section 2 the space Am is a smooth submanifold of Km if m ¥ 4;
nonetheless the connection on Am is not smooth. The reason for this is that the
connection of a submanifold is obtained from the connection on the full manifold by
orthogonal projection, and the orthogonal projection operator is not smooth (using
the metric (20)). In other situations when we get a smooth ODE on a submanifold,
it is due to smoothness of the orthogonal projection: see for example [EM] and
[MP].

3.1. The orthogonal projection. We will show in this subsection that the or-
thogonal projection is intimately related to the ODE (2). Since it will appear re-
peatedly, we summarize the main properties of the Green function for it, as proved
in [Pr].

Theorem 3.1. Let G : r�1, 1s � r�1, 1s Ñ R denote the Green function of (2),
satisfying

(21)
B2G
Bs2 � |γ2psq|2Gps, xq � �δps� xq, Gp1, xq � Gp�1, xq � 0,

so that the solution of (2) is

(22) σpsq �
» 1

�1

Gps, xq|ηtx|2 dx.

Then Gps, xq � Gpx, sq for all s and x. In addition Gps, xq ¥ 0 for all s and x, and
Gps, xq � 0 only on the boundary. Furthermore if Gps, xq � 1

2

�
Gps, xq �Gps,�xq�

is the even symmetrized Green function, then

(23) Gps, xq ¤ mint1� |s|, 1� |x|u
and

(24) Gps, xq ¥ p1� |s|qp1� |x|qe�%{p1� %q where % �
» 1

0

p1� |s|q|ηss|2 ds.
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Proposition 3.2. Suppose m ¥ 2. The orthogonal projection Pγ : TγKm Ñ TγAm

generated by the metric (20) is given by

Pγpzq � z � pσγ1q1 where σ solves(25)

σ2psq � |γ2psq|2σpsq � xz1psq, γ1psqy with σp�1q � σp1q � 0.(26)

For any fixed γ P Am�2, the projection is continuous from TγKm to TγAm, but
the map is not continuous from TKm to TAm.

Proof. We first observe that for any function σ with σp1q � σp�1q � 0, the vector
field v � d

ds pσγ1q is orthogonal to TγAm in the metric (20), since if xw1, γ1y � 0
then

xxv, wyyγ �
» 1

�1

@
wpsq, dds

�
σpsqγ1psq�D ds

� �
σpsqxwpsq, γ1psqy���s�1

s��1
�
» 1

�1

σpsqxw1psq, γ1psqy ds
� 0.

Now given z P TγKm, solve the ordinary differential equation (26) for σ, and
define w � z � pσγ1q1. Then we have

xw1psq, γ1psqy � xz1psq, γ1psqy � xσ2psqγ1psq � 2σ1psqγ2psq � σpsqγ3psq, γ1psqy
� xz1psq, γ1psqy � σ2psq � σpsq|γ2psq|2 � 0,

using the fact that |γ1psq|2 � 1 implies that xγ1psq, γ2psqy � 0 and hence xγ1psq, γ3psqy �
�|γ2psq|2. So w actually satisfies the tangent condition xw1, γ1y � 0.

We just need to check that w actually is in TγAm, i.e., that ‖w‖2j,j   8 for
1 ¤ j ¤ m as long as z P TγKm for m ¥ 4. It is obviously sufficient (and easier)
to check that v P TγKm. Our estimates are based on the same estimates that are
done in [Pr], to which we refer for more details.

The key is that, by the product rule, v � pσγ1q1 satisfies

‖v‖2m,m À
m�1̧

k�0

» 1

�1

p1� s2qm|Dm�1�kσ|2|Dk�1γ|2 ds

À A2
�
‖γ‖2m�2,m�2 � ‖γ‖2m,m�1

�� m�1̧

`�0

~γ~2
m�`�1,m�`‖σ‖2`�1,`�2,

(27)

where A � sups|σ1| ¥ sups|σ|{p1 � s2q. Based on the bound (23) for the Green
function for (26), we easily see that

A2 À ‖z‖20,1 À ‖z‖21,1 � ‖z‖22,2,

using (12). We easily get

~γ~2
m�`�1,m�` À ‖γ‖2m�`,m�` � ‖γ‖2m�`�1,m�`�1 � ‖γ‖2m�`�2,m�`�2

using (12)–(13), which allows us to bound ‖v‖2m,m in terms of the Am�2 norm of

γ, once we get a bound on ‖σ‖2`�1,`�2 for 0 ¤ ` ¤ m� 1.

To obtain this, we use (26) along with the product rule and Lemma 2.1 to get
the recursive inequality

‖σ‖2`�1,`�2 À
�°`�2

i�1‖γ‖2i,i
�2�°`

j�2‖σ‖2j�1,j �
°`�1
j�0‖z‖2j,j

�
.
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Combining this with (27) gives

m̧

`�0

‖v‖2m,m À Gm

�
m�2̧

i�1

‖γ‖2i,i

��
m̧

`�0

‖z‖2`,`

�

for m ¥ 2, for some function Gm.
On the other hand, if γ P Am and not Am�1, we obviously do not in general

have pσγ1q1 P TγKm even if σ is C8. Hence even if z is C8, the projection Pγpzq
given by (25) is not in TγAm if γ is only in Am. �

3.2. The second fundamental form. The orthogonal projection encodes all the
geometry of the submanifold Am, via the second fundamental form. The second
fundamental form then leads to both the geodesic equation and to the sectional
curvature (which we will discuss in Section 5).

Lemma 3.3. The second fundamental form of Am, as a submanifold of Km, is
given by the operator S : TγAm � TγAm Ñ pTγAmqK defined by

(28) Spu, vq � d

ds

�
σuvpsqγ1psq

�
, where

(29) σuvpsq �
» 1

�1

Gps, xqxu1pxq, v1pxqy dx

in terms of the Green function of Theorem 3.1. This operator is only well-defined
if γ P Am�2.

Proof. In general the second fundamental form is the orthogonal projection of the
connection: if U and V are vector fields on Am, with u � Uγ and v � Vγ the
values of these fields at γ P Am, then the second fundamental form is Spu, vq ��p∇UV qγ

�K
, and the value obtained depends only on the values Uγ and Vγ (not on

the extensions U and V ). (See for example do Carmo [dC2].) Unfortunately it is
somewhat awkward to work with general vector fields on a function space, and so
we use the alternative method of vector fields along curves.

So suppose ηptq is a curve in Am with ηp0q � γ, and let V ptq be a curve along η,
so that V ptq P TηptqAm for each t. Set u � 9ηp0q and v � V p0q. Then the covariant
derivative of V in the direction u, calculated in the flat ambient manifold Km, is

p∇uV qγ � DV

dt
p0q � dV

dt
p0q

where the last equality comes from using flatness of the Hilbert manifold Km to
change the covariant derivative to an ordinary derivative. Now using formula (25)
for the orthogonal projection, we get

σ2uvpsq � |γ2psq|2 � xVts, ηsyt�0.

To simplify xVts, ηsy, we use the fact that V ptq P TηptqAm at each time to obtain
xVs, ηsy � 0 for all time, so that differentiating we get xVst, ηsy�xVs, ηsty � 0. Now
at time 0 we have Vs � v1 and ηst � u1, so that xVts, ηsyt�0 � �xu1, v1y, which
implies

σ2uvpsq � |γ2psq|2σuvpsq � �xu1psq, v1psqy.
Hence the formula (22) yields (29). �
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As a consequence we obtain the geodesic equation on Am, using the general
formula for a geodesic on a submanifold:

D2η

dt2
� S

�
dη

dt
,
dη

dt



,

which using (28) reduces to (1) with tension given by (2).
The fact that the orthogonal projection fails to be continuous in both γ and

z implies that, unlike in Ebin-Marsden [EM], the weak geodesic equation on Am

cannot be viewed as an ordinary differential equation, and hence cannot be solved
via Picard iteration.

On the other hand, we can prove local existence and uniqueness of solutions. The
main result of the author’s companion paper [Pr] is the following theorem (restated
here more geometrically):

Theorem 3.4. Suppose m ¥ 3. If γ P Am�1 and w P TγAm, then there is a
T ¡ 0 such that there is a unique solution η : p�T, T q Ñ Am�1 of (1)–(2) satisfying
ηp0q � γ, 9ηp0q � w, and such that ηptq P Am�1 and 9ηptq P TηptqAm for all t.

The loss of derivatives here (i.e., the fact that 9η is not as smooth as η) means
that we do not have a classical exponential map (which would be a map from an
open subset of TAm to itself).

However, if we fix an initial configuration γ P Am�1, then we have a reduced
exponential map

(30) expγ : Ω � TγAm Ñ Am

defined on some open neighborhood Ω of 0 by expγpwq � ηp1q, where η solves (1)–

(2) with ηp0q � γ and 9ηp0q � w. Actually as mentioned expγpwq is really in Am�1,
but the theorem in the next section on continuous dependence can only be proved
in this weaker topology.

4. Differentiability of the reduced exponential map

We now want to establish continuity of the reduced exponential map (30); in
other words, for a fixed, sufficiently smooth initial whip configuration γ, we show
that the solution depends continuously on the initial velocity w in any weighted
Sobolev topology (5). In fact we will obtain Lipschitz continuity as a result of
showing that expγ is differentiable everywhere on TγAm, with bounded derivative,

but that it is not C1. The latter fact is a consequence of clustering of conjugate
points near 0, the same thing that happens for the exponential maps corresponding
to Burgers’ equation [CK] and the Korteweg-deVries equation [CKKT].

First we compute the derivative of the exponential map (which is just the lin-
earization of the equations (1)–(2)) and prove that it is bounded.

Theorem 4.1. Suppose m ¥ 3 and γ P Am�1, and let w P TγAm.
The derivative of expγ : TγAm Ñ Am is Dpexpγqwpyq � ξp1q where pξ, ψq is a

solution of the linearized equations

ξtt � Bspσξsq � Bspφηsq,(31)

φss � |ηss|2φ � 2xηss, ξssyσ � 2xηst, ξsty(32)

where xξs, ηsy � 0, with initial conditions ξp0, sq � 0 and ξtp0, sq � ypsq. Here η
and σ solve (1)–(2) with initial conditions ηp0, sq � γpsq and ηtp0, sq � wpsq.
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The derivative satisfies the bound

(33)
m̧

k�0

‖Dpexpγqwpyq‖2k,k À Hm

�°m�1
i�2 ‖γ‖2i,i,

°m
j�1‖w‖2j,j

	°m
k�0‖y‖2k,k

for some function Hm.

Proof. We obtain (31)–(32) by considering a family of solutions
�
ηpr, t, sq, σpr, t, sq�

depending on a parameter r, satisfying ηpr, 0, sq � γpsq, ηtp0, 0, sq � wpsq, and
ηtrp0, 0, sq � ypsq. Setting ξ � ηr

��
r�0

and φ � σr
��
r�0

, we get the desired equations
and initial conditions.

The bound (33) will be obtained by bounding the tension-weighted energy norms

(34) ε̃m�1 �
m�1̧

`�0

» 1

�1

�
σpt, sq`|B`sBtξpt, sq|2 � σpt, sq`�1|B`�1

s ξpt, sq|2
	
ds.

As in the estimates of [Pr], we compare the tension-weighted norm to the time-
independent weighted energy norm

(35) εm�1 �
m�1̧

`�0

» 1

�1

�
s`|B`sBtξpt, sq|2 � s`�1|B`�1

s |B`�1
s ξpt, sq|2

	
ds.

The bounds from Theorem 3.1 imply, as in [Pr], that we have bounds Aptq and Bptq
such that

0   1

Bptq ¤
σpt, sq
1� s2

¤ Aptq   8
implies that the norms (34) and (35) are equivalent. We recall also the result from
[Pr] that sups|σtpt, sq|{p1 � s2q ¤ sups|σst| � Cptq is bounded in terms of the A4

norm of γ and the A3 norm of w. Finally we write

Emptq �
m̧

`�0

» 1

�1

�
p1� s2q`|B`sηt|2 � p1� s2q`�1|B`�1

s η|2
	
ds.

By our assumption on the initial conditions and Theorem 3.4, Emptq is bounded.
Now we compute the time derivative dε̃m�1{dt one term at a time, obtaining

after some simplifications

d

dt

» 1

�1

σ`|B`sBtξ|2 � σ`�1|B`�1
s ξ|2 ds À A`�1C‖ξt‖2`,` �A`C‖ξ‖2`�1,`�1

�A`‖ξt‖`,`
`�1̧

j�2

d» 1

�1

p1� s2q`|Bjsσ|2|B`�2�j
s ξ|2 ds

�A`‖ξt‖`,`
`�1̧

j�2

d» 1

�1

p1� s2q`|Bjsφ|2|B`�2�j
s η|2 ds

�A`∆‖ξt‖`,`
�
‖η‖`�2,`�2 � ‖η‖`,`�1

�
�
» 1

�1

Bs
�
σ`�1xB`�1

s ξ, B`sξty
�
ds,

where ∆ � sups|φs|.
The terms on the first line are obviously bounded by εm�1, and the terms on

the last line vanish because of the boundary condition on σ. The fourth line is
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bounded in terms of Em and εm�1, using a bound on ∆ obtained by using the
Green function bound (23), together with the weighted Sobolev bound (12), to get

∆2 À A2

» 1

�1

p1� s2q|ξss|2|ηss|2 ds�
» 1

�1

|ξst|2|ηst|2 ds À pA2 � 1qε2E2.

The terms on the second line can be bounded using the fact from [Pr] that ‖σ‖2j�1,j�1

can be bounded in terms of Ej for j ¥ 3. Finally the terms on the third line can
be bounded by obtaining a bound on ‖φ‖2j�1,j in terms of εj�1, which is obtained
in the same way as the proof of Proposition 3.2.

Summing from ` � 0 to m� 1, we obtain an estimate of the form

dε̃m�1

dt
¤ JpEmqεm�1

for some function J , and then the bound 1�s2 ¤ Bσ gives us a Gronwall inequality
of the form dε̃m�1{dt ¤ J̃pEmqε̃m�1. We then obtain the desired bound (33) from
this. �

Integrating the derivative obviously gives us a bound on ‖expγpwq�expγpvq‖m,m,
as in Cheeger-Ebin [CE], which establishes that the reduced exponential map (30)
is locally Lipschitz, as desired.

However, the exponential map cannot be C1; if it were, then the fact that its
differential is invertible at zero would imply it is also invertible near zero. But the
latter does not happen.

Theorem 4.2. The reduced exponential map (30) is not a C1 map on TγAm for
any m.

Proof. For any γ, the differential pD expγqw at w � 0 is the identity, which is easy
to see from the fact that in this case, ηptq � γ and σptq � 0 for all t in (1)–(2). This
implies that the solution φ of (32) is zero, so that (31) reduces to ξtt � 0. Since

ξp0q � 0 and 9ξp0q � y, we get ξp1q � y, i.e., pD expγq0pyq � y. If the exponential

map were C1, then pD expγqw would have to also be invertible for sufficiently small
w.

However, we can find w arbitrarily close to 0 in TγAm for which pD expγqw is
not an isomorphism. To do this, we work out an explicit solution in detail. It is
easy to verify that

(36) ηpt, sq � ps cosωt, s sinωtq and σpt, sq � ω2

2 p1� s2q
form a solution of (1)–(2) for any angular velocity ω. In this case we have of course

(37) γpsq � ps, 0q and wpsq � p0, ωsq.
The constraint xξs, ηsy � 0 implies that ξspt, sq � χpt, sqp� sinωt, cosωtq for

some function χ. Differentiating (31) with respect to s gives φss � 0 and

(38) χtt � ω2χ � ω2

2 B2spp1� s2qχq.
Since ξ is odd as a function of s, we must have χ even as a function of s. Expanding
χ in a basis of derivatives of odd Legendre polynomials as

χpt, sq �
8̧

n�1

χnptqP 12n�1psq
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and using the fact that

d2

ds2

�
p1� s2qP 12n�1psq

	
� �2np2n� 1qP 12n�1psq,

we see that
χ2nptq � ω2χnptq � �ω2np2n� 1qχnptq,

the solution of which, with χnp0q � 0 and χ1np0q � cn, is

χnptq � cn
αn

sin pαntq,

where α2
n � ω2p2n� 1qpn� 1q.

So if ynpsq � p0, P 12n�1psqq for any n, then we have pD expγqwpynq � sinαn

αn
yn.

Now for each n ¥ 2 we can define ωn � a
π{pp2n� 1qpn� 1qq, so that αn � π.

Obviously ωn Ñ 0 and so the corresponding wn in (37) converge to 0 in TγAm

for any m, yet pD expγqwn has a nontrivial kernel for any n ¥ 2. Hence even for
a fixed smooth γ, the differential w ÞÑ pD expγqw cannot be continuous as a map
from TγAm to LpTγAm, TAmq. �

Generally speaking, if η : r0, T s ÑM is a geodesic in a finite-dimensional mani-
fold M such that ηpbq is conjugate to ηp0q for some b ¤ T , then η cannot be locally
minimizing on r0, T s. (See for example do Carmo [dC2].) For the geodesic (36),
our computation shows that no matter how small T is, there is a conjugate point
at some b   T , so that even an arbitrarily short geodesic cannot be minimizing.

On the other hand, the induced distance is not degenerate: if γ1 and γ2 are
distinct curves in A, then the infimum of lengths of paths in A joining them has
a positive lower bound. This shows that the vanishing geodesic distance is not a
consequence of having unbounded curvature, which was suggested in [MM3].

Proposition 4.3. The Riemannian distance between distinct curves γ1 and γ2 in
A, in the metric (8), is always positive.

Proof. The idea is basically that the Riemannian distance in a submanifold of a flat
space is always at least as large as the “chord” distance in the flat space. Specifically,
if ηpt, sq is a curve with |ηs| � 1 and ηp0, sq � γ1psq and ηp1, sq � γ2psq, then the
length of η is bounded using the Cauchy-Schwarz inequality by

Lpηq �
» 1

0

d» 1

�1

|ηtpt, sq|2 ds dt ¥
» 1

0

» 1

�1

1?
2
|ηtpt, sq| ds dt

¥ 1?
2

» 1

�1

∣∣∣∣» 1

0

ηtpt, sq dt
∣∣∣∣ ds � 1?

2

» 1

�1

|γ2psq � γ1psq| ds.

So we get an absolute positive lower bound regardless of η. �

5. Curvature of the arc space

Having computed the second fundamental form of Am in Km in Lemma 3.3, we
can now compute the sectional curvature using the Gauss-Codazzi formula.

Theorem 5.1. Let m ¥ 2 and γ P Am�2, and let u, v P TγAm be vector fields.
Then the sectional curvature Kpu, vq at γ in the section spanned by u and v is

(39) K �
³1
�1

³1
�1
Gps, xq�|u1psq|2|v1pxq|2 � xu1pxq, v1pxqyxu1psq, v1psqy ds dx³1
�1

³1
�1

|upsq|2|vpxq|2 � xupxq, vpxqyxupsq, vpsqy ds dx
,
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where G is the Green function (21). The curvature satisfies K ¥ e�%{p1�%q, where

% � ³1
0
p1� sq|γ2psq|2 ds; in particular it is always positive but never bounded above.

Proof. First we note that Km is flat, so the Gauss-Codazzi formula gives

K � xxSpu, uq, Spv, vqyy � xxSpu, vq, Spu, vqyy
xxu, uyyxxv, vyy � xxu, vyy2 ,

where S is the second fundamental form (28). Now we have

xxSpu, uq, Spv, vqyy �
» 1

�1

xσ1uuγ1 � σuuγ
2, σ1vvγ

1 � σvvγ
2y ds

�
» 1

�1

σ1uuσ
1
vv � |γ2|2σuuσvv ds �

» 1

�1

σuupsq|v1psq|2 ds.

Now by (29) we have

σuupsq �
» 1

�1

Gps, xq|u1pxq|2 dx,

where G is the Green function (21). Hence we can write

xxSpu, uq, Spv, vqyy �
» 1

�1

» 1

�1

Gps, xq|u1pxq|2|v1psq|2 ds dx.

Formula (39) follows.
Nonnegativity of the sectional curvature follows from the fact that, by symmetry

of the Green function, we can write the numerator of (39) as

1

2

» 1

�1

» 1

�1

Gps, xqMps, xq ds dx, where

Mps, xq � |u1psq|2|v1pxq|2 � |u1pxq|2|v1psq|2 � 2xu1psq, v1psqyxu1pxq, v1pxqy.
We have Gps, xq ¥ 0 for all s and x by Theorem 3.1 and Mps, xq ¥ 0 for all s and
x by the Cauchy-Schwarz inequality.

To get a sharper estimate, note that since γ P A4 by assumption, we know ‖γ‖1,2
is bounded by (12). Hence we can use the estimate (24) to obtain

Gps, xq ¥ e�%

1� %
p1� |s|qp1� |x|q ¥ e�%

4p1� %q p1� s2qp1� x2q

on r�1, 1s � r�1, 1s, which allows us to write (39) as

(40) K ¥ e�%

4p1� %q
‖u‖21,1‖v‖21,1 � xxu, vyy21,1
‖u‖20,0‖v‖20,0 � xxu, vyy20,0

.

To get a lower bound on this, we disregard the restrictions on u and v (that they
be elements of TγAm) and minimize over all odd vector fields along γ. Expand
u and v in a basis of odd Legendre polynomials as upsq � °8

n�1 unP2n�1psq and

vpsq � °8
n�1 vnP2n�1psq, where un and vn are vectors in RN . Then the bound (40)

becomes

K ¥ e�%

4p1� %q

°8
n,m�1 λnλm

�
|un|2|vm|2 � xun, vnyxum, vmy

�
°8
n,m�1

�
|un|2|vm|2 � xun, vnyxum, vmy

� ¥ λ21e
�%

4p1� %q ,

where λn � 2np2n � 1q. Positivity of the curvature follows. It is easy to see that
the curvature can be made arbitrarily large using this formula as well. �
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The fact that the curvature is unbounded above is responsible for the fact (as
shown in Theorem 4.2) that conjugate points along a geodesic occur at times arbi-
trarily close to 0, and hence for the failure of the Riemannian exponential map to
be C1: If the curvature were bounded above, then the Rauch comparison theorem
would imply that there is a small interval of any geodesic in which no conjugate
points can occur, contradicting Theorem 4.2.

6. Comparison with other metrics

The space of curves is of interest in shape-recognition applications [MM1], since
the first step in distinguishing two shapes in the plane is to distinguish their bound-
ary curves. Obviously in studying geometry of curves for this purpose, we want to
consider the image of the curve in the plane (which is all the viewer can see), not
the actual map from the interval to the plane. There are essentially two ways to
get a Riemannian structure on this set: impose a specific parametrization with unit
speed (as we have done in this article so far), or consider all parametrized curves
and mod out by the reparametrizations (the diffeomorphism group of the interval).
The latter approach is the one taken by Michor and Mumford [MM1]. However the
approaches are basically equivalent:1 an odd curve of length 2 in the plane always
has exactly one parametrization on r�1, 1s of unit speed, so that if
(41)

Imm2pr�1, 1s,R2q �  
η : r�1, 1s Ñ R2 : |η1psq| � 0, ηp�sq � �ηpsq, Lpηq � 2

(
denotes the space of odd immersions into R2 for which the image has length 2 and
Dpr�1, 1sq is the group of odd orientation-preserving diffeomorphisms of r�1, 1s to
itself, then we expect to have Imm2pr�1, 1sq{Dpr�1, 1sq � A. This doesn’t quite
work rigorously since the action is not always free, but we can still see what the
Michor-Mumford metric looks like on A. In this section we will assume all objects
are C8 and work formally, although with a bit more work we could extend the
results to weighted Sobolev spaces.

The reparametrization action of Dpr�1, 1sq on Imm2pr�1, 1sq is given by compo-
sition: for h P Dpr�1, 1sq the map is Rhpηq � η � h. We can define a Riemannian
metric on Imm2 by

(42) xxu, vyyη �
» 1

�1

xupsq, vpsqy|η1psq| ds.

We clearly have xxu �h, v �hyyη�h � xxu, vyyη for any h P Dpr�1, 1sq by the change of
variables formula, so that the metric (42) is invariant under the group action. This
is in contrast to the metric (8), which is not invariant under reparametrizations.
(Of course on the submanifold of unit-speed curves A, both metrics coincide.) The
geodesic equation in the metric (8) is just ηtt � 0, while the equation in the invariant

1Here we modify the Michor-Mumford space to consider curves with a free boundary and a
fixed length; in Appendix A we consider the periodic case, and in Appendix B we discuss the case

where length is not constrained.
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metric (42) is the much more complicated2 nonlinear elliptic equation

B
Bt
�
|ηs| ηt

	
� 1

2

B
Bs

� |ηt|2
|ηs|

ηs

	
� 0.

6.1. The Michor-Mumford metric on the arc space. Now we formally iden-
tify the quotient Imm2{D with the space A in order to compare the induced metric
on A to our metric (8).

Theorem 6.1. Define the standard reparametrization map Φ: Imm2 Ñ A by
Φpηq � η � h�1 where h P Dpr�1, 1sq is given by hpsq � ³s

0
|η1pxq| dx. Then for

any k P Dpr�1, 1sq, we have Φpη � kq � Φpηq, so that Φ is invariant under the
action of D. Hence Φ descends to a map from the quotient space Imm2{D into A.

There is a unique metric on A defined by the condition that Φ is a Riemannian
submersion, and it is given by

(43) xxu, vyyγ �
» 1

�1

xupsq, γ1psqKyxvpsq, γ1psqKy ds,

where u and v are in TγA and γ1psqK is the rotation of the unit vector γ1psq in R2

by 90�.

Proof. First, if γ � Φpηq then γ1psq � η1ph�1psqq
|η1ph�1psqq| , so that |γ1psq| � 1. Hence Φ

actually maps into A. Now if k : r�1, 1s Ñ r�1, 1s is a diffeomorphism with k1 ¡ 0,

then for the curve η�k we get h̃ � h�k, so that γ̃ � pη�kq�ph�kq�1 � η�h�1 � γ.
Hence Φpη � kq � Φpηq, so that Φ is invariant under the reparametrization action.

To get the metric, we first compute the derivative DΦ. For any odd vector field w
along an odd immersion η, let χpε, sq � ηpsq�εwpsq; then for sufficiently small ε the
map s ÞÑ χpε, sq is still an odd immersion, and we have pDΦqηpwq � d

dε

��
ε�0

Φ
�
χpεq�.

It is then easy to compute that

(44) pDΦqηpwq � β � h�1, where

βpsq � wpsq � � ³s
0
xw1pxq, η1pxq{|η1pxq|y dx�η1psq{|η1psq|.

If γ � Φpηq � Φ � h�1, then we can check that z � pDΦqηpwq actually satisfies
xz1, γ1y � 0 as expected for any w, and that the kernel of pDΦqη is the vertical space

Vη �
 
fη1 : f : r�1, 1s Ñ R is odd

(
.

The horizontal space is the orthogonal complement of the vertical space in the
metric (42), which is

Hη �
 
fpη1qK : f : r�1, 1s Ñ R is odd

(
.

The metric on A which makes Φ a submersion is given for z P TγA by xxz, zyyγ �
xxw,wyyη, where η is any curve with Φpηq � γ, w P TηImm2 is any horizontal vector
field with pDΦqηpwq � z, and the right side is computed using the invariant metric

2This is a typical sort of tradeoff for invariance: the same thing happens in fluid mechanics,
when we consider the diffeomorphism group DpMq of a Riemannian manifold M and the volu-

morphism group DµpMq � tη P DpMq : η�µ � µu where µ is the Riemannian volume form on

M . The simplest metric on DpMq is the non-invariant metric xxu � η, v � ηyyη �
³
M xu, vy � η dµ,

for which the geodesic equation is ηtt � 0 (which leads to Burgers’ equation ut�∇uu � 0, where

ηt � u � η). The right-invariant metric is xxu � η, v � ηyyη �
³
M xu, vy dµ, on which the geodesic

equation is ut �∇uu� pdiv uqu� 1
2
∇|u|2 � 0, again with ηt � u � η. Both metrics agree on the

submanifold DµpMq, on which the projected geodesic equation is ut�∇uu � �∇p with div u � 0.
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(42). Invariance of the metric (42) ensures that we get the same xxz, zyyγ no matter
which η we use, so we might as well use η � γ. Then we can compute that the
unique horizontal w with pDΦqγpwq � z is wpsq � xzpsq, γ1psqKyγ1psqK, and formula
(43) follows. �

Next let us compute the geodesic equation on A in the Michor-Mumford metric.
The following lemma is helpful in finding compatibility conditions for it.

Lemma 6.2. If η : r0, T s�r�1, 1s Ñ R2 is a smooth curve, and if we define ` � |ηs|
and

(45) κ � xηss, ηKs y
`3

, ω � xηst, ηKs y
`2

, a � xηt, ηKs y
`

, b � xηt, ηsy
`

,

then we have the compatibility equations

(46) `t � bs � aκ`, Btp`κq � ωs, and as � `ω � bκ`

Proof. We write

ηt � a

`
ηKs �

b

`
ηs, ηst � ωηKs �

`t
`
ηs, ηss � κ`ηKs �

`s
`
ηs.

Differentiating ηt with respect to s and matching coefficients with ηst, we get as{` �
ω � bκ and `t � bs � aκ`. Then using ηsts � ηsst we obtain Btpκ`q � ωs. �

Theorem 6.3. A geodesic η in A with the metric (43) satisfies the equations

(47) at � 1
2κa

2 � bas, κt � ωs, bs � κa, as � ω � κb,

where

(48) a � xηt, ηKs y, b � xηt, ηsy, κ � xηss, ηKs y, ω � xηst, ηKs y,
and ap�1q � ap1q � 0.

Proof. If η is a curve in A and u is a variation field along η, then it is easy to
compute that the first variation of energy in the direction u is

(49)

» T
0

�xuK, aηty�s�1

s��1
dt�

» T
0

» 1

�1

xuK, atηs � asηty ds dt.

For η to be a geodesic, this must vanish for every u P TηA, i.e., whenever xu, η1y � 0.
From the first term we get the boundary condition ap�1q � ap1q � 0, and from
the second term we get the equation at � bas � 1

2κa
2. The other equations are

obtained by setting ` � 1 in Lemma 6.2. �

The geodesic equations take a slightly different form than that given in [MM1];
there the authors use the normalization b � 0 rather than our normalization ` � 1.
Of course, the images of the curves in R2 are necessarily the same.

The drawback of the L2 Michor-Mumford metric, as discussed in [MM1], is that
the induced Riemannian distance between elements of A is zero; that is, for any
pair of curves γ1 and γ2 in A and any ε ¡ 0, there is a curve η in A with ηp0q � γ1
and ηp1q � γ2 such that

³1
0
‖ 9ηptq‖ dt   ε. As shown in Proposition 4.3, our metric

on A does give a genuine nondegenerate distance.
We now ask what a right-invariant metric on Imm2pr�1, 1s,R2q would have to

look like in order to give our metric (8) on A as a Riemannian submersion using
the procedure in Theorem 6.1.
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Theorem 6.4. Let us define a Riemannian metric on Imm2pr�1, 1s,R2q as follows:
if η is a curve and w is a vector field along η, let

(50) xxw,wyyη �
» 1

�1

xwpsq, η1psqKy2
|η1psq| ds�

» 1

�1

|η1psq|
�» s

0

xw1pxq, η1pxqy
|η1pxq| dx


2

ds.

Then the metric (50) is invariant under the reparametrization action by Dpr�1, 1sq,
and the map Φ: Imm2 Ñ A defined as in Theorem 6.1 is a Riemannian submersion
onto the arc space A in the metric (8).

Proof. To check invariance, we just need to verify xxw � k,w � kyyη�k � xxw,wyyη for
any increasing diffeomorphism k of r�1, 1s. This is straightforward from the change
of variables formula.

To check the submersion condition, we suppose we have a curve γ with |γ1psq| � 1
and that w is a horizontal vector field along γ, i.e., that xwpsq, γ1psqy � 0. Then as
in Theorem 6.1, we have

pDΦqγpwqpsq � wpsq � � ³s
0
xw1pxq, γ1pxqy dx�γ1psq.

Suppose z P TγA, i.e., that z is a vector field along γ with xz1psq, γ1psqy � 0. Then
zpsq � fpsqγ1psq � gpsqγ1psqK where f 1psq � κpsqgpsq, and to get pDΦqpwq � z
where w is horizontal, we must have wpsq � gpsqγ1psqK. We can then check that
the definition (50) yields

xxw,wyyγ �
» 1

�1

�
fpsq2 � gpsq2� ds,

as desired. �

Of course there are other choices for (50); only the inner product of horizontal
vectors is determined by the submersion condition, and we can use any formula at
all for vertical vectors.

6.2. The 9H1 metric on A. Finally we relate both our metric (8) and the Michor-
Mumford metric (43) to another choice of distance on the arc space A. Klassen et
al. [KSMJ] pointed out that unit-speed curves in R2 can most easily be represented
in terms of their angular representation θ defined by γ1psq � �

cos θpsq, sin θpsq�, as
we did in Theorem 2.2 to get a coordinate chart on Am. Since γp0q � 0 in our
space, we obtain γ by integrating:

(51) γpsq �
�» s

0

cos θpxq dx,
» s
0

sin θpxq dx


.

Since the space of (even) functions θ : r�1, 1s Ñ R is a linear space, it has a simple
choice of Riemannian metric arising from the standard Hilbert structure. That is,
if γ is a curve with angular representation θ, and ω is a vector field along θ, then
the KSMJ metric is

(52) xxω, ωyyθ �
» 1

�1

ωpsq2 ds.

In the physical space R2, the angular tangent vector ω corresponds to the vector
field

upsq �
» s
0

ωpxqγ1pxqK dx,
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and thus the KSMJ metric comes from the 9H1 metric on A given by

(53) xxu, uyyγ �
» 1

�1

xu1psq, u1psqy ds.

Again we note that KSMJ were interested in periodic curves on S1 rather than
odd curves on r�1, 1s, but the formulas are generally quite similar apart from
normalizations. The metric (53) has also been studied by Younes et al. [YMSM];
a similar metric arises in the study of the Hunter-Saxton equation as well (see
Khesin-Misio lek [KM] and Lenells [Le]).

In a sense then, our metric (8) lies between the metric (53) (for which there are
unique minimizing geodesics and a nondegenerate distance) and the metric (43) (for
which geodesics cannot be minimizing and the distance is always degenerate). Our
geodesics fail to be minimizing by Theorem 4.2, but our distance is nondegenerate
by Proposition 4.3. Furthermore the geometry induced can be approximated by
finite-dimensional objects, as in [Pr], where unit-speed curves are well-approximated
by a chain of points joined by rigid rods of fixed length, which may be helpful for
numerical approximations of curves in this geometry.

Appendix A. Other boundary conditions

In this paper we have exclusively studied the boundary condition corresponding
to a whip with one fixed end and one free end. This is the most physically relevant
condition for an actual whip (a person swings the whip to give it an initial position
and velocity, then holds the handle basically fixed while the other end swings freely).
As shown in [Pr], the easiest way to handle the technical complications of a fixed end
is to extend the curve through the origin to be odd; then the boundary conditions
work out automatically. Hence we have essentially reduced the situation with one
fixed and one free end to the situation with two free ends. There is no substantial
difference in any of the results when dealing with two free ends even if the curve is
not odd. With two fixed ends, the situation is more complicated. (Physically this
might represent a jump rope being held at both ends.) The same technical issues
arise, but now it is less obvious how to extend the whip to be odd on both ends; of
course it can be done, but then we end up with an infinite string and lose some of
the benefits of compactness.

Geometrically, however, none of these boundary conditions are nearly as relevant
as the periodic condition, since we are interested in curves that form boundaries of
planar objects (and hence cannot themselves have a boundary). Many aspects of
this situation are technically easier than the one-fixed/one-free condition we have
considered, since we can do everything in terms of ordinary Sobolev spaces on the
circle rather than weighted Sobolev spaces on the interval. The major differences
are in the upper and lower bounds of the tension, and in the fact that periodicity
forces

³
S1 γ

1psq ds � 0, which shows up as an extra constraint in some equations.
Throughout this appendix we work with the circle of length 1. The space of

curves is the ordinary Sobolev space KmpS1q � HmpS1,R2q, and the subset of arc-
length parametrized curves is AmpS1q � tγ P Km : |γ1psq|2 � 1u. Let Fm�1pS1q
denote the space of real-valued functions of class Hm�1. The proof that AmpS1q
is a submanifold of KmpS1q is both simpler and works in more cases for periodic
boundary conditions than for one fixed and one free end.

Theorem A.1. If m ¥ 2, then AmpS1q is a smooth Hilbert submanifold of KmpS1q.
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Proof. Define J : Km Ñ Fm�1 by the formula J pηqpsq � |η1psq|2. Since Hm�1

functions are closed under multiplication for m ¥ 2, it is easy to see that J is well-
defined and C8. The differential is easy to compute: we have pDJ qηpuq � 2xu1, η1y.
Hence for any γ P AmpS1q we can prove it is surjective; let f P Fm�1 be any
real-valued function. Write γ1psq � φpsqBx � ψpsqBy for Hm�1 functions φ and ψ
satisfying φ2�ψ2 � 1, and define u so that u1 � pfφ�gψq Bx�pfψ�gφq By, where

g � aφ � bψ and a and b are constants chosen so that
³1
0
u1psq ds � 0 (which is

necessary for u to be periodic). It is easy to see that such constants can always be
chosen as long as φ and ψ are not constant, and the only way that could happen is if
γ were a geodesic. But there are no closed geodesics in R2.3 Clearly u constructed
this way is in Hm, and so DJ is surjective at any γ P AmpS1q. Hence if 1 is the
constant function 1 on S1, then J �1p1q � AmpS1q is a Hilbert submanifold. �

The tangent space TγAm still consists of Hm vector fields u with xu1, γ1y � 0, so
that the (formal) orthogonal complement is still

pTγAmqK �
"
d

ds
pσγ1q : σ P Fm�1

*
.

(Note that as in Proposition 3.2, this only makes sense in TγKm if γ P Am�2.) So
the orthogonal projection is Pγpzq � z � pσγ1q1, where

(54) σ2 � |γ2|2σ � xz1, γ1y, σp0q � σp1q, σ1p0q � σ1p1q.
To prove equation (54) always has a solution, we construct the Green function for
it.

Proposition A.2. Suppose γ and z are smooth. If |γ2| is not identically zero, then
equation (54) has a unique solution σ.

Proof. Let G : S1 � S1 Ñ R denote the Green function, satisfying

Gssps, xq � |γ2psq|2Gps, xq � �δps� xq, Gp0, xq � Gp1, xq, Gsp0, xq � Gsp1, xq.
If we can find the Green function, then the solution of (54) is given by σpsq �
� ³1

0
Gps, xqxz1pxq, γ1pxqy dx.

Translating by x, we easily see that Gps, xq � ϕpsq where

(55) ϕ2psq � κpsq2ϕpsq, ϕp0q � ϕp1q, ϕ1p0q � 1 � ϕ1p1q,
with κpsq � |γ2ps�xq|. So we just need to prove that the boundary value problem
(55) has a solution if κ is not identically zero.

Let ϕ1 and ϕ2 denote the solutions of (55) with boundary conditions ϕ1p0q � 1,
ϕ11p0q � 0, ϕ2p0q � 0, and ϕ12p0q � 1. Clearly ϕ1psq ¥ 1 and ϕ12psq ¥ 1 for all s.
We can write ϕ � Aϕ1 �Bϕ2 where A and B satisfy

(56) Arσ1p1q � 1s �Bσ2p1q � 0 and Aσ11p1q �Brσ12p1q � 1s � 1.

Using the reduction of order trick, we can compute that σ2psq � σ1psq
³s
0
dr{σ1prq2,

so that the determinant of the system (56) is

� 1

σ1p1q rσ1p1q � 1s2 � σ11p1q
» 1

0

dx{σ1pxq2,

3The same construction works for the arc space on any Riemannian manifoldM , and AmpS1q �
tγ : S1 ÑM : |γ1| � 1u fails to be a manifold if M contains any closed geodesic of length 1.
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which is always negative unless σ1p1q � 1 and σ11p1q � 0 (which happens if and only
if κ � 0). Hence we can solve for A and B, and so we obtain the Green function.

Uniqueness is trivial using a standard energy argument. �

Now we obtain upper and lower bounds for σ.

Proposition A.3. The solution ϕ of (55) satisfies

(57) e�%{2{% ¤ ϕpsq ¤ 1� 1

4π2
, where % �

» 1

0

κ2pxq dx,

for all s P S1.

Proof. To prove the lower bound, set γ � lnϕ, so that γ2 � κ2 � γ12. Let u be a
point where γ1 � 0; since γ is convex, γpuq is the minimum of γ. Integrating by

parts twice from 0 to u we get γpuq ¥ γp0q� ³1
0
xκ2pxq dx, and similarly integrating

from u to 1 we get γpuq ¥ γp1q � ³1
0
p1 � xqκ2pxq dx. Since γp0q � γp1q, averaging

these estimates gives

γpuq ¥ γp0q � 1
2

» 1

0

κ2pxq dx.

Thus we get ϕpuq ¥ ϕp0qe�%{2.
Now we need a lower bound for ϕp0q. Since ϕ1p1q � ϕ1p0q � 1 and ϕp0q � ϕp1q,

we have γ1p1q � γ1p0q � 1{ϕp0q, so that

1

ϕp0q � γ1p1q � γ1p0q �
» 1

0

κ2psq ds�
» 1

0

γ1psq2 ds ¤ %.

Combining this with our estimate for ϕpuq gives the lower bound ϕpuq ¥ e�%{2{%.
The upper bound is obtained differently. Writing ϕ � Aϕ1 � Bϕ2 as in Propo-

sition A.2, we get

ϕp0q � A � Lϕ1p1q
Lϕ1p1q � rϕ1p1q � 1{ϕ1p1qs2 ,

where L � ³1
0
dx{ϕ1pxq2. Hence A ¤ ϕ1p1q{ϕ11p1q. Now since ϕ1 is convex, we know

ϕ11p1q ¥ ϕ1p1q � 1, which implies A ¤ 1 � 1{ϕ1p1q. Finally, we use the fact that
ϕ1psq ¥ 1 for all s to get

ϕ11p1q �
» 1

0

ϕ1psqκ2psq ds ¥
» 1

0

κpsq2 ds ¥
�» 1

0

|γ2ps� xq| ds

2

¥ 4π2,

using the well-known bound on the total curvature of a closed curve in the plane
(see for example do Carmo [dC1], Section 5-7). �

As a corollary, we get a bound for the curvature in exactly the same way as
Theorem 5.1.

Proposition A.4. The sectional curvature of ApS1q in the L2 metric is bounded
below at γ P ApS1q by 4π2e�%{2{%, where % � ³

S1 κpsq2 ds, and is unbounded above.

Proof. The proof is the same as Theorem 5.1. The factor 4π2 comes from the fact
that the smallest eigenvalue of the derivative operator has size 2π. �
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We can prove using techniques similar to [Pr] the analogue of Theorem 3.4:
that solutions of the geodesic equation exist as long as ηp0q P A3pS1q and 9ηp0q P
TγA2pS1q; the weakening comes from the fact that we never need to use the esti-
mates of Lemma 2.1 to fix the weighting at the endpoints.

Unboundedness of the curvature again implies that the exponential map cannot
be C1; this can be checked explicitly using simple explicit solutions. The simplest
explicit solution of the geodesic equation on S1 is

(58) ηpt, sq � γps� ωtq, ωpt, sq � ω2,

where γ : S1 Ñ R2 is any closed curve. We can compute Jacobi fields along such
a curve explicitly (for example, if γ is a circle) and show that they have zeroes for
arbitrarily short times, as in Theorem 4.2.

One might object to the notion that unphysical solutions such as (58) should
be allowed, especially in application to shape recognition, since the image of the
curve doesn’t change with time. The typical way to resolve this (see for example
[YMSM]) is to quotient out by the translations. The metric on ApS1q is obviously
invariant under the action by translations, so we get a metric on the quotient
ApS1q{S1. Since (58) is always a geodesic, this is a Riemannian submersion with
totally geodesic fibers. This corresponds to requiring tangent vectors to satisfy
not only xu1, γ1y � 0 but also

³
S1xupsq, γ1psqy ds � 0. The new orthogonal space

TγpApS1q{S1q then consists of fields of the form d
ds pσγ1q � cγ1 for functions σ and

constants c. The geodesic equation is then

ηtt � Bspσηsq � cηs, σss � |ηss|2σ � �|ηst|2,
and we have d

dt

³
S1xηt, ηsy ds � c, so that c � 0 in order to preserve horizontality.

Hence the same geodesic equation guarantees that the translations disappear as
long as

³
S1xηt, ηsy ds � 0 initially.

Appendix B. Removing the length constraint

We note that one drawback to these equations in shape analysis is that the space
of all odd curves (modulo reparametrizations) is not exactly the same as the arc-
length parametrized curves, since the space of all curves includes those of arbitrary
length while ours consists only of curves of length 2. To extend this, we would have
to work with a slightly different version of A. Let

A �  
γ : r�1, 1s Ñ R2 : |γ1| � const and γp�sq � �γpsq @s( .

Theorem B.1. The geodesic equation on A in the weak metric (8) is given by

ηtt � Bspσηsq, |ηs|2 � `2,(59)

`2σss � |ηss|2 � |ηst|2 � C,

» 1

�1

σ ds � 0, σp�1q � σp1q � 0.(60)

Equation (60) always has a solution for any given η. Here ` and C are constant in

space but not necessarily in time, and we have d2

dt2 p`2q � 2C.

Proof. The condition for a vector field u along γ P A to be in TγA is that d
dsxu1, γ1y �

0, so that the orthogonal complement consists of fields of the form d
ds pσγ1q for func-

tions σ with
³1
�1
σpsq ds � 0. The geodesic equation therefore still has the form of



THE GEOMETRY OF WHIPS 23

the wave equation (59). Here |ηs|2 � `2 for some ` which is constant in space but
may depend on time.

To find the equation for σ we differentiate the constraint 1
2Bs|ηs|2 � 0 twice with

respect to time to get Bspxηstt, ηsy�|ηst|2q � 0. Plugging in ηtt from (59), we obtain

Bs
�
`2σss � |ηss|2 � |ηst|2

� � 0,

which integrates to (60).
To prove we can actually solve (60), we consider the slightly modified Green

function G`ps, xq satisfying

`2B2sGps, xq � |ηsspsq|2 � �δps� xq, Gp�1, xq � Gp1, xq � 0.

If we write the solution σ in terms of this Green function, then C is determined by
the fact that the integral of σ vanishes, i.e., that» 1

�1

» 1

�1

Gps, xq�|ηtxpxq|2 � C
�
dx ds � 0.

By Theorem 3.1, Gps, xq ¥ 0 for all s and x in the square r�1, 1s2 and is zero only
on the boundary, which means we can always solve this equation for C. It is easy

to compute that d2

dt2 p`2q � 2C. �

Although we can solve (60), it is far from clear that we can solve (59): the diffi-
culty is that since σ integrates to zero, it cannot be strictly positive, which means
(59) is always of mixed type, and hence substantially more difficult to analyze. We
also lose positivity of the sectional curvature as in Theorem 5.1. In addition, the
fact that C is always positive except in degenerate cases means that ` is always
increasing, so that in particular A is not a totally geodesic submanifold of A. We
leave these complicated issues aside for now however, noting merely that the situ-
ation is not at all improved by changing the boundary conditions as in Appendix
A.
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