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Abstract. We investigate the geometry of a family of equations in two dimen-

sions which interpolate between the Euler equations of ideal hydrodynamics
and the inviscid surface quasi-geostrophic equation. This family can be realised

as geodesic equations on groups of diffeomorphisms. We show precisely when

the corresponding Riemannian exponential map is non-linear Fredholm of in-
dex 0. We further illustrate this by examining the distribution of conjugate

points in these settings via a Morse theoretic approach.
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1. Introduction

In the early 1990s Constantin et al. [6] investigated a 2D hydrodynamic model
known as the surface quasi-geostrophic (SQG) equation. One motivation for this
was a striking mathematical analogy with the 3D Euler equations exhibited by the
authors via several key analytic similarities. These investigations led to the study of
a whole family of inviscid SQG-type equations which can be viewed as interpolating
between the standard SQG equation and the 2D Euler equations, cf. [5].

On the other hand, it is well known from the work of Arnold and his school
that the motions of an ideal fluid have a beautiful geometric description as geodesic
equations on the group of volume-preserving diffeomorphisms of the fluid domain
[1, 2]. A key distinction between two and three dimensional hydrodynamics comes
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from examining the Fredholm properties of the associated Riemannian exponential
maps. In 2D the exponential map is a non-linear Fredholm map of index zero, but
in 3D it is not [8, 11, 16].

It was shown by Washabaugh in [21] that the standard SQG equation can also
be reformulated as a geodesic equation on the group of exact volume-preserving
diffeomorphisms equipped with a metric given by the homogeneous Sobolev Ḣ− 1

2

inner product. He further illustrated via an explicit example that the exponential
map in this setting fails to be Fredholm. Recently one of the authors and Vu showed
that the entire generalized SQG family, given by

∂tθ + u · ∇θ = 0

u = ∇⊥(−∆)
β
2 −1θ, 0 ≤ β ≤ 1

(1.1)

can be viewed as geodesic equations [13]. This opens up a possibility to investigate,
using Riemannian geometric tools, the transition from 2D Euler to the surface
quasi-geostrophic equations.

The central focus of this paper is to understand how the parameter β affects
properties of the corresponding Riemannian exponential maps. In particular, we
prove that for β < 1 these exponential maps are non-linear Fredholm of index 0,
illustrating that the value β = 1 is critical. In the former case we establish, via a
Morse theoretic argument, a finite upper bound on the number of conjugate points
along an arbitrary geodesic segment. As the interpolation parameter approaches
the critical value, this upper bound approaches infinity. We then provide an explicit
example to show that this bound is attained.

2. Preliminaries

We will aim to keep this section reasonably general and concise. Full details of
all the constructions can be found in [2, 7, 11] and the references therein.

2.1. Configuration Spaces. LetM be a compact surface without boundary equipped
with a Riemannian metric g with volume form µ. Let ∇, ∇⊥, div and ∆ denote
the associated gradient, symplectic gradient, divergence and Laplacian operators.
If E →M is a smooth vector bundle overM , we let Hs(E) denote those sections of
E with L2 derivatives of order s. In particular, Hs(TM) is the space of Hs vector
fields on M which we equip with an inner product via

⟨u, v⟩Hs = ⟨u, (1−∆)sv⟩L2 .

We define the set Hs(M,M) to consist of all functions from M to itself which are
of class Hs in every chart. By the Sobolev Embedding Theorem we have that, for
s > k+1, the space Hs(M,M) continuously embeds into Ck(M,M). If s > 1, then
it follows that Hs(M,M) is a smooth Hilbert manifold. If s > 2, then the set of
Hs-diffeomorphisms Ds(M) = {C1 diffeomorphisms of M} ∩Hs(M,M) inherits a
smooth submanifold structure as an open subset of Hs(M,M). Its tangent space
at the identity, TeDs(M) = Hs(TM), has an L2-orthogonal decomposition by the
Hodge theorem:

(2.1) Hs(TM) = H⊕∇Hs+1(M)⊕∇⊥Hs+1(M)

where H denotes the finite-dimensional subspace of harmonic vector fields on M .
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The subgroup Ds
µ,ex(M) of exact diffeomorphisms is then defined to be the sub-

manifold whose tangent space at the identity consists of those divergence-free vector
fields with zero harmonic component, i.e.

(2.2) TeD
s
µ,ex(M) = ∇⊥Hs+1(M) = {u | u = ∇⊥ψu with ψu ∈ Hs+1(M)}.

We refer to ψu as the stream function for u. This configuration space will be
the central focus of the paper, however we will also consider its smooth counter-
part Dµ,ex(M) = {C∞ diffeomorphisms of M} ∩ Ds

µ,ex(M) where TeDµ,ex(M) =

∇⊥C∞(M).

It is worth noting at this point that the homogeneous Sobolev Ḣs inner product,
given by

⟨u, v⟩Ḣs = ⟨u, (−∆)sv⟩L2 ,

when restricted to TeDs
µ,ex(M), induces a topology equivalent to the standard Hs

topology.
Ds

µ,ex(M) is further a topological group under composition where right transla-
tion Rη is smooth, but left translation Lη is just continuous, in the Hs topology.
The group adjoint operator is given by:

Adη v = dη−1LηdeRη−1v =
(
Dη · v

)
◦ η−1(2.3)

=
(
Dη · ∇⊥ψv

)
◦ η−1 = ∇⊥(ψv ◦ η−1

)
and the Lie algebra adjoint1 by:

(2.4) adu v = −[u, v] = ∇⊥{ψu, ψv}

where {ψu, ψv} = g(∇⊥ψv,∇ψu) is a Poisson bracket.

2.2. Right-Invariant Metrics and their Exponential Maps. We now recall
the abstract geometric framework of V. Arnold [1, 2].

Let ⟨·, ·⟩ be an inner product on TeDs
µ,ex(M) which we extend to a Riemannian

metric on Ds
µ,ex(M) via right translation. For a linear operator L : TeDs

µ,ex(M) →
TeDs

µ,ex(M), we denote by L∗ its adjoint with respect to the metric, i.e, ⟨Lu, v⟩ =
⟨u, L∗v⟩ for all u, v ∈ TeDs

µ,ex(M). As their definitions involve both the Lie and
Riemannian structure, the geometry is in some sense encoded in the operators〈

Ad∗η u, v
〉
= ⟨u,Adη v⟩ and ⟨ad∗u v, w⟩ = ⟨v, adu w⟩

associated with the Lie group and Lie algebra coadjoint representations. Geodesics
t 7→ γ(t) in Ds

µ,ex(M) of the metric induced by ⟨·, ·⟩ are critical paths for the energy
functional. The corresponding geodesic equation, when reduced to the Lie algebra,
is referred to as an Euler-Arnold equation which takes the form:

∂tu = − ad∗u u

u = γ̇ ◦ γ−1.
(2.5)

If we further impose an initial condition u(0) = u0, then we obtain an initial value
problem which enjoys the following (coadjoint) conservation law

(2.6) Ad∗γ(t) u(t) = u0.

1 Strictly speaking, these groups of Sobolev diffeomorphisms are not Lie groups. For example,
if u, v ∈ TeDs

µ,ex(M), their commutator is a priori only of Sobolev class Hs−1. However, the

group structure they possess will be sufficient for our purposes.
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For a comprehensive list of notable examples of Euler-Arnold equations, cf. [2,
11, 20]. The second equation in (2.5) is simply the flow equation, which provides
a link between the (Eulerian) solution map u0 7→ u and the (Lagrangian) solution
map u0 7→ (γ, γ̇). The latter has a clear geometric interpretation as a Riemannian
exponential map on Ds

µ,ex(M). Namely, we have

(2.7) u0 7→ expe(tu0) = γ(t)

where γ(t) is the unique geodesic with γ(0) = e and γ̇(0) = u0.

2.3. The Jacobi Equation. Assume now that the metric induced by ⟨·, ·⟩ has a
well defined smooth exponential map on Ds

µ,ex(M). For fixed u0 ∈ TeDs
µ,ex(M)

and T > 0, we have the geodesic segment, γ|[0,T ], where γ(t) = expe(tu0). The

Jacobi field along γ with initial conditions J(0) = 0 and J̇(0) = w0 is then given
by J(t) = d expe(tu0)tw0. If we left-translate back to the Lie algebra via vL(t) =
deLη−1(t)J(t), the field vL satisfies the system

∂tvL = w

∂t(Ad
∗
γ Adγ w) + ad∗w(u0) = 0

(2.8)

with initial data vL(0) = 0, ∂tvL(0) = w0. We denote the solution operator of this
Cauchy problem by

(2.9) Φ(t) : TeD
s
µ,ex → TeD

s
µ,ex, Φ(t)w0 = vL(t)

and recall the following result from [11].

Lemma 2.1. Let u0 ∈ TeDµ,ex with Λ(t) and K0 the operators defined by the
formulas

(2.10) w 7→ Λ(t)w = Ad∗γ(t) Adγ(t) w and w 7→ K0(w) = ad∗w u0.

Then the solution operator w 7→ Φ(t)w = tdeL
−1
γ(t)d expe(tu0)w can be decomposed

as

(2.11) Φ(t) = Ω(t) + Γ(t)

where

(2.12) Ω(t) =

∫ t

0

Λ(τ)−1 dτ and Γ(t) =

∫ t

0

Λ(τ)−1K0Φ(τ) dτ.

3. The SQG Family of Equations

3.1. The Euler-Arnold Equations and Well-Posedness. We now equip the
space of Hs-Sobolev exact volume-preserving diffeomorphisms of a closed two-
dimensional Riemannian manifoldM with a family of right-invariant metrics2 given
at the identity map by:

⟨u, v⟩Ḣ−β/2 =
〈
∇⊥ψu, (−∆)−

β
2 ∇⊥ψv

〉
L2

=

∫
M

ψu(−∆)1−
β
2 ψv dµ , 0 ≤ β ≤ 1

(3.1)

2 More precisely, these are weak Riemannian metrics on Ds
µ,ex(M) in the sense that they induce

a weaker topology than the inherent Hs topology.
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where again ψu and ψv are the stream functions for u and v. Using (2.3) and (2.4)
we compute the group and Lie algebra coadjoints〈

Ad∗η u, v
〉
Ḣ−β/2 = ⟨u,Adη v⟩Ḣ−β/2

=
〈
∇⊥ψu,∇⊥(ψv ◦ η−1)

〉
Ḣ−β/2

=

∫
M

(−∆)1−
β
2 ψu · ψv ◦ η−1 dµ

and

⟨ad∗u v, w⟩Ḣ−β/2 = ⟨v, adu w⟩Ḣ−β/2

=
〈
∇⊥ψv,∇⊥{ψu, ψw}

〉
Ḣ−β/2

=

∫
M

(−∆)1−
β
2 ψv{ψu, ψw} dµ

=

∫
M

{ψu, (−∆)1−
β
2 ψv}ψw dµ

giving us

(3.2) Ad∗η u = ∇⊥(−∆)
β
2 −1Rη(−∆)1−

β
2 ψu,

and

(3.3) ad∗u v = ∇⊥(−∆)
β
2 −1{(−∆)1−

β
2 ψv, ψu}.

Hence, for the metrics (3.1) the Euler-Arnold equations (2.5) become the gener-
alized SQG equations (1.1)

∂tθ + u · ∇θ = 0

u = ∇⊥(−∆)
β
2 −1θ, 0 ≤ β ≤ 1.

Each of the β-metrics in (3.1) has an associated Riemannian exponential map as
in (2.7). The following proposition is a direct consequence of the results in [12].

Proposition 3.1. For s > 3 and 0 ≤ β ≤ 1 the Riemannian exponential map on
Ds

µ,ex(M) of the metric (3.1) is C∞ and, consequently, the differential

d expe(tu0) : TeD
s
µ,ex(M) → Texpe(tu0)D

s
µ,ex , u0 ∈ TeD

s
µ,ex(M)

is a bounded linear operator.

In particular, since a standard calculation shows that d expe(0) is the identity,
it follows from Proposition 3.1 that the exponential map is a local diffeomorphism
near the identity map in Ds

µ,ex(M).
A further consequence of this is local well-posedness in the sense of Hadamard

of the generalized SQG family (1.1). To the best of the authors’ knowledge, for 0 <
β ≤ 1, the situation for global well-posedness is not known. However, a sufficient
criterion for global regularity is obtained in [5]. Our aim now is to study how
the parameter β affects the analytic and geometric properties of the corresponding
exponential maps.
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3.2. Fredholm Properties of the Exponential Maps. Recall that a bounded
linear operator F between Banach spaces is Fredholm if its range is closed and
its kernel and cokernel are finite-dimensional. The difference of the dimensions of
these two spaces is a topological invariant known as the index of F . The operator
is semi-Fredholm if either of the finiteness requirements on its kernel or cokernel is
dropped. Throughout the proceeding arguments, we will also use ∥·∥X to denote
the operator norm on the space of bounded linear operators on X, which should be
clear from the context.

A map f between Banach manifolds is said to be Fredholm if its differential
is a Fredholm operator on corresponding tangent spaces. If the source manifold
is connected then we define the index of f to be the index of its differential df .
Standard references for the above are [9, 17].

The goal of this section is to establish the following theorem, which extends to
fractional orders the results of [11].

Theorem 3.2. For s > 3 and 0 ≤ β < 1, the exponential map on the group of
exact volume-preserving diffeomorphisms, Ds

µ,ex, induced by the metric (3.1) is a
non-linear Fredholm map of index 0.

The value β = 1 is critical in the sense that the exponential map fails to be
Fredholm. We will return to this in the following section.

Proof of Theorem 3.2. We begin by taking initial data u0 ∈ TeDs′

µ,ex for some s′ ≫ s

and letting γ(t) = expe(tu0) denote the corresponding geodesic in Ds′

µ,ex, which lives
for some time T > 0. From Lemma 2.1, for any w ∈ TeDs

µ,ex and t ∈ [0, T ], we have
the decomposition

d expe(tu0)tw = Dγ(t) (Ω(t)w + Γ(t)w)

where Ω(t) and Γ(t) are given by (2.12). Hence we estimate:

∥d expe(tu0)tw∥Ḣs ≳ ∥Ω(t)w∥Ḣs − ∥Γ(t)w∥Ḣs(3.4)

where ≳ refers to some constant depending on the uniform (in time) Ḣs-norm of
Dγ which we suppress for convenience. Focusing on the first term on the right side
of (3.4) we have

⟨w,Ω(t)w⟩Ḣs =

∫ t

0

〈
w,Λ(τ)−1w

〉
Ḣs dτ

=

∫ t

0

〈
(−∆)

2s+β
4 w, (−∆)

2s+β
4 Λ(τ)−1w

〉
Ḣ−β/2

dτ

=

∫ t

0

〈
(−∆)

2s+β
4 w,Λ(τ)−1(−∆)

2s+β
4 w

〉
Ḣ−β/2

dτ

+

∫ t

0

〈
(−∆)

2s+β
4 w, [(−∆)

2s+β
4 ,Λ(τ)−1]w

〉
Ḣ−β/2

dτ.

From (2.3), (3.2) and (2.10) we acquire, for any v ∈ TeDs
µ,ex

Λ(τ)v = Ad∗γ(τ) Adγ(τ) v(3.5)

= ∇⊥(−∆)
β
2 −1Rγ(τ)(−∆)1−

β
2R−1

γ(τ)ψv
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which in turn yields

Λ(τ)−1v = Adγ−1(τ) Ad∗γ−1(τ) v(3.6)

= ∇⊥Rγ(τ)(−∆)
β
2 −1R−1

γ(τ)(−∆)1−
β
2 ψv.

Substituting the above and applying the Schwartz inequality, we have

(3.7) ⟨w,Ω(t)w⟩Ḣs =

=

∫ t

0

〈
(−∆)

2s+β
4 w,Adγ−1 Ad∗γ−1(−∆)

2s+β
4 w

〉
Ḣ−β/2

dτ

+

∫ t

0

〈
(−∆)

2s+β
4 w,∇⊥

[
(−∆)

2s+β
4 , Rγ(−∆)

β
2 −1R−1

γ

]
(−∆)1−

β
2 ψw

〉
Ḣ−β/2

dτ

≥
∫ t

0

∥∥∥Ad∗γ−1(−∆)
2s+β

4 w
∥∥∥2
Ḣ−β/2

dτ

−
∫ t

0

∥∥∥(−∆)
2s+β

4 w
∥∥∥
Ḣ−β/2

∥∥∥∇⊥
[
(−∆)

2s+β
4 , Rγ(−∆)

β
2 −1R−1

γ

]
(−∆)1−

β
2 ψw

∥∥∥
Ḣ−β/2

dτ

To address the first integral, notice that the adjoint Ad∗γ with respect to the Ḣ−β/2

inner product can be expressed in terms of the L2 adjoint Ad0γ = Dγ⊤Rγ as3

(3.8) Ad∗γ = (−∆)
β
2 Ad0γ(−∆)−

β
2 .

As γ(t) is of class Hs′ we have that Ad0γ(t) is a bounded operator on Ḣ
β
2 . Using

this we have∥∥∥∥(Ad∗γ(τ)−1(−∆)
2s+β

4

)−1

v

∥∥∥∥
Ḣs

=
∥∥∥(−∆)−

2s+β
4 (−∆)

β
2 Ad0γ(τ)(−∆)−

β
2 v
∥∥∥
Ḣs

≃
∥∥∥Ad0γ(τ)(−∆)−

β
2 v
∥∥∥
Ḣ

β
2

≲
∥∥∥(−∆)−

β
2 v
∥∥∥
Ḣ

β
2

≃ ∥v∥
Ḣ− β

2

where the suppressed constants above are uniform in time. Hence, for some constant
cT > 0, we obtain the estimate∥∥∥Ad∗γ(τ)−1(−∆)

2s+β
4 w

∥∥∥2
Ḣ−β/2

≥ cT ∥w∥2Ḣs

for any w ∈ TeDs
µ,ex.

Regarding the second integral in (3.7), observe that[
(−∆)

2s+β
4 , Rγ(−∆)

β
2 −1R−1

γ

]
= Rγ

[
R−1

γ (−∆)
2s+β

4 Rγ , (−∆)
β
2 −1
]
R−1

γ

= Rγ(−∆)
β
2 −1
[
(−∆)1−

β
2 , R−1

γ (−∆)
2s+β

4 Rγ

]
(−∆)

β
2 −1R−1

γ .

Since the conjugation R−1
γ (−∆)

2s+β
4 Rγ with a diffeomorphism γ is a pseudo dif-

ferential operator of order s + β
2 , the commutator on the right-hand side above is

3 Where M⊤ denotes the transpose of the matrix M .



GEOMETRIC ANALYSIS OF THE GENERALIZED SQG EQUATIONS 8

a pseudo differential operator of order s − β
2 + 1, cf. [18]. Hence there exists a

constant CT > 0 such that

⟨w,Ω(t)w⟩Ḣs ≳ cT ∥w∥2Ḣs − CT ∥w∥Ḣs

∥∥(−∆)1−
β
2 ψw

∥∥
Ḣs+β−2(3.9)

≳ cT ∥w∥2Ḣs − CT ∥w∥Ḣs ∥w∥Ḣs−1 .

We next turn our attention to the operator Γ(t) in (3.4). From (2.10) and (3.3)
we have

∥K0w∥Ḣs+1−β =
∥∥{(−∆)1−

β
2 ψu0

, ψw}
∥∥
Ḣs

≲
∥∥∇(−∆)1−

β
2 ψu0

∥∥
Cρ

∥∥∇⊥ψw

∥∥
Ḣs(3.10)

≲ ∥w∥Ḣs

for any w ∈ TeDs
µ,ex where Cρ is the Hölder-Zygmund space with ρ > s, cf. [19].

Hence, for 0 ≤ β < 1, K0 is a compact operator by the Rellich-Kondrashov lemma.
As Λ(τ)−1 and Φ(τ) are continuous families of bounded linear operators, the inte-
grand in (2.12) is a compact operator. Hence, Γ(t) is itself compact. Combining
(3.9) and (3.10), we arrive at the estimate

(3.11) ∥d expe(tu0)tw∥Ḣs ≳ cT ∥w∥Ḣs − CT ∥w∥Ḣs−1 − ∥Γ(t)w∥Ḣs ,

for u0 ∈ TeDs′

µ,ex and w ∈ TeDs
µ,ex.

If we now assume that u0 ∈ TeDs
µ,ex, then for any ε > 0 we may approximate

u0 by a more regular field ũ0 ∈ TeDs′

µ,ex such that ∥u0 − ũ0∥Ḣs < ε. As the

exponential map is smooth in the Ḣs topology, its derivative u0 7→ d expe(tu0)
must depend smoothly on u0 and therefore be locally Lipschitz. Hence, from the
triangle inequality and (3.11) with appropriately modified c̃T , C̃T and Γ̃(t), we have

∥d expe(tu0)tw∥Ḣs ≥ ∥d expe(tũ0)tw∥Ḣs − ∥d expe(tu0)tw − d expe(tũ0)tw∥Ḣs

≳ c̃T ∥w∥Ḣs − C̃T ∥w∥Ḣs−1 −
∥∥Γ̃(t)w∥∥

Ḣs

− t ∥d expe(tu0)− d expe(tũ0)∥L(Ḣs) ∥w∥Ḣs

≥ c̃T ∥w∥Ḣs − C̃T ∥w∥Ḣs−1 −
∥∥Γ̃(t)w∥∥

Ḣs − TCT ε ∥w∥Ḣs

where CT denotes a uniform (in time) upper bound on the Lipschitz constant of
u0 7→ d expe(tu0). As ε > 0 is arbitrary we then have

(3.12) ∥d expe(tu0)tw∥Ḣs ≳ c̃T ∥w∥Ḣs − C̃T ∥w∥Ḣs−1 −
∥∥Γ̃(t)w∥∥

Ḣs .

With this estimate in hand, it now follows that d expe(tu0) has finite-dimensional
kernel and closed range in Tγ(t)D

s
µ,ex. The argument is standard. To see why this

is true note that, if d expe(tu0)wk converges in Ḣs with wk a bounded sequence

in Ḣs, then wk must contain a subsequence which converges in Ḣs−1 as well as
a subsequence for which Γ̃(t)wk converges in Ḣs. We may assume without loss
of generality that both subsequences are simply wk. Substituting wN − wM into
(3.12), we have

∥wN − wM∥Ḣs ≲ ∥d expe(tu0)twN − d expe(tu0)twM∥Ḣs

+ ∥wN − wM∥Ḣs−1 +
∥∥Γ̃(t)(wN − wM )

∥∥
Ḣs .

Consequently wk is Cauchy in Ḣs and hence converges. Now, if the kernel were
infinite-dimensional it would contain an orthonormal sequence with a convergent
subsequence, which is a contradiction. Hence, dimker d expe(tu0) <∞.
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Next we decompose TeDs
µ,ex into a Ḣs orthogonal sum ker(d expe(tu0)) ⊕Xs

u0
.

There exists a constant c > 0 such that, for all w in Xs
u0
, we have ∥w∥Ḣs ≤

c ∥d expe(tu0)w∥Ḣs which implies closed range. If such a constant did not exist then
there would be a sequence wk inXs

u0
such that ∥wk∥Ḣs = 1 and ∥d expe(tu0)wk∥Ḣs <

1
k containing a convergent subsequence. Passing to the limit and using the fact that
Xs

u0
is closed, this would imply that there exists w∞ ∈ Xs

u0
with ∥w∞∥Ḣs = 1 and

d expe(tu0)w∞ = 0, a contradiction.
The above shows that, for u0 ∈ TeDs

µ,ex, the operator d expe(tu0) is semi-
Fredholm. Finally, as at t = 0 d expe(0) is the identity on TeDs

µ,ex, the theorem
follows from the fact that the index function is continuous on the space of semi-
Fredholm operators. ⊠

3.3. Conjugate Points and the Breakdown of Fredholmness. As mentioned
in the Introduction, the distinction between two- and three-dimensional ideal hydro-
dynamics can be observed through the Fredholm properties of the L2 exponential
map. For example, Fredholmness in the 2D case precludes accumulation of conju-
gate points along finite geodesic segments, while such clustering is known to occur
in the 3D setting, cf. [8, 14]. In this section we amplify Theorem 3.2 by establish-
ing, via the Hydrodynamical Morse Index Theorem, cf. [11], an upper bound on
the number of conjugate points along a finite geodesic segment for the β < 1 met-
rics; precluding clusters of such points. As the interpolation parameter approaches
the critical value β = 1, this upper bound approaches infinity. We also provide
an explicit example to illustrate that this bound is attained. This shows that the
breakdown of Fredholmness occurs precisely at β = 1; in analogy with 3D ideal
hydrodynamics.

Theorem 3.3. Let 0 ≤ β < 1. Given any initial velocity u0 ∈ TeDs
µ,ex let γ(t) be

the corresponding geodesic of the metric (3.1), which exists for at least some time
T > 0. The number of conjugate points along the segment γ|[0,T ] is bounded above
by Nβ = Nβ(u0, T ) <∞.

As in [11] consider the set of smooth (in time) vector fields along γ|[0,T ] which
vanish at the endpoints

(3.13)
{
V : [0, T ]

C∞

−−→ TDs
µ,ex | V (t) ∈ Tγ(t)D

s
µ,ex with V (0) = V (T ) = 0

}
.

Let ˙H 1
β denote the completion of this space under the norm induced by the inner

product

⟨V,W ⟩Ḣ 1
β
=

∫ T

0

⟨∇γ̇V,∇γ̇W ⟩Ḣ−β/2 dt

where ∇γ̇ denotes the covariant derivative operator of the Ḣ−β/2 metric in Ds
µ,ex.

The index form along γ is then a symmetric bilinear operator on ˙H 1
β × ˙H 1

β given
by

(3.14) Iβ(V,W ) =

∫ T

0

(
⟨∇γ̇V,∇γ̇W ⟩Ḣ−β/2 − ⟨Rγ(V ),W ⟩Ḣ−β/2

)
dt

where Rγ(·) = R(·, γ̇)γ̇ is the curvature tensor of the Ḣ−β/2 metric along γ in
Ds

µ,ex. We recall the following result from [14].
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Lemma 3.4. The index form (3.14) can be rewritten as

(3.15) Iβ(V,W ) =

∫ T

0

(
⟨Adγ ∂tv,Adγ ∂tw⟩Ḣ−β/2 + ⟨K0(v), ∂tw⟩Ḣ−β/2

)
dt

where V = deLγv, W = deLγw with v, w ∈ TeDs
µ,ex and K0 is given in (2.10).

As in finite-dimensional Riemannian geometry, the Hydrodynamical Morse Index
Theorem in [11] states that the number of conjugate points along the geodesic
segment γ

∣∣
[0,T ]

is equal to the dimension of the space on which this index form is

negative definite. Hence, it will suffice to construct a finite-dimensional subspace,
Xβ , of ˙H 1

β such that the index form Iβ is non-negative on its Ḣ−β/2-orthogonal
complement, Yβ . We proceed to the proof of the main theorem.

Proof of Theorem 3.3. Using Lemma 3.4, for W = deLγw ∈ ˙H 1
β we have

Iβ(W,W ) =

∫ T

0

(
∥Adγ ∂tw∥2Ḣ−β/2 + ⟨K0(w), ∂tw⟩Ḣ−β/2

)
dt(3.16)

≥
∫ T

0

(
δ ∥∂tw∥2Ḣ−β/2 + ⟨K0(w), ∂tw⟩Ḣ−β/2

)
dt

where δ = inf
t∈[0,T ]

∥∥Ad−1
γ

∥∥−2

L2 > 0 is independent of β.

In order to simplify the above expression we let w(t) = e−
t
2δK0v(t) for some

vector field v(t). Clearly both fields vanish on the same subset of [0, T ] × M .

Furthermore, since K0 is anti-symmetric in the Ḣ−β/2 inner product, we have that
e−

t
2δK0 is an orthogonal operator and hence preserves the Ḣ−β/2 norm. Hence from

(3.16) we have

Iβ(W,W ) ≥
∫ T

0

(
δ
∥∥∥e− t

2δK0

(
∂tv −

1

2δ
K0(v)

)∥∥∥2
Ḣ−β/2

+
〈
e−

t
2δK0K0(v), e

− t
2δK0

(
∂tv −

1

2δ
K0(v)

)〉
Ḣ−β/2

)
dt

=

∫ T

0

(
δ
∥∥∂tv − 1

2δ
K0(v)

∥∥2
Ḣ−β/2 +

〈
K0(v), ∂tv −

1

2δ
K0(v)

〉
Ḣ−β/2

)
dt

=

∫ T

0

(
δ ∥∂tv∥2Ḣ−β/2 −

1

4δ
∥K0(v)∥2Ḣ−β/2

)
dt.

Expanding v(t, x) =

∞∑
k=1

sin

(
kπt

T

)
vk(x) where vk are time-independent fields we

then have

Iβ(W,W ) ≥
∞∑
k=1

∫ T

0

(
δk2π2

T 2
cos2

(
kπt

T

)
∥vk∥2Ḣ−β/2 −

1

4δ
sin2

(
kπt

T

)
∥K0(vk)∥2Ḣ−β/2

)
dt

=
T

2

∞∑
k=1

(
δk2π2

T 2
∥vk∥2Ḣ−β/2 −

1

4δ
∥K0(vk)∥2Ḣ−β/2

)
.
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Expressing each vk = ∇⊥ψk and using an analogous estimate to (3.10), namely

∥K0w∥
Ḣ− β

2
≲
∥∥∇(−∆)1−

β
2 ψu0

∥∥
Cρ

∥∥∇⊥ψw

∥∥
Ḣ− β

2
(3.17)

≲ ∥w∥
Ḣ− β

2

for any w ∈ TeDs
µ,ex and ρ > 1 + β

2 , we have

Iβ(W,W ) ≥ T

2

∞∑
k=1

(
δk2π2

T 2
∥ψk∥2Ḣ1−β/2 −

1

4δ

∥∥K0(∇⊥ψk)
∥∥2
Ḣ−β/2

)
(3.18)

≥ T

2

∞∑
k=1

(
δk2π2

T 2
∥ψk∥2Ḣ1−β/2 −

C

4δ
∥ψk∥2Ḣβ/2

)
,

with C > 0 is a constant (independent of β) and u0 = ∇⊥ψ0 ∈ TeDs
µ,ex.

Finally, we expand each ψk(x) =
∞∑

n=1

ak,nϕn(x) where ak,n are constants and ϕn

are non-constant eigenfunctions of the Laplacian with eigenvalues 0 < λn ↗ ∞,
normalized so that ∥ϕn∥L2 = 1 and for any α ∈ R we have

∥ψk∥2Ḣα =
∥∥(−∆)

α
2 ψk

∥∥2
L2 =

∥∥∥ ∞∑
n=1

ak,nλ
α
2
n ϕn

∥∥∥2
L2

=

∞∑
n=1

a2k,nλ
α
n.

The estimate (3.18) becomes

Iβ(W,W ) ≥ T

2

∞∑
k=1

∞∑
n=1

a2k,nλ
β
2
n

(
δk2π2

T 2
λ1−β
n − C

4δ

)
.

It follows that if
δk2π2

T 2
λ1−β
n − C

4δ
≥ 0

for each (k, n) such that ak,n ̸= 0, then we have Iβ(W,W ) ≥ 0. This condition is
equivalent to

(3.19) λn ≥
(

CT 2

4δ2k2π2

) 1
1−β

.

Notice that, for fixed β < 1, as λn ↗ ∞ and since the right hand side of (3.19) is a
decreasing function of k, there can be only finitely many k, say 1 ≤ k ≤ kmax, for
which (3.19) fails to hold for all n ≥ 1. If we consider such k, we can approximate
the number of n for which (3.19) does not hold using the Weyl Law [22] which
states that

N(λ) = #{n | λn ≤ λ} ≈ µ(M)

2π
λ+O(1).

Let A =
{
(k, n) | (3.19) does not hold

}
and XA = span

{
sin
(
kπt
T

)
ϕn
}
(k,n)∈A

with

closure under the Ḣ−β/2 norm denoted by XA,β . Observe now that

Nβ := dimXA,β = #A =

kmax∑
k=1

N

((
CT

4δ2k2π2

) 1
1−β

)
≈

kmax∑
k=1

(
CT

4δ2k2π2

) 1
1−β

+O(1) <∞.

Finally, since we have the Ḣ−β/2 orthogonal decomposition ˙H 1
β = XA,β ⊕ YA,β

with Iβ
∣∣
YA,β

≥ 0, the number of conjugate points along γ|[0,T ] is bounded above by

Nβ . ⊠
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Figure 1. Here we plot Tn(β) =
2π
n

(n(n+1)
2

)1−β/2
, the location of

the first conjugate point along the nth Jacobi field, in the situation

from Example 3.6. For β < 2 ln (3/2)
ln 3 ≈ 0.74, the earliest conjugate

point occurs at n = 1. For 2 ln (3/2)
ln 3 < β < ln (16/9)

ln 2 ≈ 0.83, the
earliest one occurs at n = 2. This pattern continues, and for each
β below the critical value 1, the function Tn(β) initially decreases
in n, then increases. Only at β = 1 does Tn(1) always decrease
as a function of n, which is why in that case we get the infinite
clustering of conjugate points happening at π

√
2.

An immediate consequence of the above is

Corollary 3.5. We have

lim
β→1

Nβ = lim
β→1

kmax∑
k=1

(
CT

4δ2k2π2

) 1
2−2β

+O(1) = ∞

We conclude with an example illustrating the number of conjugate points along
a finite geodesic segment approaching infinity as β → 1.

Example 3.6. Following Washabaugh [21] we consider the case of M = S2 with
spherical coordinates (ϑ, φ). The rotation ∂ϑ is then a steady state solution to (1.1)
for any 0 ≤ β ≤ 1 with corresponding stream function − cos(φ). Note that this
is in fact an eigenfunction of the Laplacian with eigenvalue 2. Letting w = ∇⊥ψ,
vL = ∇⊥σ and noting that γ(t, ϑ, φ) = (ϑ+ t, φ), (2.8) now becomes

(3.20) ∂tσ = ψ, ∂t(−∆)1−
β
2 ψ + 21−

β
2 ∂ϑψ = 0

with initial condition σ(0) = 0.
Taking ψ(t, ϑ, φ) = ξ(t)ϕn(ϑ, φ) where ϕn is a spherical harmonic such that

(−∆)ϕn = n(n+ 1)ϕn and ∂ϑϕn = inϕn then gives:

(3.21) ∂tσ = ψ, (n(n+ 1))1−
β
2 ∂tξ + in21−

β
2 ξ = 0
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whose solutions, with ξ(0) = 1, are given by

(3.22) ξ(t) = e−int( 2
n(n+1) )

1− β
2

and

(3.23) σ(t) =

(
i

n

(
n(n+ 1)

2

)1− β
2

)(
e−int( 2

n(n+1) )
1− β

2 − 1

)
ϕn.

Notice now that σ vanishes at Tn(β) =
2π
n

(
n(n+1)

2

)1− β
2

and hence γ(Tn(β), ϑ, φ) is

conjugate to the identity. In particular if 0 ≤ β < 1 we see these points are spread

out, whilst if β = 1, we have Tn(1) = π
√

2(n+1)
n ; forming a sequence of times, and

indeed conjugate points, which cluster at T = π
√
2. See Figure 1.

There are several natural continuations of this work. One is the study of de-
generacy phenomena of the induced geodesic distance. For the L2-metric (β = 0),
it has been shown that the geodesic distance is a true distance function [1, 10].
On the other hand, for the metric corresponding to the SQG equation (β = 1),
it vanishes identically on the whole group [3]. This raises the question: for which
β does this change in behavior occur? Closely related to this is the notion of the
corresponding diameter of the diffeomorphism group. This is well understood for
the geodesic distance of the L2-metric [2, 15, 4], but the situation for general β has
not yet been studied.
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