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Abstract. We prove that exponential maps of right-invariant SobolevHr metrics on
a variety of diffeomorphism groups of compact manifolds are nonlinear Fredholm maps
of index zero as long as r is sufficiently large. This generalizes the result of [EMP]
for the L2 metric on the group of volume-preserving diffeomorphisms important in
hydrodynamics. In particular, our results apply to many other equations of interest in
mathematical physics. We also prove an infinite-dimensional Morse Index Theorem,
settling a question raised by Arnold and Khesin [AK] on stable perturbations of flows
in hydrodynamics. Finally, we include some applications to the global geometry of
diffeomorphism groups.
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1. Introduction

Several well-known nonlinear partial differential equations of mathematical physics
arise as geodesic equations on various infinite-dimensional Lie groups. The first and
perhaps the most fundamental example are the Euler equations of ideal hydrodynamics.
In his celebrated paper [Ar1] Arnold showed that fluid motions correspond to geodesics
in the group of volume-preserving diffeomorphisms (volumorphisms) equipped with a
right-invariant metric defined by the kinetic energy of the fluid, a result which can
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be used formally to describe curvature and hence stability of fluid motions. Subse-
quently, Ebin and Marsden [EM] showed that the volumorphism group can be given
the structure of a Hilbert manifold and proved that the corresponding geodesic equa-
tion is actually a smooth ordinary differential equation, hence rigorously justifying the
infinite-dimensional geometric constructions.

Since then, much research has focused on finding such geometric formulations for
other conservative systems of continuum mechanics, showing that the corresponding
PDE admit smooth solutions that are critical points of some energy functional on an
infinite-dimensional Lie group with a right-invariant metric. Once this is known, it is
then tempting to use geometric intuition in order to better understand the qualitative
behavior of solutions; for example, showing that the curvature is negative or positive
can hopefully demonstrate existence of unstable or stable perturbations of the motion,
respectively. However, this method is most powerful when, as in hydrodynamics, the
equation is transformed from a partial differential equation on the manifold into a
genuine ordinary differential equation on the diffeomorphism group, so that unique
solutions can be constructed by standard techniques of ODE theory (rather than the
use of ad hoc PDE estimates). One can then proceed to deduce rigorous results about
the solutions from the study of the attendant geometric objects such as the exponential
map, sectional curvature, the index form, conjugate points, etc.

After finding that the curvature of the hydrodynamical volumorphism group was of-
ten negative but sometimes positive, Arnold [Ar1] (see also [Ar2] and [AK]) asked about
the existence and nature of conjugate points on the volumorphism group, particularly
whether conjugate point locations could accumulate along geodesics. Such phenom-
ena can happen in infinite-dimensional geometry generally, but if the exponential map
happens to be a nonlinear Fredholm map, this possibility is precluded.

The first result on Fredholmness of a Riemannian exponential map was proved in
[Mi2] under the assumption that the curvature operator along geodesics is compact.
This holds for example on the free loop space, but it seems too restrictive for many
other examples of interest. In a recent paper [EMP] we showed that the exponential
map is Fredholm for the L2 metric on the volumorphism group in two dimensions but
not in three dimensions, using the algebraic structure rather than the curvature.

One of the goals of the present work is to extend the main result of [EMP] to
exponential maps on diffeomorphism groups induced by other right-invariant metrics
of interest in mathematical physics. Another goal is to provide a general framework
within which one can study the associated nonlinear PDE using methods of infinite-
dimensional Riemannian geometry.

Our main examples will be obtained in the following way. Given a compact Rie-
mannian manifold M of dimension n, let Ds(M) be the group of diffeomorphisms with
the Sobolev Hs topology, where s > n/2 + 1. It is well known that Ds(M) is a smooth
Hilbert manifold as well as a topological group. We will be mainly interested in Ds(M)
and the volumorphism group Dsµ(M), as well as central extensions of the diffeomor-
phism group. All such objects will be denoted by Gs. For each index r ≤ s we will
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consider a Riemannian metric on Ds(M) defined at the identity by a Sobolev Hr inner
product. We then right-translate this inner product to other tangent spaces to obtain
a right-invariant metric on the group.

If r = s we get a strong Riemannian metric (i.e., one whose distance function gener-
ates the underlying topology of the manifold), while if r < s we get a weak Riemannian
metric. Strong metrics have nice global geometric properties, while weak metrics tend
to arise naturally in applications. The metric on a central extension is given by a direct
product, which again is the case arising in applications.

This construction is sufficiently general to include many of the well-known PDE of
mathematical physics, such as: the Euler equations of ideal hydrodynamics (Gs =
Dsµ(M) with r = 0); the Lagrangian-averaged Euler equation (Gs = Dsµ(M) with

r = 1); Burgers’ equation (Gs = Ds(S1) with r = 0); the Camassa-Holm equation
(Gs = Ds(S1) with r = 1); the EPDiff equation (Gs = Ds(M) with r = 1); and
the KdV equation (Gs = Vir(S1), the Bott-Virasoro group, with r = 0). Of course
there are many other groups whose right-invariant metrics lead to interesting PDEs; for
examples of such equations see e.g., Arnold and Khesin [AK], Marsden and Ratiu [MR],
Schmid [Sch], Taylor [T2], Vizman [V3] or the recent book by Khesin and Wendt [KW]
and their references.

Our main results deal with existence of Fredholm exponential maps of the right-
invariant Hr-metrics on Gs and their properties. Specifically, after reviewing necessary
background material in Section 2, we derive explicit formulas for the (Lie group and
Lie algebra) coadjoint operators of the Hr metrics and write down the corresponding
Euler equations in Section 3. Next, we show that if r is a sufficiently large integer,
then the geodesic equation of the Hr right-invariant metric is locally well-posed for any
of the groups Gs, with solutions depending differentiably on the initial data for any
sufficiently large s (depending on r). In particular, we obtain a smooth exponential
map expe defined on some neighborhood of zero in TeG

s (Section 4) and thus can study
its singularities as conjugate points. This is done in Section 5 where we also present
examples showing that in infinite dimensions distribution of conjugate points can be
very complicated.

Sections 6 and 7 contain the main constructions of this paper. We show that for each
Gs, there is a critical index ro such that if r is an integer with r > ro, the differential of
the Hr exponential map d expe(v) : TeG

s → Texpe(v)G
s is a Fredholm operator of index

zero, i.e., a bounded linear map with closed range, such that the kernel and cokernel
have finite and equal dimensions. Thus, expe is a smooth Fredholm map of index zero
in the sense of Smale [Sma] and, as a result, all conjugate points of the Hr metric
that appear when r > ro must be necessarily of finite order and isolated along finite
geodesic segments. The values of ro required are

• If Gs = Ds(M), then ro = 1
2
.

• If Gs = Dsµ(M), then ro = −1
2

if dim(M) = 2 and ro = 0 otherwise.

• If Gs = Virs(S1), then ro = 3
2
.
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In particular, this includes the result of [EMP] for the L2 metric in 2D hydrodynamics
and implies that the H1 metrics which generate the Camassa-Holm equation and the
Lagrangian-averaged Euler equation (in 2D as well as 3D) all have Fredholm exponen-
tial maps. Furthermore, it shows that failure of Fredholmness is a borderline case in
3D hydrodynamics, while it is not borderline for Burgers’ equation or the Korteweg-de
Vries equation.

We point out that the exponential map in an infinite-dimensional Riemannian man-
ifold will typically not be Fredholm. Grossman [Gr] gave the first examples of this:
on a sphere in a Hilbert space, the exponential map differential may have infinite-
dimensional kernel (corresponding to an infinite-dimensional family of geodesics joining
two antipodal points); in addition on an infinite-dimensional ellipsoid, the exponential
map differential may fail to be surjective even if it is injective (which arises from a
convergent sequence of conjugate point locations along a geodesic segment). For more
explicit details on the pathological nature of conjugate points in infinite-dimensional
manifolds we refer the reader to the recent papers of Biliotti, Exel, Piccione and Tausk
[BEPT] for strong metrics, [P3] for a weak metric on the volumorphism group of a
three-dimensional manifold, or Kappeler, Loubet and Topalov [KLT] for another weak
metric on the full diffeomorphism group of the flat two-torus. We emphasize again that
such phenomena cannot appear when the exponential map is Fredholm.

As mentioned above, Fredholmness comes in an essential way from the group struc-
ture and in particular the decomposition of the Jacobi equation into decoupled first-
order equations, rather than from convenient properties of the curvature as on the free
loop space [Mi2]. In Section 6 we will also show that for the H1 metric on Ds(S1) and
for the L2 metric on Dsµ(M2), the curvature operator is not compact; in fact in both
situations there is an infinite-dimensional subspace on which the curvature operator is
positive and bounded away from zero. However in both examples the exponential map
is Fredholm.

In the last two sections of the paper we describe two applications of our Fredholmness
results. First, in Section 8, we prove the Morse Index theorem for geodesics of the L2

metric on Dsµ(M2) thus settling a question raised by Arnold and Khesin (see [AK],
Chapter 4, p. 225). Finally, in Section 9, we describe surjectivity properties of the
exponential map in two cases of particular interest: that of a strong Riemannian metric
on Gs and the L2 metric on Dsµ(M2). The latter can be viewed as a step toward
answering a conjecture of Shnirelman [Shn3].

2. Background

To deal with diffeomorphism groups as manifolds, one must specify a function space
topology. At one extreme, it can be convenient to work with only C∞ diffeomorphisms,
although this requires a Fréchet topology in which important results like the implicit
function theorem are not valid. At the other extreme, one can work in the topology
generated by the kinetic energy of a physical system, although the diffeomorphisms
may not form a smooth or even a C0 manifold in such a topology. In either case one
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must often prove individual results using methods unique to a particular equation,
rather than using general techniques of infinite-dimensional manifolds. Hence it has
been common to work with intermediate Sobolev topologies, which are useful in a wide
array of situations; we will use this approach, following Ebin and Marsden [EM].

For an n-dimensional manifold M , the class Hs(M,M) is defined as the set of maps
η : M →M which are of Sobolev class Hs in every coordinate chart. If s > n/2+1, then
every η ∈ Hs(M,M) is also C1 by the Sobolev embedding theorem, and we can define
Ds(M) as the open subset of Hs(M,M) such that η−1 exists and is also in Hs(M,M).
Then Ds(M) is a topological group, where right translation Rη : ξ 7→ ξ ◦ η is C∞ and
left translation Lη : ξ 7→ η ◦ ξ is continuous (but not even Lipschitz continuous) in the
Hs topology.

Given any Riemannian metric on M , we can define an Hs Riemannian metric on
Ds(M) using the powers ∆s of the Laplace-de Rham operator on M . However, for
the most part, the geometry of this metric is not interesting from a physical point of
view; in applications, the interesting metrics are weak, in that they do not generate
the topology of the underlying space. Weak metrics give rise to many of the partial
differential equations of physics, but the diffeomorphism group is often not a manifold
in the topology generated by the weak metric. This is the source of many of the
complications arising in infinite-dimensional geometry. We will have to deal with some
of them in later sections.

We proceed to recall some basic facts about the structure of the various diffeomor-
phism groups and central extensions that will be studied here. In particular, we will
need formulas for the group as well as the Lie algebra adjoint representations. For
concreteness, we consider three situations: the full diffeomorphism group Ds(M), the
volumorphism group Dsµ(M), and the Bott-Virasoro group Virs(S1).

Definition 2.1. The volumorphism group Dµ(M) is defined in terms of a Riemannian
volume form µ on a compact n-dimensional Riemannian manifold M without boundary.
It consists of those diffeomorphisms η such that η∗µ = µ. If s > n/2+1 then the group
of volumorphisms of Sobolev class Hs of M ,

Dsµ(M) = {η ∈ Ds(M) | η∗µ = µ},

is a smooth submanifold of the Hilbert manifold Ds(M). Its tangent space at the
identity diffeomorphism consists of Hs divergence-free vector fields

TeDsµ(M) = {u ∈ TeDs(M) | div u = 0}.

Definition 2.2. We define the exact volumorphism group Dsµ,ex(M) in the following

way. We recall the musical isomorphisms ] and [: if α is a 1-form, then α] is the
vector field such that α(v) = 〈α], v〉 for every vector field v; [ is its inverse. We have
the operator d which takes k-forms of class Hs to (k + 1)-forms of class Hs−1, and its
formal dual δ which takes (k + 1)-forms of class Hs to k-forms of class Hs−1, defined
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so that for any k-form α and any (n− k − 1)-form β, we have∫
M

〈dα, β〉 dµ =

∫
M

〈α, δβ〉 dµ.

See for example [EM]. We also have the Hodge star operator ? which maps k-forms
to (n − k)-forms and is defined by 〈α, β〉µ = α ∧ ?β, for any k-forms α and β. The
relationship between the two on k-forms is

δ = (−1)nk−n−1?d?.

We rewrite the divergence as an operator on 1-forms, div u = −δu[, and use the
Hodge decomposition [EM] to say that any Hs divergence-free vector field u may be
written as u[ = δβ + h, where β is an Hs+1 2-form and h is a C∞ harmonic 1-form
(i.e., one satisfying δh = 0 and dh = 0). The exact volumorphism Lie algebra is the
set of those u such that h = 0, and the exact volumorphism group is the image of
these under the Lie exponential map. (That it is actually a Lie algebra will follow from
Remark 2.6.) Of course if the first homology H1(M) = 0, the exact volumorphism
group coincides with the volumorphism group.

In two dimensions, a 2-form β may be identified with a function f = ?β, and we
write u = sgrad f ≡ (δ?f)], so that on the flat torus sgrad f = fy ∂x − fx ∂y. In three
dimensions, a 2-form β may be identified with a 1-form α = ?β and thus with a vector
field w = α], and we write u = curlw ≡ (δ?w[)].

Definition 2.3. Given any diffeomorphism group, we define a central extension in the
following way: we find a 2-cocycle B : Ds(M)×Ds(M)→ Rm satisfying the property

(2.1) B(η, ξ) +B(η ◦ ξ, χ) = B(ξ, χ) +B(η, ξ ◦ χ) for all η, ξ, χ ∈ Ds(M).

(The existence of a nontrivial 2-cocycle depends on the cohomology of the diffeomor-
phism group.) The central extension of the diffeomorphism group is then defined as
Ds(M)× Rm with group law

(2.2) (η, ρ) · (ξ, σ) = (η ◦ ξ, ρ+ σ +B(η, ξ)),

and equation (2.1) ensures that this group operation is associative.

The best known example of a central extension is the Bott-Virasoro group Vir(S1).

Definition 2.4. The Bott-Virasoro group Virs(S1) is the universal central extension
of the group of orientation preserving Hs diffeomorphisms of the circle. Here B is the
Bott cocycle

(2.3) B(η, ξ) =
1

2

∫
S1

log ∂x(η ◦ ξ) d log ∂xξ.

The Bott-Virasoro group is known to be the configuration space of the Korteweg-de
Vries [OK] and the Camassa-Holm equations [Mi3], both of which arise as water-wave
equations.
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For any group Gs we have two adjoint operators defined on the Lie algebra gs = TeG
s:

the group adjoint Adη : gs → gs defined by

(2.4) Adη v = dLηdRη−1v,

and the Lie algebra adjoint adu v : gs → gs defined by

(2.5) adu v =
d

dt

∣∣∣
t=0

Adη(t) v,

where η(t) is any curve in Gs with η̇(0) = u. The following proposition gives the
formulas for these objects on the groups we have been considering.

Proposition 2.5. Suppose Gs is the diffeomorphism group, the exact volumorphism
group, or the Bott-Virasoro group. Then the Lie group adjoint (2.4) and Lie algebra
adjoint (2.5) are given by the following formulas:

• If Gs is the diffeomorphism group Ds(M) with Lie algebra gs of vector fields,
then the group adjoint Adη : gs → gs is given by

(2.6) Adη v = η∗v = (Dη v) ◦ η−1,

while the Lie algebra adjoint adu : gs → gs is given by

(2.7) adu v = −[u, v],

the negative of the standard Lie bracket of vector fields.
• If Gs is the exact volumorphism group as in Definition 2.2 with Lie algebra gs

of vector fields of the form v = (δβ)], then the adjoints above can be written in
the simplified form

(2.8)


Adη sgrad g = sgrad(g ◦ η−1) if dim(M) = 2,

Adη curlw = curl
(
(η−1)∗w[)

)]
if dim(M) = 3,

Adη(δβ)] =
(
δ
[
?(η−1)∗?β

])]
in general.

The Lie algebra adjoint can be written in the form

(2.9)


adu v = sgrad(u× v) if dim(M) = 2,

adu v = curl(u× v) if dim(M) = 3,

adu v = (δ(u[ ∧ v[))] in general.

• If Gs is Virs(S1), then the group adjoint action is given by

(2.10) Ad(η,ρ)(v, q) =

(
η∗v, q +

∫
S1

Sη(θ)v(θ) dθ

)
,

where

(2.11) Sη =
η′′′

η′
− 3

2

(η′′
η′

)2
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is the Schwarzian derivative of η. The Lie algebra adjoint action is given by

(2.12) ad(u,p)(v, q) =

(
−[u, v],

∫
S1

u′′′(θ)v(θ) dθ

)
.

Proof. These computations are standard; see for example [AK] or [KW]. The reason
for the minus sign in (2.7) is the fact that the standard Lie derivative comes from
Adη−1 :

Luv = [u, v] =
d

dt

∣∣∣
t=0
η(t)−1

∗ v =
d

dt
Adη(t)−1 v = − adu v.

We will focus on the exact volumorphism group, where the computations are less
known. So let α be a 1-form, β be a 2-form, and η be a volumorphism. If v = (δβ)],
then

α(η∗v) ◦ η = η∗α(v) = 〈η∗α, v[〉 = 〈η∗α, δβ〉.
Therefore since η is volume-preserving,∫

M

α(η∗v) dµ =

∫
M

α(η∗v)◦η dµ =

∫
M

〈η∗α, δβ〉 dµ =

∫
M

〈dη∗α, β〉 dµ

=

∫
M

η∗dα ∧ ?β =

∫
M

dα ∧ (η−1)∗?β

=

∫
M

dα ∧ ??(η−1)∗?β =

∫
M

〈α, δ?(η−1)∗?β〉 dµ.

Since this is true for every 1-form α, we obtain the general case of (2.8). The special
case when n = 2 follows from the fact that if f is a function, then η∗f = f ◦ η. The
formula for the Lie algebra adjoint follows from the general formula

[u, v][ = −δ(u[ ∧ v[) + (div v)u[ − (div u)v[.

�

Remark 2.6. Observe from formula (2.9) that on the volumorphism group, adu v is
always an element of the exact volumorphism Lie algebra from Definition 2.2. Hence
in particular the exact volumorphism Lie algebra is a Lie subalgebra.

On the diffeomorphism group Ds(M) of a compact manifold without boundary, we
put a right-invariant Hr metric defined at the identity by

(2.13) 〈u, v〉Hr =

∫
M

〈u,Arv〉 dµ

for any u, v ∈ TeDs(M), where Ar ∈ OPS2r
1,0 is an elliptic invertible operator of order

2r. (For this to be usable, we may need to require s to be larger; for example, s > n/2+
1 + 2r will be enough so that if v ∈ TeDs, then Arv is C1.) Typical examples include
Ar = (id + ∆r) or Ar = (id + ∆)r, where ∆v = (dδv[ + δdv[)] is the positive-definite
Hodge Laplacian. Alternatively, if r is a positive integer, we can use Ar =

∑r
k=0 ∆k

again using the positive-definite Laplacian. In case M is the circle S1, this becomes
Ar =

∑r
k=0(−1)k∂2k

x (as in [CKKT]).
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Remark 2.7. In general we need not assume that r is an integer. Generally, any self-
adjoint first order elliptic operator A on a compact manifold gives rise to a pseudo-

differential operator Az in OPS
Re(z)
1,0 for any complex number z ∈ C by the spectral

theorem. However, all known examples which lead to physical differential equations
involve r = 0 or r = 1, and the proof of local existence in Section 4 simplifies greatly
if r is an integer. Hence we will assume that r is an integer as needed.

If Ar commutes with the operators d and δ, as we will always assume, then the
right-invariant Hr metric (2.13) restricts to an Hr metric on the exact volumorphism
group. At the identity it is given on 2-forms α and β by

(2.14) 〈(δα)], (δβ)]〉Hr = 〈Ar∆α, β〉L2 ,

where ∆ = δd+dδ. Hence in terms of the “potentials” α and β, we get an Hr+1 metric;
however, we will continue to refer to it as the Hr metric on the actual vector fields.

The right-invariant metric on the Bott-Virasoro group is simply the Cartesian prod-
uct:

(2.15) 〈(u, p), (v, q)〉 = 〈u, v〉Hr + pq.

There are a number of other situations amenable to the type of analysis we consider
here, although to keep the formulas relatively simple, we are avoiding this full generality.
One can consider other subgroups of the diffeomorphism group, such as those preserving
a symplectic form or a contact form; the geometry of the L2 metric on these groups
was considered by Smolentsev [Smo2]. One can also consider a semidirect product
of a diffeomorphism group with a space of functions, forms, or vector fields. See
Vizman [V3] for a review of equations arising through L2 geometry on such groups.
Several other examples are collected in the recent book [KW].

3. Coadjoint representation and Euler equations

The Lie group adjoint and Lie algebra adjoint formulas appearing in Proposition
(2.5) depend only on the group structure, not on the Riemannian metric. Thus the
geometry is in some sense completely encoded in the coadjoint operators: the group
coadjoint Ad∗η : gs → gs defined so that

(3.1) 〈Ad∗η v, w〉 = 〈v,Adη w〉 for all w ∈ gs,

and the Lie algebra coadjoint ad∗u : gs → gs defined so that

(3.2) 〈ad∗u v, w〉 = 〈v, aduw〉 for all w ∈ gs.

In this section we will review how the coadjoint operators appear in the geodesic
equation and the Jacobi equation, as well as computing them explicitly in the three
cases of Proposition (2.5).

Remark 3.1. Note that our use of “coadjoint” for these operators is nonstandard;
typically the coadjoint is defined on the dual of the Lie algebra g by the formulas
above; our version is the result on g under the usual isomorphism between g and its
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dual under the weak Riemannian metric. Our reason for doing this is to avoid the
unfortunate accident of terminology in which several completely unrelated objects are
all referred to as “adjoint”: the alternative would be to refer to Ad∗η as the metric
adjoint of the group adjoint, which is eventually rather awkward.

In [Ar1] Arnold developed a general framework to study geodesic equations of left-
as well as right-invariant metrics on arbitrary (possibly infinite dimensional) Lie groups
as Euler equations on the associated Lie algebras. The next theorem is well known
and easy to derive formally; we provide a short proof to keep the paper relatively
self-contained.1

Theorem 3.2. If G is a Lie group equipped with a (possibly weak) right-invariant
metric 〈·, ·〉 then a curve η(t) is a geodesic if and only if the curve u(t) in TeG, given
by the flow equation

(3.3) η̇(t) = dRη(t)u(t),

satisfies the Euler equation

(3.4) u̇(t) = − ad∗u(t) u(t).

Proof. In order to derive the equation on TeG we write the energy of a one-parameter
family of curves (−ε, ε) 3 σ → η(σ, t) with fixed endpoints at t = a and t = b in the
form

E(σ) =
1

2

∫ b

a

‖ηt(σ, t)‖2 dt =
1

2

∫ b

a

〈
dRη(σ,t)−1ηt(σ, t), dRη(σ,t)−1ηt(σ, t)

〉
dt

using right-invariance of the metric. Letting y(t) = dRη(t)−1

(
∂ση(σ, t)

)
|σ=0 denote the

right translation to TeG of the associated variation field along the curve η (correspond-
ing to σ = 0) we find that

∂σ
∣∣
σ=0

(
dRη(σ,t)−1∂tη(σ, t)

)
= ∂ty − adu y.

Differentiating the energy functional E with respect to the parameter σ, then integrat-
ing by parts and using the fact that y(a) = y(b) = 0, we obtain

E ′(0) =

∫ b

a

〈u, ∂ty − adu y〉 dt = −
∫ b

a

〈∂tu+ ad∗u u, y〉 dt.

Since the variation field y in TeG is arbitrary, applying Hamilton’s principle yields the
Euler equation in (3.4). �

Remark 3.3. If G is any one of the groups of Sobolev diffeomorphisms Gs described in
the previous section then various complications arise. The most serious is the fact that
the decomposition into (3.3) and (3.4) tends to lose derivatives. More precisely, since
elements of TeG

s are vector fields on M of class Hs and (for a typical right-invariant
metric) the coadjoint representation involves differentiation, the result ad∗u u will often

1The result can be justified for groups of smooth diffeomorphisms using Fréchet space techniques,
see e.g., [O], [CKKT], [KLT].
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not be a vector field of class Hs even if u is. Thus, in order to establish rigorous results
of the type of Theorem 3.2 we will later impose certain smoothness conditions on the
metrics as well as the topology of the underlying space.

The fact that the geodesic equation on a Lie group decouples into (3.3) and (3.4)
allows us to reduce it from a second-order equation to a first-order equation, using the
group coadjoint.

Corollary 3.4. If t 7→ η(t) is a curve in G with velocity field t 7→ u(t) ∈ g satisfying
equations (3.3) and (3.4) with initial conditions η(0) = e and u(0) = uo, then we have
the conservation law2

(3.5) Ad∗η(t) u(t) = uo.

As a result, we can rewrite the flow equation (3.3) as

(3.6) η̇(t) = dRη(t) Ad∗η(t)−1 uo = dL∗η(t)−1uo.

Proof. The definitions (2.4) and (2.5) imply the formula

d

dt
(Adη) = addRη−1 (η̇) Adη,

which immediately yields

d

dt
(Ad∗η) = Ad∗η ad∗dRη−1 (η̇) .

With the help of this formula we can write the initial value problem for the Euler
equation (3.4) on TeG

s in the form

d

dt

(
Ad∗η(t)u(t)

)
= 0, u(0) = uo.

Formula (3.5) immediately follows. See for example [AK] for discussion of the applica-
tions of this formula. �

Remark 3.5. Equation (3.6) gives the “particle equation” in Lagrangian form. In most
cases, the operator (Adη−1)∗ is a nonlocal operator (for example, for volumorphisms
this equation is an integrodifferential equation, which was studied extensively in Majda-
Bertozzi [MB]). This form of the equation is equivalent to the second-order geodesic
equation (3.3) and (3.4). It is sometimes convenient to work with (3.6) directly to prove
existence and uniqueness results; this was the basis of Kato’s original proof of global
existence for Dµ(M2) [K]. However this technique works better in specially constructed
topologies and relies on a fairly concrete representation of the operator A−r. Hence
for the proof of local existence and uniqueness in Section 4, we will work with the full
second-order equation. On the other hand the form (3.6) leads quite naturally to the
Fredholmness result, as we shall see in Section 6.

Now let us compute the coadjoint formulas explicitly.

2For the group of volumorphisms, this is the conservation of vorticity; for the group G = SO(3)
describing rigid body motion, this is conservation of angular momentum.
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Proposition 3.6. Suppose Gs is the diffeomorphism group, the exact volumorphism
group, or the Bott-Virasoro group. Then the Lie group coadjoint (3.1) and Lie algebra
coadjoint (3.2) are given by the following formulas:

• If Gs = Ds(M) with Hr metric given by (2.13), then the group coadjoint is
given by

(3.7) Ad∗η v = A−r
[
J(η)Dη†(Arv)

]
,

where J(η) = det(Dη) and (Dη)† is the pointwise adjoint of Dη, while the Lie
algebra coadjoint is given by

(3.8) ad∗u v = A−r
[
∇uA

rv + (div u)(Arv) + (∇u)†(Arv)
]
.

Here (∇u)† is the pointwise adjoint of the operator v 7→ ∇vu, defined so that
〈(∇u)†(v), w〉 = 〈v,∇wu〉 for all vectors v and w in TM .
• If Gs is the exact volumorphism group Dsµ,ex(M) with right-invariant Hr metric

defined by an operator Ar, then the group coadjoint is given by

(3.9)


Ad∗η sgrad g = sgradA−r∆−1

(
(Ar∆g) ◦ η−1

)
if dim(M) = 2,

Ad∗η curlw = curlA−r∆−1η−1
∗ (Ar∆w) if dim(M) = 3,

Ad∗η(δβ)] =
(
δ∆−1A−rη∗(Ar∆β)

)]
in general.

The Lie algebra coadjoint is given by

(3.10) ad∗u v =


sgradA−r∆−1〈u,∇ curl(Arv)〉 if dim(M) = 2,

curlA−r∆−1[u, curl(Arv)] if dim(M) = 3,

(δA−r∆−1dιudA
rv[)] in general.

• If Gs is the Bott-Virasoro group with right-invariant Hr metric given by (2.15),
then

(3.11) Ad∗(η,ρ)(v, q) =
(
A−r

(
η′2 [Arv]◦η + qSη

)
, 0
)
,

where Sη is the Schwarzian derivative (2.11). The Lie algebra coadjoint is

(3.12) ad∗(u,p)(v, q) =
(
A−r(uArv′ + 2u′Arv + qu′′′), 0

)
.

Proof. To compute these, we simply use the definitions (3.1) and (3.2) along with
Proposition 2.5.

• First, for the group coadjoint on TeDs(M), we have

〈Ad∗η v, w〉Hr = 〈v,Adη w〉Hr =
〈
v,Dη(w)◦η−1

〉
Hr =

∫
M

〈Arv,Dη(w)◦η−1〉 dµ

=

∫
M

〈[Arv]◦η,Dη(w)〉J(η) dµ = 〈Dη†([Arv]◦η), w〉L2 .

Since this is true for every w ∈ gs, formula (3.7) follows.
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The computation for the Lie algebra coadjoint on TeDs(M) is similar. We
have

〈ad∗u v, w〉Hr = 〈v, aduw〉Hr = 〈v,−[u,w]〉Hr =

∫
M

〈Arv,−[u,w]〉 dµ

= −
∫
M

〈Arv,∇uw〉 dµ+

∫
M

〈Arv,∇wu〉 dµ

= −
∫
M

div u〈Arv, w〉 dµ+

∫
M

〈∇uA
rv, w〉 dµ

+

∫
M

〈(∇u)†(Arv), w〉 dµ.

Formula (3.8) then follows by the same reasoning as above.
• Now suppose Gs is the group of exact volumorphisms defined in Definition 2.2,

so gs is the set of vector fields v expressible as v = (δβ)] for some 2-form β.
The general computation for the group coadjoint is straightforward from

(2.8): if w = (δγ)] then

〈Ad∗η v, w〉Hr = 〈v,Adη w〉Hr =

∫
M

〈Arv[, δ?(η−1)∗?γ〉 dµ

=

∫
M

〈Ardv[, ?(η−1)∗?γ〉 dµ =

∫
M

Ardv[ ∧ ??(η−1)∗?γ

=

∫
M

Ardv[ ∧ (η−1)∗?γ =

∫
M

η∗Ardv[ ∧ ?γ

=

∫
M

〈η∗Ardv[, γ〉 dµ = 〈A−r∆−1η∗Ardv[, γ〉Hr ,

so that formula (3.9) follows from (2.14).
The unusual special case when n = 3 comes from the following: if w = curl ξ,

then

〈Ad∗η v, w〉Hr = 〈Arv,Adη curl ξ〉L2 =

∫
M

〈Arv, curl((η−1)∗ξ[)]〉 dµ

=

∫
M

〈curlArv, ((η−1)∗ξ[)]〉 dµ =

∫
M

(η−1)∗ξ[(curlArv) dµ

=

∫
M

ξ[(η−1
∗ curlArv) ◦ η−1 dµ =

∫
M

〈ξ, η−1
∗ curlArv〉 dµ.
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For the Lie algebra coadjoint, the easiest thing is to work directly, supposing
that w = (δγ)]:

〈ad∗u v, w〉Hr = −〈Arv, [u,w]〉L2

=

∫
M

dArv[(u,w)− u(〈Arv, w〉) + w(〈Arv, u〉) dµ

=

∫
M

〈ιudArv[, δγ〉 dµ =

∫
M

〈dιudArv[, γ〉 dµ

and the general case of formula (3.10) follows using (2.14). The special case
when dim(M) = 2 comes from the fact that then

dιudA
rv[ = d(curl(Arv)?u[) = ? div (curl(Arv)u) = ?〈u,∇ curl(Arv)〉

since div u = 0. The case when dim(M) = 3 comes from the fact that
(ιudA

rv[)] = −u × curlArv, as well as the fact that curl(u × w) = −[u,w]
for divergence-free vector fields u and w.
• The computations for the Bott-Virasoro group are straightforward, using the

same technique as on the full diffeomorphism group, and we omit them.

�

Corollary 3.7. For the diffeomorphism group, volumorphism group, or Bott-Virasoro
group, the Euler equation (3.4) takes the following forms:

• If Gs is the full diffeomorphism group Ds(M) with Hr right-invariant metric,
then the Euler equation is given by

(3.13)

{
Arut + 2uθA

ru+ uAruθ = 0 if dim(M) = 1

Arut +∇uA
ru+ (∇u)†(Aru) + (div u)Aru = 0 in general.

• If Gs is the exact volumorphism group Dsµ,ex(M) with Hr metric given by (2.14),
then the Euler equation is given by

(3.14)


∆Arft + {f,∆Arf} = 0 if dim(M) = 2,

curlArut + [u, curlAru] = 0 if dim(M) = 3,

Ar∆βt + dιuA
r∆β = 0 in general.

• If Gs is the Bott-Virasoro group with Hr metric given by (2.15), then the Euler
equation is given by

(3.15) ∂t[A
ru] + 2u′Aru+ uAru′ + pu′′′ = 0,

with ∂tp = 0.

Proof. These formulas all follow from the Lie algebra coadjoint formulas (3.8), (3.10),
and (3.12), after some minor simplifications. �

Remark 3.8. In special cases, the equations in Corollary 3.7 reduce to some well-known
partial differential equations:
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• If Gs = Ds(S1) and A0 = id, then equation (3.13) reduces to Burgers’ equation

(3.16) ut + 3uuθ = 0.

If Gs = Ds(M), (3.13) is called the template matching equation,

(3.17) ut +∇uu+ (∇u)†(u) + (div u)u = 0,

which is used in image recognition; see [HMA]. If Gs = Ds(S1) and A1 = id−∂2
θ ,

then (3.13) becomes the Camassa-Holm equation ([CH] and [FF])

(3.18) ut − utθθ + 3uuθ − 2uθuθθ − uuθθθ = 0.

In higher dimensions, it is known as “EPDiff,” or the averaged template-
matching equation [HMA].
• On the exact volumorphism group Dsµ,ex(M), if A0 = id we get the usual Euler

equation for ideal incompressible fluids:

(3.19)

{
ωt + u(ω) = 0 if dim(M) = 2,

ωt + [u, ω] = 0 if dim(M) = 3,

where the vorticity is ω = curlu.
If A1 = id+α2 curl2 for some constant α, we obtain the Lagrangian-averaged

Euler-α equation studied by Shkoller [Shk] and others: the equations are the
same as (3.19), with the vorticity modified to ω = curl(u+ α2 curl2 u).
• On the Bott-Virasoro group, if A0 = id, equation (3.15) becomes the Korteweg-

de Vries (KdV) equation

(3.20) ut + 3uuθ + puθθθ = 0

for some constant p; the fact that the KdV equation arises from a geodesic
equation was first discovered by Ovsienko and Khesin [OK]. In the case where
A1 = id−∂2

θ , equation (3.15) becomes a variant of the Camassa-Holm equation

(3.21) ut − utθθ + 3uuθ − uuθθθ − 2uθuθθ + puθθθ = 0.

4. Exponential map and its geodesics

One major advantage in using Lie group methods in analysis of nonlinear evolution
PDE of the type we consider here lies in an important technical gain. While the Euler
equation (3.4) is generally a nonlinear PDE involving unbounded operators, which
requires ad hoc techniques to prove existence and uniqueness of solutions, it can be
written in terms of the flow η using (3.3). The resulting (geodesic) equation is second-
order in time and much more nonlinear than (3.4) (due to the presence of compositions),
but in many important cases its right hand side is bounded provided that we pick the
correct function space topology. The geodesic equation becomes then an ODE defined
on an infinite-dimensional manifold, so that the corresponding Cauchy problem can
be solved using Banach contractions and the solutions depend smoothly on the initial
data. In our case this results in a differentiable exponential map.
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Theorem 4.1. Suppose Gs = Ds(M) is the Hs diffeomorphism group with right-
invariant Hr metric given by (2.13). If r is an integer with r ≥ 1 and s > 2r + n/2,
then the metric and connection are both C∞. Therefore the Riemannian exponential
map is C∞, and in particular gives a local diffeomorphism at the identity.

Sketch of proof. The basic technique was developed by Ebin and Marsden [EM] in their
study of the Cauchy problem for the Euler equations of hydrodynamics, which grew
out of the original work of Gunter [Gu], Lichtenstein [Li], and Wolibner [W]. It has
since been used to prove local well-posedness of many other evolution PDE3. Therefore
we will only give an outline of the argument4.

First we need to establish smoothness of the metric. If Ar =
∑r

k=0D
∗
kDk for some

kth-order differential operators Dk, then we can write the right-invariant metric on
vectors u, v ∈ TηGs as

〈u, v〉Hr =
r∑

k=0

∫
M

〈Dk(u ◦ η−1), Dk(v ◦ η−1)〉 dµ

=
r∑

k=0

∫
M

〈dRηDkdRη−1u, dRηDkdRη−1v〉J(η) dµ.

Now if D is a first-order differential operator on vector fields, then Dη ≡ dRηDdRη−1

is continuous as a map from vector fields of class Hm to those of class Hm−1, as long
as η is a diffeomorphism of class s > n/2 + 1 and 0 < m ≤ s; see Ebin [Eb] for
the original proof of this, or [EM] or [Shk] for additional details. Furthermore, in the
natural coordinate chart on Ds(M), we can write explicitly

Dηu = (Du ◦ η−1 ·Dη ◦ η−1) ◦ η = Du · (Dη)−1,

where the dots represent summations over indices. Although the map η → η−1 is not
smooth, the map η → Dη is smooth, as is the operation of matrix inversion, since η is a
diffeomorphism, while multiplication of functions is smooth jointly in both variables as
long as it is continuous. If s > r+n/2, we can iterate this process to obtain smoothness
for dRηDkdRη−1 . In addition, the Jacobian J(η) is continuous if s > n/2 + 1, so that
the multiplication appearing in the integrand is smooth as well.

Showing that the corresponding geodesic equation is an ODE involves the same
techniques. We use the formula u = ηt ◦ η−1 and (ut + ∇uu) ◦ η = D

dt
dη
dt

to write the
equation (3.13) in the form

(4.1)
D

dt

dη

dt
= −A−r

([
div ηt ◦ η−1 + (∇ηt ◦ η−1)†

]
Ar(ηt ◦ η−1)

)
◦ η

− A−r
(

(∇ηt◦η−1Ar(ηt ◦ η−1)− Ar(∇ηt◦η−1(ηt ◦ η−1))
)
◦ η.

3See for example [Ma], [Shk], [Mi4], [CK] or [DKT] and references in these papers.
4For full details on the smoothness properties we will use refer to [Eb] and to [CK], who work out

the same proof in detail for the special case M = S1.
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Observe that the terms in square brackets involve first-order differential operators,
conjugated by Rη, and hence are smooth by the above reasoning. The operator Ar(ηt ◦
η−1) ◦ η is smooth as a map into vector fields of class Hs−2r. Furthermore the terms
div u and (∇u)† are in Hs−1, and the product of terms in Hs−1 and Hs−2r is again
in Hs−2r since s − 1 > n/2. (This fails if r = 0, and that is why the theorem is not
true in this case: the right side of the geodesic equation is not even continuous in η.)
Smoothness follows since all the terms involve multiplication and the application of
dRηA

−2rdRη−1 maps smoothly back into Hs by general principles of bundle maps.
The second line of (4.1) is somewhat more complicated, but uses the same techniques

as above. One computes the commutator explicitly and sees that all terms involve
multiplications of certain η-conjugated derivatives of ηt, which are bounded in the
Sobolev topology by the assumption that s > 2r + n/2.

Once we have established smoothness of the right hand side of (4.1) the result follows
from the fundamental theorem of ODE’s on Banach manifolds, see e.g., Lang [La]. �

Remark 4.2. In the above argument, notice that smoothness of the metric is both easier
and requires less of s. In particular, if s > n/2 + 1 and r = s, one can show with a bit
more work that the right-invariant Hs Sobolev metric is smooth on TGs. Since this
metric actually generates the topology on TηG

s for each η, it is strong Riemannian.
Hence smoothness of the connection and existence of an exponential map follows from
general principles. See [La] for the details of infinite-dimensional Riemannian geometry
in strong metrics.

The assumption that s > 2r + n/2 is thus too restrictive. In fact, we expect that
the two conditions s > n/2 + 1 and s ≥ r are together sufficient. The alternative
Lagrangian formulation of (3.13)

D

dt
Arη
dη

dt
+ (divη(ηt) +∇†η(ηt))Arηηt = 0,

where Dη = dRη ◦D ◦dRη−1 for an operator D, suggests that one may be able to avoid
commutators as long as one can make sense of vector fields in Hs−2r spaces (since
s− 2r may be negative, this may involve duals to Sobolev spaces). We will leave this
for future work, however.

Theorem 4.3. Suppose Gs = Dsµ,ex(M) is the group of Hs exact volumorphisms as in
Definition 2.2, with right-invariant Hr metric given by (2.14). If r ≥ 0 is an integer
and s > 2r + 1 + n/2, then the metric and connection are both C∞. Therefore the
Riemannian exponential map is C∞, and in particular gives a local diffeomorphism at
the identity.

Sketch of proof. Since the right-invariant Hr metric on Dsµ(M) is obtained by restriction
of the Hr metric on Ds(M), smoothness of the metric follows from Theorem 4.1.

For the existence argument, we use a different form of the geodesic equation (3.14).
Generally in Riemannian geometry [La] the geodesic equation on a submanifold is the
projection of the geodesic equation in the ambient manifold. Hence we can simply
orthogonally project equation (3.13) onto the space of vector fields of the form v =
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(δβ)]. By the Hodge decomposition [EM], the Hr-projection of any vector onto the
image of δ is

PHr(w) = P (w) = (δ(dδ + δd)−1dw[)].

This gives the following alternate form of the geodesic equation

(4.2) Arut + P (∇uA
ru+ (∇u)†(Aru)) = 0,

using the fact that div u = 0, which in turn leads to the Lagrangian form

(4.3)
D

dt

dη

dt
= −Pη

[
A−r

([
div ηt ◦ η−1 + (∇ηt ◦ η−1)†

]
◦ η (Ar(ηt ◦ η−1) ◦ η

)
− A−r

(
(∇ηt◦η−1Ar(ηt ◦ η−1)− Ar(∇ηt◦η−1(ηt ◦ η−1))

)
◦ η
]
.

Smoothness of the right hand side for r ≥ 1 follows now again as in Theorem 4.1 and
from smoothness of the projection operator Pη = dRη ◦ P ◦ dRη−1 , which was first
established in [EM].

For r = 0, there is an additional cancelation in (4.2) coming from the formula

(∇u)†(u) =
1

2
∇〈u, u〉,

which, as a gradient, vanishes after orthogonal projection onto the space of divergence-
free vector fields. Hence there is no derivative loss.5 �

Theorem 4.4. Suppose Gs = Virs(S1) is the Hs Bott-Virasoro group with right-
invariant Hr metric given by (2.15). If r is an integer with r ≥ 2 and s > 2r, then
the metric and connection are both C∞. Therefore the Riemannian exponential map is
C∞, and in particular gives a local diffeomorphism.

This theorem was proved by Constantin et al. [CKKT].

Remark 4.5. It should be noted that even if r < 1 in Theorem 4.1 or r < 2 in Theorem
4.4, we may still have existence and uniqueness of solutions. For example, when r = 0
on Ds(S1), one can construct the solutions of Burgers’ equation implicitly, and when
r = 1 on Virs(S1), one can prove directly that solutions of the KdV equation exist.
However, in these cases the exponential map is continuous but not even C1, see e.g.,
[CKKT]. The existence of a smooth exponential map allows us to use the techniques
of finite-dimensional Riemannian geometry and study conjugate points in terms of the
Jacobi equation. We turn to this in the next section.

Finally, let us record for later purposes the following obvious fact.

Corollary 4.6. Let Gs be either Ds(M), Dsµ(M), or Virs(S1), and suppose r and s
satisfy the hypotheses of Theorems 4.1, 4.3, or 4.4 respectively. For any uo ∈ TeGs the
map

d expe(tuo) : TtuoTeG
s ' TeG

s → Texpe(tuo)G
s

5For more details of these computations when r = 0, see [EM]; when r = 1, see [Shk].
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is a bounded linear operator satisfying d expe(0) = I. Consequently, the exponential
map is a local diffeomorphism in a neighborhood of the identity in Gs.

As in finite dimensions expe maps rays from the origin in TeG
s to geodesics in Gs

preserving their initial velocities. Its derivative at origin is therefore the identity map
and the result follows at once from the inverse function theorem for Banach manifolds,
see e.g., Lang [La].

5. Conjugate points and the Jacobi equation

We proceed to study the singularities of the exponential map, i.e., the conjugate
points. The structure and distribution of these points in an abstract Hilbert manifold
can be very complicated. First of all, unlike in finite-dimensional geometry, there are
two possible mechanisms for the failure of the derivative of the exponential map to be
an isomorphism between tangent spaces. We say that a point q is monoconjugate to p
along a geodesic joining them if the kernel of d expp (considered as a linear operator
from the tangent space at p to that at q) is nonempty. q is called epiconjugate to p if the
range of this operator is a proper (not necessarily closed) subspace of the tangent space
at q. Roughly speaking, the former are responsible for the minimizing properties of
geodesics while the latter are related to the covering properties of the exponential map.
Furthermore, again in contrast with finite dimensions, it is possible to find examples
of conjugate points with conjugacies of infinite order and which have accumulation
points along finite geodesic segments, as well as points which are epiconjugate but not
monoconjugate.

Example 5.1. Any point on the unit sphere in the space `2 of square-summable
sequences equipped with the induced metric is monoconjugate of infinite order to its
antipodal point along any great circle joining them.

Example 5.2 (Grossman [Gr]). Consider the ellipsoid in `2 defined by

E =
{
{xn} ∈ `2 :

∞∑
n=1

anx
2
n = 1 where a1 = a2 = 1 and 0 < a3 < · · · < an ↗ 1

}
and let γ(t) = (cos t, sin t, 0, . . . ) be the geodesic of the metric induced from `2. Then
there is a sequence γ(π/

√
an) of monoconjugate points whose limit point γ(π) is epi-

conjugate to γ(0) but not monoconjugate.

Example 5.3. Similar phenomena arise on diffeomorphism groups. On any volumor-
phism group, a one-parameter subgroup of isometries γ is always a geodesic, and one
can compute all conjugate points along such a geodesic explicitly. On Dsµ(D2 × S1),
[EMP] found a sequence of monoconjugate points along a geodesic of rigid rotation
which approach an epiconjugate point. [P2] showed that on Dsµ(S3), the point γ(qπ)
is monoconjugate to e for every rational q ≥ 1 of infinite order, and that for every
real t ≥ π, γ(t) is epiconjugate to e. [P3] showed that such phenomena are typical for
geodesics in Dsµ(M3).
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For a deeper study of conjugate points in Gs, we turn to the Jacobi equation, whose
solutions give us precise information about the differential of the exponential map of
the right-invariant Hr metric (2.13). Consider a geodesic η(t) = expe(tuo) starting from
the identity in the direction uo ∈ TeGs. Then the Jacobi field J(t) along η satisfying
J(0) = 0 and J̇(0) = wo is defined by

J(t) ≡ d expe(tuo)two, for any wo ∈ TeGs.

In the remainder of this section we will use formal arguments to derive the Jacobi
equation along η directly on the tangent space at the identity as a linearization of the
corresponding geodesic equation (cf. Theorem 3.2). This will produce a convenient
formula for the solution operator of the Jacobi equation (Theorem 5.6 below). We will
justify these constructions in Section 6 and Section 7.

Proposition 5.4. Suppose G is any Lie group with a (possibly weak) right-invariant
metric. Let η(t) be a smooth geodesic with η(0) = e and η̇(0) = uo. Then every Jacobi
field J(t) along η satisfies the following system of equations on TeG:

(5.1)
dy

dt
− adu y = z,

dz

dt
+ ad∗u z + ad∗z u = 0,

where J(t) = dRη(t)y(t) and η̇(t) = dRη(t)u(t) as in (3.3).

Proof. Let ησ(t) = expe t(uo + σwo) be a smooth variation of η(t) through geodesics in
the group. Set y(t) = dRη(t)−1

(
∂σ|σ=0ησ(t)

)
and z(t) = ∂σ|σ=0dRησ(t)−1∂tησ(t). Then

differentiating equations (3.3) and (3.4) with respect to the parameter σ and evaluating
at σ = 0 we obtain (5.1). �

If G = Gs then in general the operators appearing in the equations (5.1) may not be
bounded in the Sobolev norms, since applying the Lie algebra adjoint adu as well as
its coadjoint ad∗u will typically involve derivative loss as explained in Remark 3.3. On
the other hand, when the exponential map is C1 then its derivative is a bounded linear
map in the Hs topology (Corollary 4.6) and the Jacobi equation will be well-posed (see
also Section 8 below).6

We proceed next to rewrite the Jacobi equation in terms of the coadjoint represen-
tations, as we did for the geodesic equation.

Proposition 5.5. Let G and η(t) be as in Proposition 5.4. Then every Jacobi field
J(t) along η satisfies the following system on TeG

(5.2)
dw

dt
= v,

d

dt

(
Ad∗η Adη v

)
+ ad∗v uo = 0

where J(t) = dLη(t)w(t).

6Precisely, we approximate η and hence u by C∞ geodesics to make sense of (5.1) for y and z in
Hs, then use a limiting procedure and Corollary 4.6 to show that the results are still valid if η and u
are only Hs.
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Proof. We first rewrite equations (5.1) using the group adjoint operator as

d

dt

(
Adη(t)−1y(t)

)
= Adη(t)−1z(t),

d

dt

(
Ad∗η(t)z(t)

)
+ Ad∗η(t) ad∗z(t) u(t) = 0

and then simplify the second of these equations with the help of the conservation law
(3.5) and the identity

〈Ad∗η(t) ad∗z(t) u(t), v〉 = 〈u(t), adz(t) Adη(t) v〉 =
〈
u(t),Adη(t) adAdη(t)−1 z(t) v

〉
=
〈

ad∗Adη(t)−1 z(t)
Ad∗η(t) u(t), v

〉
=
〈

ad∗Adη(t)−1 z(t)
uo, v

〉
valid for any v in TeG. Setting w(t) = Adη(t)−1 y(t) and v(t) = Adη(t)−1 z(t) the system
(5.1) becomes (5.2). �

Therefore, the differential of the Riemannian exponential map at tuo ∈ TeG applied
to the vector two ∈ TeG may now be expressed in different ways as

(5.3) (d expe)tuo(two) = J(t) = dRexpe(tuo)y(t) = dLexpe(tuo)w(t)

where y(t) solves the system (5.1) and w(t) solves (5.2) with

(5.4) y(0) = w(0) = 0, ∂ty(0) = ∂tw(0) = wo,

and where J(t) is the Jacobi field along η satisfying the same initial conditions.
Denoting the solution operator of the Cauchy problem (5.2) and (5.4) by

Φ(t) : TeG→ TeG, Φ(t)(wo) = w(t)

we now proceed as in [EMP] and derive (formally) an integral equation for Φ(t).

Theorem 5.6. Let G and η(t) be as in Proposition 5.4. Let Λ(t) and Kuo be the linear
operators on TeG defined by the formulas

(5.5) Λ(t)(w) = Ad∗η(t) Adη(t)(w)

and

(5.6) Kuo(w) = ad∗w uo.

Then the solution operator Φ(t) = tdLη(t)−1(d expe)tuo satisfies the equation

(5.7) Φ(t) = Ω(t) +

∫ t

0

Λ(τ)−1KuoΦ(τ) dτ

where

(5.8) Ω(t) =

∫ t

0

Λ(τ)−1 dτ.

Proof. In terms of Λ(t) and Kuo equation (5.2) becomes

d

dt

(
Λ(t)v(t)

)
+
d

dt

(
Kuow(t)

)
= 0

which integrates to
Λ(t)v(t) = wo −Kuow(t)
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since v(0) = wo and w(0) = 0. Solving this equation for v(t) and integrating once
again in time we obtain

w(t) =

∫ t

0

Λ(τ)−1wo dτ +

∫ t

0

Λ(τ)−1Kuow(τ) dτ,

which implies (5.7) since w(t) = Φ(t)(wo). �

6. Fredholmness in the weak Hr topology

Our main result in this section imposes conditions on the Sobolev indices r and
s which guarantee that the differential of the exponential map of the Hr metric on
the various diffeomorphism groups Gs is weakly Fredholm. In this section we do not
assume that r is an integer.

Recall that a bounded linear operator between Banach spaces T : X → Y is weakly
Fredholm7 if

(6.1) dim kerT <∞ and dimY
/

ranT
Y
<∞.

Clearly, every Fredholm operator is weakly Fredholm. On the other hand it is not
difficult to check that the bounded linear map T

(
{xn}∞n=1

)
= {xn/n}∞n=1 on the space

of square-summable sequences `2 satisfies both conditions in (6.1) yet its range is not
closed in `2. A more pertinent example is the following.

Example 6.1. Consider the ellipsoid from Example 5.2. Explicit calculations with
Jacobi fields along γ(t) show that γ(π) is epiconjugate but not monoconjugate to γ(0),
while the range of d expγ(0)(πγ̇(0)) is a dense subspace of Tγ(π)E . It follows that both
numbers in (6.1) are zero and hence the differential of the exponential map at p is
weakly Fredholm.

To proceed we need to justify the constructions of the previous section. In what
follows TeG

r = TeGsH
r

will denote the completion of the space TeG
s in the Hr-norm.

We begin by showing that the operators introduced formally in Theorem 5.6 are well-
defined continuous maps on TeG

r enjoying certain additional properties.

Lemma 6.2. Let Gs be either the full diffeomorphism group Ds(M), the group of exact
volumorphisms Dsµ,ex(M), or the Bott-Virasoro group Virs(S1), equipped with a right-
invariant Hr metric given by (2.13), (2.14), or (2.15). Assume that r > ro (see Lemma
6.3 below), s > n/2 + |r| + 1 for Ds(M) or Dsµ(M), and s > 5/2 for Virs(S1). Then,
for any η ∈ Gs the maps Adη,Ad∗η and Λ are bounded invertible operators on TeG

r.

Proof. Recall from (2.6) that the adjoint representation of the full diffeomorphism
group Gs = Ds(M) is given by the formula Adη(v) = η∗v. To show that Adη is
bounded it is sufficient to estimate the (right-invariant) Hr norm of the expression
Dη ◦ η−1v ◦ η−1 in every coordinate chart U on M , using smooth partitions of unity.

7We refer to Gonzalez and Harte [GH] for a detailed discussion of weakly Fredholm operators and
their “index” defined as the difference of the two numbers in (6.1).
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Since Zygmund functions8 of class Cσ
∗ are (pointwise) multipliers of any Sobolev space

Hρ(U) whenever σ > max (ρ,−ρ), choosing σ = s− n/2− 1 we obtain

‖Adη v‖Hr ' ‖Dη v‖Hr . ‖Dη‖Cσ∗ ‖v‖Hr . ‖η‖Hs‖v‖Hr
where the last inequality is a consequence of the Sobolev embedding theorem for Hölder-
Zygmund spaces, see e.g., [T1], Appendix A.

It follows that Adη has a unique extension to a bounded linear operator on the
Hilbert space TeG

r. Furthermore, it is invertible with Ad−1
η = Adη−1 . Consequently its

adjoint (with respect to the Hr-inner product on TeG
r) is also invertible and satisfies

(Ad∗η)
−1 = Ad∗η−1 . In addition, their product Λ = Ad∗η Adη is self-adjoint on TeG

r and
we have equality of operator norms

‖Adη‖L(Hr)
= ‖Ad∗η‖L(Hr)

= ‖Ad∗η Adη‖1/2L(Hr)
= ‖Λ‖1/2

L(Hr)
.

The result follows for Ds(M), and the result for Dsµ(M) is an obvious consequence.
It remains to consider the case when Gs is the Bott-Virasoro group. However, recall

from (2.10) the formula

Ad(η,ρ)(v, q) =

(
η∗v, q +

∫
S1

Sη(θ)v(θ) dθ

)
and note that we can rewrite the integral above using (2.11) as

−
∫
S1

(
η′′v′

η′
+
η′′2v

2η′2

)
dθ.

If η ∈ Hs then η′′ is in Hs−2 so that η′′2 is in L2 as long as s− 2 > 1/2, i.e., s > 5/2.
In this case we also have η′ ∈ C1, so that 1

η′
is in C1 since η is a diffeomorphism. Thus

the integral is bounded as long as v ∈ H1 (a condition satisfied whenever r > ro, see
Lemma 6.3 below). �

Lemma 6.3. For each group Gs considered, there is a critical value ro such that when
r > ro and s is sufficiently large, then for each u in TeG

s the operator Ku : TeG
r → TeG

r

defined in (5.6) is compact.
The critical values ro and the values of s needed are given as follows:

• When Gs = Ds(M), ro = 1
2

and s > |r − 1|+ 2r + 1 + n/2.

• When Gs = Dsµ(M2), ro = −1
2

and s > 3|r|+ 3.
• When Gs = Dsµ(Mn) for n ≥ 3, ro = 0 and s > 3r + 1 + n/2.

• When Gs = Virs(S1), ro = 3
2

and s > 3r + 1/2.

Proof. First, consider the case when Gs = Ds(M) is the full diffeomorphism group. By
formula (3.8) we have

Ku(v) = A−r
(
∇v(A

ru) + (div v)Aru+ (∇v)†(Aru)
)
.

8For details on Hölder-Zygmund spaces and their basic properties see for example Triebel [Tr] or
Taylor [T1].
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To prove that Ku is compact it is enough to show that in any coordinate chart U as
above the map v 7→ ∇v(A

ru) + (div v)Aru+ (∇v)†(Aru) is bounded as an operator on
the spaces of Rn-valued functions from Hr(U) to Hr−1(U). It will then follow that Ku

is bounded from Hr(U) into H3r−1(U) and hence compact into Hr(U) by the Rellich
Lemma, since r > 1/2 = r0 by assumption.

Fixing a coordinate chart and using multiplier estimates in Sobolev spaces as in the
previous proof we can bound each of the three terms above separately. First, observe
that ∇v(A

ru) is tensorial in v and therefore for any ε > 0 we have

(6.2) ‖∇v(A
ru)[‖Hr−1 . ‖(Aru)[‖C|r−1|+1+ε‖v‖Hr−1 . ‖u‖C|r−1|+2r+1+ε‖v‖Hr−1

and, similarly, we obtain

‖(div v + (∇v)†)Aru‖Hr−1 . ‖Aru‖C|r−1|+ε‖div v‖Hr−1 . ‖u‖C|r−1|+2r+ε‖v‖Hr ,

(see e.g., [Tr]). Hence all three terms are bounded by

. ‖u‖C|r−1|+2r+1+ε‖v‖Hr . ‖u‖Hs‖v‖Hr

provided that s > n/2 + |r − 1|+ 2r + 1 and ε is chosen suitably small.
Next, we use the same technique for the subgroup of exact volumorphisms Gs =
Dsµ,ex(M2). In this case we have from (3.10) that

ad∗v u = sgradA−r∆−1〈v,∇ curl(Aru)〉

and therefore

‖〈v,∇ curl(Aru)〉‖Hr . ‖∇ curlAru‖Cr+ε‖v‖Hr . ‖u‖C3r+2+ε‖v‖Hr ,

so that

‖ ad∗v u‖H3r+1 . ‖u‖C3r+2+ε‖v‖Hr .

Hence as long as r > ro = −1
2

and s > 3|r|+ 2 +n/2 = 3|r|+ 3, the operator Ku maps
Hr into H3r+1 and is hence compact by the Rellich Lemma.

In dimension three or higher, the same technique using the formula

ad∗v u = (δA−r∆−1d(ιv(dA
ru[)))]

yields

‖ιv(dAru[)‖Hr ≤ ‖u‖C3r+1+ε‖v‖Hr ,

so that

‖ ad∗v u‖H3r . ‖u‖C3r+1+ε‖v‖Hr ,

and we get compactness for s > 3r + 1 + n/2 and r > ro = 0.
For the Bott-Virasoro group, we use formula (3.12)

ad∗(v,q)(u, p) =
(
A−r(vAru′ + 2v′Aru+ pv′′′), 0

)
so that from above we have

‖A−r(vAru′ + 2v′Aru)‖H3r−1 . ‖u‖C|r−1|+2r+1+ε‖v‖Hr
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and thus we only need to worry about the term arising from the central extension.
However, if p 6= 0, we clearly have

‖A−r(pv′′′)‖H3r−3 . ‖v‖Hr ,

and so we conclude that Ku is compact on Hr as long as r > ro = 3
2

and s > |r − 1|+
2r + 3

2
= 3r + 1

2
. �

One can obtain stronger statements for higher Sobolev metrics, for example that Ku

is Hilbert-Schmidt or trace class for sufficiently large r. We will not make any use of
these observations in this paper however.

Remark 6.4. While the linear operators Ku may make sense for r small or even negative,
the well-posedness results Theorems 4.1–4.4 require more, and Fredholmness will only
make sense when there is a C1 exponential map. Hence the conditions under which
the well-posedness results are valid in addition to Lemma 6.2 and Lemma 6.3 are that
r and s are integers, and in addition:

• for the full diffeomorphism group Gs = Ds(M), we need r ≥ 1 and s > 3r+n/2.
• for the two-dimensional exact volumorphism group Gs = Dsµ,ex(M2), we need
r ≥ 0 and s > 3r + 3.
• for the higher-dimensional exact volumorphism group Gs = Dsµ,ex(Mn), we need
r ≥ 1 and s > 3r + n/2 + 1.
• for the Bott-Virasoro group Gs = Virs(S1), we need r ≥ 2 and s > 3r + 1/2.

We are now ready to state the main result of this section.

Theorem 6.5. Let Gs be Ds(M), Dsµ(M), or Virs(S1). Assume that r and s satisfy
the conditions of Remark 6.4. For any uo ∈ TeG (i.e., C∞ smooth) let η(t) = expe(tuo)
be the geodesic of the Hr metric (2.13) defined on [0, T ) for some T > 0. Then
the differential d expe(tuo) : TeG

s → Tη(t)G
s is a weakly Fredholm operator for every

t ∈ [0, T ).

Proof. We already know that d expe(tuo) is continuous in theHs topology (see Corollary
4.6) and therefore we only need to establish the two conditions in (6.1). Furthermore,
since uo is smooth, Theorems 4.1–4.4 imply that η(t) is also smooth and hence the
differential of the left translation dLη(t) is bounded and has a bounded inverse on TGs.
Thus, showing that d expe(tuo) has finite dimensional kernel in TeG

s is equivalent to
showing that the same is true for the solution operator Φ(t) = tdLη(t)−1 ◦ d expe(tuo)
(cf. Theorem 5.6) considered as a bounded linear map on TeG

s.
We proceed indirectly and first consider the unique bounded extension of the solution

operator (which we continue to denote by Φ4(t)) to the completion TeG
r = TeGsH

r

.
By Lemma 6.2 the first term on the right hand side of (5.7) is a well-defined bounded
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operator on TeG
r. Furthermore, for any w in TeG

r we have

〈w,Ω(t)w〉
Hr

=

∫ t

0

〈w,Λ(τ)−1w〉
Hr
dτ =

∫ t

0

〈
Ad∗η(τ)−1 w,Ad∗η(τ)−1 w

〉
Hr
dτ

≥

∫ t

0

dτ∥∥Ad∗η(τ)
∥∥2

Hr

 ‖w‖2
Hr

(6.3)

which implies that Ω(t) is bounded below (and self-adjoint) and hence invertible on
TeG

r for each 0 < t < T .
Regarding the second term in (5.7), observe that since Kuo is compact on TeG

r by
Lemma 6.3, boundedness of the operators Φ(τ) and Λ(τ)−1 implies compactness of the
composition Λ(τ)−1KuoΦ(τ) for every 0 ≤ τ ≤ t. Consequently, since the integral

(6.4) Γ(t) =

∫ t

0

Λ(τ)−1KuoΦ(τ) dτ, 0 < t < T

is a limit of Riemann sums, and each sum is a compact operator, Γ(t) is also compact
as a linear map on TeG

r.
Therefore Φ(t) = tdLη(t)−1d expe(tuo) : TeG

r → TeG
r is a sum of an invertible opera-

tor and a compact operator, and hence Fredholm. In particular, since ker d expe(tuo) =
ker Φ(t) we conclude that the kernel of d expe(tuo) is a finite-dimensional subspace of
TeG

s ⊂ TeG
r.

Next, in order to show that d expe(tuo) satisfies the second condition in (6.1) we
will compute the Hs adjoint of the operator Ψ(t) = tdRη(t)−1d expe(tuo) : TeG

s → TeG
s

and show that its kernel is also finite-dimensional. The proof (valid for any Hilbert
manifold with a weak Riemannian metric) of the following identity can be found for
example in [Gr].

Lemma 6.6. If η(t) = expe(tuo), then for any w ∈ TeGs and v ∈ Tη(t)Gs we have

〈d expe(tuo)w, v〉Hr = 〈w, d expη(t)(−tη̇(t))v〉
Hr
.

Since Ψ(t) is bounded on TeG
s it suffices to carry out the calculation assuming that

w1, w2 ∈ TeG are C∞ smooth. Using Lemma 6.6 we have9

〈w1,Ψ(t)(w2)〉Hs = 〈As−rw1,Ψ(t)(w2)〉Hr =
〈
As−rw1, tdRη(t)−1d expe(tuo)w2

〉
Hr

=
〈
td expη(t)(−tη̇(t))dRη(t)A

s−rw1, w2

〉
Hr

= 〈Ψ(t)∗As−rw1, w2〉Hr
= 〈A−s+rΨ(t)∗As−rw1, w2〉Hs .

The (densely defined) operator defined by the above identity

A−s+rΨ(t)∗As−r = tA−s+rd expη(t)(−tη̇(t))dRη(t)A
s−r

9As in the previous sections we reserve the notation L∗ for the adjoint of L computed with respect
to the Hr inner product.
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extends to the unique Hs adjoint of Ψ(t) on TeG
s. Using right invariance of the Hr

metric (and hence its exponential map) we can rewrite this formula further as

tA−s+rdRη(t)d expe(−u(t))As−r

since η̇(t) = dRη(t)u(t). This formula10 shows that the kernel of the Hs-adjoint of Ψ(t)
is a finite dimensional subspace of TeG

s. Consequently, the kernel of the Hs-adjoint of
d expe(tuo) must also be finite dimensional. The theorem follows since

(6.5) Tη(t)G
s = ker d expe(tuo)⊕Hs

ran d expe(tuo)
Hs

.

�

It is worth stating separately another result established in the course of the above
proof because of its independent interest.

Corollary 6.7. The (unique) bounded extension of d expe(tuo) to a linear map between
TeG

r and Tη(t)G
r is a Fredholm operator.

In particular, ran(d expe(tuo)) is a closed subspace of Tη(t)G
r.

Remark 6.8. Corollary 6.7 was proved in [EMP] in the case when r = 0 and Gs =
Dsµ(M2) is the group of volume-preserving diffeomorphisms of a compact surface with
or without boundary (which corresponds to 2D hydrodynamics). The argument used
in the proof of Theorem 6.5 shows that in this case the associated L2 exponential map
is weakly Fredholm. However, it is still unknown whether this map is in fact Fredholm
when M2 has boundary. The major complication arises due to the derivatives normal
to the boundary used in defining the Hs topology; in particular, it is not true that if
u is divergence-free and tangent to the boundary, ∂Nu is as well.

Remark 6.9. The relationship between weakly and strongly Fredholm maps is still not
entirely clear, but some things are known. If Φ denotes d exp in the Hs topology and
Φ̃ denotes the extension to the Hr topology, one can define weakly monoconjugate
points as the points in the kernel of Φ̃ and strongly monoconjugate points as those in
the kernel of Φ; similarly for weakly and strongly epiconjugate points. It is easy to see
that any strongly monoconjugate point must be weakly monoconjugate, and that every
strongly epiconjugate point must be weakly epiconjugate. Along smooth geodesics, we
can further say that any weakly epiconjugate point is also strongly epiconjugate; see
[P3]. However, other implications are unknown and possibly nontrivial.

Remark 6.10. The techniques used to prove Theorem 6.5 can easily be applied to
any geodesic equation arising from a right-invariant metric on an infinite-dimensional
group. In the more general setting of weak Riemannian metrics on manifolds of maps
without any group structure, other techniques are required. Perhaps the simplest one
is to use directly the Jacobi equation D2J/dt2 +R(J, η̇)η̇ = 0. If the curvature operator
J 7→ R(J, v)v is compact in some weaker norm for any fixed v, then Fredholmness

10In fact, it establishes a 1-1 correspondence between the kernel of Ψ(t) and that of its Hs-adjoint.
As a result, every monoconjugate point is necessarily epiconjugate.
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follows as in [Mi2], using parallel translation and Egorov’s theorem on conjugation by
Fourier integral operators. If the curvature operator is not compact, one may still
hope to separate it into positive and negative operators; only positive curvature yields
conjugate points, so one might hope the positive part is a compact operator. In the
following examples we show that this generally does not happen for the spaces we are
considering, so that the group structure is essential for Fredholmness.

Example 6.11. Let Ds(S1) be the group of Hs diffeomorphisms of the circle with
s > 3/2 equipped with the right-invariant H1 metric (take r = 1 in (2.13) above).
Fix a non-zero integer k and let u(x) = cos kx. Then the sectional curvature at the
identity is positive and bounded below on an infinite-dimensional subspace containing
the vector u. In fact, for |l| > |k| we have

K(cos lx, cos kx) =
π(1 + 1

4
k2l2 + . . . )

2(1 + k2)(1 + l2)
→ πk2

8(1 + k2)

as |l| → ∞ (cf. [Mi4], Theorem 6.4). Therefore, there are infinitely many positive
eigenvalues of the curvature operator w → R(w, η̇)η̇ which are bounded away from
zero and hence even the positive part of the operator cannot be compact. On the other
hand, according to our main result in Section 7 (Theorem 7.1) the H1 exponential map
on Ds(S1) is Fredholm.

Example 6.12. Let Dsµ,ex(T2) be the group of exact volumorphisms on the 2-torus

with s > 2 and right-invariant L2 metric (r = 0 in (2.14)). By [Mi1] we can write the
curvature operator as

R(u, v)v = P (∇u∇p−∇v∇q),

where p and q are functions such that ∆p = − div (∇vv) and ∆q = − div (∇uv).
Let V be an open set which is not all of T2, and suppose v = sgrad g with supp(g) ⊂ V

and g an approximate delta function. Then it is easy to compute that ∆p = 2(gxxgyy−
g2
xy), so that ∆p ≡ 0 outside V . However p will not be constant outside V , and so there

is some open set U disjoint from V where either pxx or pyy is strictly positive. Suppose
without loss of generality that pxx ≥ δ > 0 on U and that |pxy| ≤M and |pyy| ≤M for
some M . Letting h be a C∞ function on R vanishing outside [−1, 1], we can define f
in a small coordinate patch inside U by the formula f = h(x2/ε4 + y2/ε2), zero outside
the ellipse x2/ε4 + y2/ε2 ≤ 1. Set u = sgrad f .

Since the supports of u and v are disjoint, we know q ≡ 0. Furthermore inside the
ellipsoid u looks like u = h′(x2/ε4 + y2/ε2)( y

ε2
∂x − x

ε4
∂y). It is then easy to see that

for ε sufficiently small, we have 〈R(u, v)v, u〉L2 ≥ δ
2
|u|2L2 . Furthermore, since there are

infinitely many disjoint such ellipsoids inside U , we have an infinite dimensional space
on which the curvature operator is positive and bounded away from zero.

Hence Fredholmness of the exponential map for a right-invariant metric comes fun-
damentally from the group structure, rather than from convenient curvature properties.
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7. Fredholmness in the strong Hs topology

We have already observed that the decomposition (5.7) does not work in Hs because
of the loss of derivatives involved in calculating the differential of left composition with
an Hs diffeomorphism and hence also in computing the group adjoint operator Adη etc.
Therefore, to show Fredholmness of the exponential map in the (strong) Hs topology
we will use a simple perturbation argument.

We prove that d expe(tuo) : TeG
s → Tη(t)G

s is Fredholm whenever uo is C∞ smooth,
using commutator estimates. Then, for any uo ∈ Gs, we approximate d expe(tuo) by a
Fredholm operator with a smooth parameter and use the fact that Fredholm operators
form an open subset of the space of all bounded maps from TeG

s to Tη(t)G
s.

Theorem 7.1. Let Gs be either the group of diffeomorphisms Ds(M), the exact volu-
morphism group Dsµ,ex(M), or the Bott-Virasoro group Virs(S1), with a right-invariant
Hr metric. Assume that s and r are as in Remark 6.4, so that the weak Riemannian
exponential map is C1 and its differential is weakly Fredholm.

Then for any uo ∈ TeGs the exponential map of the Hr metric (2.13) is a nonlinear
Fredholm map; i.e., its differential d expe(tuo) : TeG

s → Tη(t)G
s is a Fredholm operator

in the Hs topology for all t in the maximal interval of existence of η(t) = expe(tuo).

Proof. Suppose first that uo ∈ TeG, i.e., that uo is C∞. Then the geodesic η(t) is
in Hs for all sufficiently large s and hence is C∞ smooth as long as it exists, say on
some interval [0, T ). From Theorem 6.5 we already know that d expe(tuo) is weakly
Fredholm. Therefore our only task will be to show that ran d expe(tuo) is a closed
subspace of Tη(t)G

s.
Consider the operator Ω(t) defined in (5.8). For any w in TeG

s, we have

〈w,Ω(t)w〉
Hs

=

∫ t

0

〈
w,As−rΛ(τ)−1w

〉
Hr
dτ

=

∫ t

0

〈
A

s−r
2 w,Λ(τ)−1A

s−r
2 w
〉
Hr
dτ +

∫ t

0

〈
A

s−r
2 w,

[
A

s−r
2 ,Λ(τ)−1

]
w
〉
Hr
dτ

=

∫ t

0

‖Ad∗η(τ)−1 A
s−r
2 w‖2

Hr
dτ

−
∫ t

0

〈
w,A−

s−r
2 Λ(τ)−1

[
A

s−r
2 ,Λ(τ)

]
Λ(τ)−1w

〉
Hs
dτ

since Ad∗η is the adjoint operator of Adη with respect to the Hr inner product (2.13).
For the first term on the right side above, we have

(7.1) ‖Ad∗η(τ)−1 A
s−r
2 w‖2

Hr
≥ 1

‖Ad∗η(τ)‖2L(Hr)

‖A
s−r
2 w‖2

Hr
=

1

‖Ad∗η(τ)‖2L(Hr)

‖w‖2
Hs
.
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Using the fact that Λ(τ) = Λ∗(τ) is self-adjoint, we bound the second term by duality
(suppressing the dependence on τ for notational simplicity)〈

w,A−
s−r
2 Λ−1

[
A

s−r
2 ,Λ

]
Λ−1w

〉
Hs

=
〈
A

s
2w,A

r
2 Λ−1

[
A

s−r
2 ,Λ

]
Λ−1w

〉
L2

. ‖w‖
Hs

∥∥Λ−1
[
A

s−r
2 ,Λ

]
Λ−1w

∥∥
Hr

≤ ‖w‖
Hs
‖Adη−1‖2

L(Hr)

∥∥[A s−r
2 ,Λ

]
Λ−1w

∥∥
Hr

(7.2)

and then exploit the presence of the commutator as follows. First, a straightforward
computation gives an explicit formula (again suppressing the dependence on τ)

Λ = PGA
−rMJ(η)Dη†ArηMDη

where as before

Arη(w) =
(
Ar(w ◦ η−1)

)
◦ η,

and MC is the multiplication operator by an n × n matrix C, whose transpose is
denoted by C†. (We use PG to denote the L2 projection onto TeG

s, if Gs is the exact
volumorphism group.)

Since Ar is an elliptic pseudodifferential operator in OPS2r
1,0 and η is a smooth dif-

feomorphism of M , the operator Arη is also in OPS2r
1,0. Moreover, for the volumorphism

subgroup the corresponding projection PG belongs to OPS0
1,0. It now follows from

general composition properties for such operators that Λ(τ) is a pseudodifferential op-
erator of class OPS0

1,0 on TeG
s whose principal symbol, in any coordinate chart on M ,

is given by a matrix of symbols of order zero. See Taylor [T1] for proofs of these and
following statements.

Consequently, since A(s−r)/2 ∈ OPSs−r1,0 has scalar principal symbol σA(s−r)/2(x, ξ) =

(1 + |ξ|s−r)I, the commutator [A(s−r)/2,Λ] is of class OPSs−r−1
1,0 . Using boundedness in

Sobolev norms of the operators in OPSm1,0 (for any m ∈ R), we can therefore further
estimate the right hand side of (7.2) by

‖w‖
Hs
‖Adη(τ)−1‖2

L(Hr)
‖Λ(τ)−1w‖

Hs−1 ≤ c(τ)‖w‖
Hs−1‖w‖Hs ,

where the constant c(τ) depends on η(τ). Combining this with estimates in (7.1) and
(7.2) for any t in [0, T ) we obtain

(7.3) ‖w‖
Hs
≤ c1‖Ω(t)w‖

Hs
+ c2‖w‖Hs−1

where c1 =
∫ t

0
‖Ad∗η(τ)‖−2

L(Hr)
dτ and c2 =

∫ t
0
c(τ)dτ .

To finish the argument in the case when uo is C∞ it suffices now to recall the formula
for the solution operator in (5.7)

Φ(t)w = Ω(t)w +

∫ t

0

Λ(τ)−1KuoΦ(τ)w dτ

which together with (7.3) yields (up to a constant depending on η) the estimate

(7.4) ‖w‖
Hs
. ‖Φ(t)w‖

Hs
+ ‖w‖

Hs−1 + ‖Γ(t)w‖
Hs
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where Γ(t) =
∫ t

0
Λ(τ)−1KuoΦ(τ) dτ is a compact operator on TeG

s (see (6.4) in the
proof of Theorem 6.5). This estimate implies that Φ(t) has closed range in TeG

s. It
follows that d expe(tuo) has closed range in Tη(t)G

s and thus in light of Theorem 6.5 is
Fredholm for any t ∈ [0, T ).

Assume now that uo (and hence η) is Hs. Approximate uo by a smooth vector field ũo
so that ‖uo−ũo‖Hs < ε, where ε will be determined momentarily. Since the exponential
map is C∞ in the Hs topology, its derivative uo 7→ d expe(tuo) depends smoothly on
uo (from Theorems 4.1–4.4). In particular, it is locally Lipschitz and therefore satisfies
‖d expe(tuo) − d expe(tũo)‖L(Hs)

. ‖uo − ũo‖Hs uniformly on any time interval [0, T ′]
with T ′ < T .

Shrinking the time interval a bit, if necessary, from the estimate in (7.4) we now
immediately obtain for any w in TeG

s

‖w‖
Hs
. ‖Φ̃(t)w‖

Hs
+ ‖w‖

Hs−1 + ‖Γ̃(t)w‖
Hs

. ‖d expe(tuo)w‖Hs + ‖d expe(tũo)w − d expe(tuo)w‖Hs + ‖w‖
Hs−1 + ‖Γ̃(t)w‖

Hs

. ‖d expe(tuo)w‖Hs + ε‖w‖
Hs

+ ‖w‖
Hs−1 + ‖Γ̃(t)w‖

Hs

where Φ̃(t) = tdLexpe(−tũo)d expe(tũo) and Γ̃(t) =
∫ t

0
Λ̃(τ)−1KũoΦ̃(τ) dτ are the opera-

tors corresponding to ũo ∈ TeG. Choosing ε > 0 small enough we deduce from this
inequality that d expe(tuo) has closed range in Hs and therefore is a Fredholm operator
from TeG

s into Tη(t)G
s.

The result follows from invariance of the index under compact perturbations and the
fact that ind Ω(t) = 0 for any t in [0, T ). �

Remark 7.2. Above we have been assuming that s is substantially larger than r. If
r = s, so that we have a strong metric on Gs, then a similar proof works to prove that if
uo and hence η are C∞, then the differential of the exponential map along η is Fredholm
in the Hs topology (the analog of the weak Fredholmness from the last section). A
similar approximation procedure gives strong Fredholmness for this situation.

In the next two sections we discuss some applications of Theorem 7.

8. The Morse Index Theorem in hydrodynamics

In [AK] (Remark 6.5, p. 225) the authors asked whether the index of a finite geodesic
segment in the volumorphism group with the right-invariant L2 metric (corresponding
to an ideal fluid flow) is finite. The main theorem of this section provides an affirmative
answer to this question for any two-dimensional fluid flow. The theorem itself is more
general and can be viewed as a hydrodynamical analogue of the Morse index theorem
in finite-dimensional geometry.

The same question can be asked about geodesics of any of the diffeomorphism groups
Gs equipped with the weak Hr metric (2.13). Our proof of Theorem 8.2, which follows
an abstract approach of [Uh] and relies on the Fredholm result of Theorem 7.1, would
differ in the general case only in minor technical details.
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Using different techniques, a result of this type has been recently obtained by Biliotti,
Exel, Piccione and Tausk [BEPT] for strong Riemannian Hilbert manifolds.

Our objective is to show that the index of the Hessian of the L2 energy functional

E(η) =
1

2

∫ 1

0

‖η̇(t)‖2
L2
dt

at a critical point η in Dsµ(M2) (a 2D fluid flow) joining the identity η(0) = e with η(1)
can be computed by counting the number of conjugate points (with their multiplicities)
along the geodesic.

For any 0 ≤ t ≤ 1 we let τt : TeDsµ(M2) → Tη(t)Dsµ(M2) denote the L2 parallel
transport operator. τt is an isomorphism of the tangent spaces along η preserving the
L2-metric (see e.g., [Mi1]), and we use it to identify the space of smooth vector fields
on η that are zero at e and η(t) with the space of TeDsµ-valued functions that vanish
at the endpoints. We complete the latter in the norm defined by the inner product

(8.1) 〈v, w〉Ḣ1
t L

2
x

=

∫ t

0

〈v̇(t′), ẇ(t′)〉
L2dt

′

and denote11 it by Ht = H1
0

(
[0, t], TeD0

µ

)
. We will consider any function in Ht to be

also an element of Ht1 by extending it by zero to the interval t ≤ t′ ≤ t1. The Hessian
of E can now be identified with the bounded symmetric bilinear form on Ht ×Ht

(8.2) It(v, w) =

∫ t

0

(
〈v̇(t′), ẇ(t′)〉

L2 − 〈Rη(v(t′)), w(t′)〉
L2

)
dt′

where Rη(v) = τ−1
t′ R

(
τt′v, η̇

)
η̇ is the L2 curvature tensor of Dsµ along η. The symmetry

of It is immediate from the symmetry properties of R. Moreover, we have

Lemma 8.1. For any v, w ∈ TeDsµ(Mn) we have the following estimate

‖R(w, v)v‖
Hσ
≤ C‖v‖2

Hs
‖w‖

Hσ
(0 ≤ σ ≤ s)

where the constant C depends on s > n/2 + 1.

One immediate corollary of this lemma (and the right-invariance of the curvature
tensor R) is the continuity of the bilinear form

|It(v, w)| .
(
1 + ‖η̇ ◦ η−1‖2

L∞t Hsx

)
‖v‖

Ḣ1
t L

2
x
‖w‖

Ḣ1
t L

2
x

(by Cauchy-Schwarz and the fact that τ(t) is an L2 isometry), and hence existence of
an associated bounded operator12 v 7→ Lt(v) = v + ∂−2

t Rt(v) on Ht computed directly
from (8.2) using (8.1) and integration by parts. Another direct consequence of Lemma
8.1 is the global well-posedness of the Jacobi equation along η.

11As before we use the notation TeD0
µ = TeDsµL2 .

12For any v ∈ Ht we set ∂−2
t v(t′) =

∫ t′
0

∫ r
0
f(r′) dr′dr − t′

t

∫ t
0

∫ r
0
f(r′) dr′dr.
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Proof. For the estimate in the case when σ = s we refer to [Mi1]. Let σ = 0. Since
Dsµ is a smooth submanifold of the full diffeomorphism group Ds we can express its
sectional curvature using the Gauss-Codazzi equations as

〈R(w, v)v, u〉
L2 = 〈R̄(w, v)v, u〉

L2 + 〈Q
L2∇wu,QL2∇vv〉L2 − 〈QL2∇vw,QL2∇uv〉L2

where ∇ is the covariant derivative on M , R̄ is the L2 curvature tensor of Ds and
Q
L2 = I − P

L2 is the Hodge projection onto the gradients.13 Using Cauchy-Schwarz
and the Sobolev lemma, we have

〈R̄(w, v)v, u〉
L2 =

∫
M

〈R(w(x), v(x))v(x), u(x)〉 dµ ≤ C‖v‖2
Hs
‖w‖

L2‖u‖L2 .

With the help of the formulas

Q
L2 = ∇∆−1div and div∇vw = tr (Dv ·Dw) + Ric(v, w)

where Ric(v, w) is the Ricci curvature of M , we similarly get

‖Q
L2∇vw‖L2 = ‖Q

L2∇wv‖L2 ≤ C‖v‖
Hs
‖w‖

L2 ,

and, for any positive α, a bound in Hölder norms

‖Q
L2∇vv‖C1+α ≤ Cα‖v‖Lip‖v‖C1+α .

Choosing α < s− n/2− 1 and integrating by parts, we obtain

〈Q
L2∇wu,QL2∇vv〉L2 = −〈u,∇wQL2∇vv〉L2 ≤ Cα‖v‖2Hs‖w‖L2‖u‖L2 ,

which gives the result for σ = 0. The full estimate follows by interpolating between
the L2 and the Hs estimates. �

Recall that the index i(t) of the form It is the dimension of the largest subspace of
Ht on which it is negative definite. Let j(t) be the dimension of the largest subspace
on which It is non-positive and set n(t) = j(t)− i(t). Our main result here is

Theorem 8.2. Let η(t), 0 ≤ t ≤ 1, be a geodesic from the identity e to η(1) in the
group of volumorphisms Dsµ(M2) of a surface without boundary. The index of the form
It is finite and equal to the number of conjugate points to e along η each counted with
multiplicity according to the formula ind(I1) = i(1) =

∑
0<t<1 n(t).

Theorem 8.2 will be obtained directly from the following abstract result.

Theorem 8.3 (Uhlenbeck [Uh]). Let Ht, 0 ≤ t ≤ 1, be an increasing family of Hilbert

spaces satisfying
⋃
t′<tHt′ = Ht =

⋂
t′>tHt′. Let B be a bilinear form such that

(1) B is Fredholm of finite index,
(2) B satisfies the unique continuation property.

Then the function i(t) (resp. j(t)) is l.s.c. (resp. u.s.c.), n(t) 6= 0 at only finitely many
points, and ind(B1)− ind(B0) =

∑
0<t<1 n(t), where Bt is the restriction of B to Ht.

13Note that so far we have been using the projection onto the exact volumorphism group; the
projection onto the full volumorphism differs by an operator whose range is the finite-dimensional
space of harmonic fields. This does not affect any of the results.
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As usual, a bilinear form on a Hilbert space is called Fredholm if the associated
linear operator is Fredholm. It is said to have the unique continuation property if the
kernels of these associated operators are pairwise disjoint.

Proof of Theorem 8.2. The required properties of the family Ht = H1
0

(
[0, t], TeD0

µ

)
are

immediate from the definitions. Thus we only need to show that the index form It
satisfies (1) and (2) above. Both conditions will follow from Fredholmness of the L2

exponential map and general linear ODE principles.
Since (Lt)

∗ = Lt is self-adjoint, in order to establish (1) it will be sufficient to show
that dim kerLt < ∞ and ranLt ⊂ Ht is closed. However, since v + ∂−2

t R(v) = 0 if
and only if v̈ +R(v) = 0, we see that kerLt coincides with the kernel (of the bounded
extension to TeD0

µ) of d expe(tη̇(0)) and so is finite dimensional by Corollary 6.7.
To show that the range of Lt is a closed subspace of Ht observe that, given any

w ∈ Ht, finding v ∈ Ht which satisfies w = Lt(v) is equivalent to solving the non-
homogeneous ODE system in TeD0

µ × TeD0
µ

d

dt

(
u
u̇

)
=

(
0 1
−R 0

)(
u
u̇

)
−
(

0
R(w)

)
where u = v − w(8.3)

subject to the conditions u(0) = u(t) = 0. Note that the right hand side of (8.3) is
bounded by Lemma 8.1. Using standard ODE theory in Banach spaces we first solve
the boundary value problem and then rewrite its (unique) solution u = uw (depending
continuously on the parameter w) in terms of the resolvent Ut of the corresponding
homogeneous Cauchy problem on TeD0

µ × TeD0
µ with initial data uw(0) = 0 and u̇w(0).

We therefore get a bounded linear map w 7→ v from Ht to itself

v(t′) = w(t′) + π1Ut′

((
0

u̇w(0)

)
−
∫ t′

0

U−s′

(
0

R(w)

)
ds′

)
, 0 ≤ t′ ≤ t ≤ 1

where π1 denotes the projection onto the 1st factor in TeD0
µ×TeD0

µ, which implies that
the range of Lt must be a closed subset of Ht for each 0 ≤ t ≤ 1.

It remains to establish the unique continuation property for the index form It in
condition (2). This however follows directly from the definition of the family Ht =
H t

0

(
[0, t], TeD0

µ

)
and the properties of Jacobi fields. For suppose that t′ < t and v ∈

kerLt ∩ kerLt′ . Then v is zero on the interval [t′, t] and therefore has zero initial data
at t′, which in turn implies by uniqueness of the solutions to the Jacobi equation that
it must be identically zero on the whole interval. �

Recall that, as in finite dimensional geometry, a monoconjugate point along some
geodesic γ can be thought of as the point where another geodesic, starting from the
same initial point, meets γ infinitesimally. As an application of the Morse Index The-
orem 8.2 we find that this is actually true locally and thus obtain a nice geometric
interpretation of conjugate points in hydrodynamics.

Remark 8.4. In finite dimensional Riemannian geometry a classical theorem of Morse
and Littauer states that the exponential map is never injective in any neighborhood
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of a conjugate point. An infinite dimensional analogue of this result was proved in
[BEPT] as a corollary of their Morse Index Theorem for strong Riemannian Hilbert
manifolds. We expect that the same result will hold for the L2 exponential map on
Dsµ(M2) as a direct application of Theorem 8.2 using the same argument as in the

strong Riemannian case.14

9. Covering properties of the exponential map

Our second application of the Fredholmness result of Section 7 is to surjectivity
properties of Hr exponential maps on diffeomorphism groups. We will focus on two
cases of particular interest: that of the strong Riemannian metric (r = s) on Gs and
that of 2D hydrodynamics (r = 0).

If r = s then Gs is a complete Riemannian Hilbert manifold and it follows from
a result of Ekeland [Ek] that the set of diffeomorphisms which can be connected to
the identity e by a minimal Hs geodesic in Gs contains a dense Gδ, i.e., a countable
intersection of open sets. (There are many explicit examples of points in complete
Riemannian Hilbert manifolds without minimizing geodesics, or even any geodesics,
joining them. See e.g., [At] and [Gr].) This result can be improved using Theorem 7.1.

In the case of the L2 metric on Dsµ(M2) our results are somewhat less satisfying. In
a pioneering paper [Shn1] Shnirelman showed that there exist configurations of a 3D
ideal fluid that cannot be connected by a minimizing L2 geodesic (see also [Shn2] or
the exposition in [AK]). However, he also conjectured that this problem has a solution
in 2D, see [Shn3]. Our result in Theorem 9.2 is an attempt to shed some light on this
conjecture.

We will rely heavily on the constructions of Rabier [R1] adapted to our situation.
Given expe : TeG

s → Gs we will consider the set of its generalized critical values

K =
{
η ∈ Gs : ∃vn ∈ TeGs such that lim

n
expe(vn) = η and lim

n
ν
(
d expe(vn)

)
= 0
}

where ν(T ) denotes the surjectivity modulus of a bounded linear operator T between
Banach spaces. We also introduce the sets

K0 =
{
η ∈ Gs : η = expe(v) for some v ∈ TeGs and ν

(
d expe(v)

)
= 0
}

and

K∞ =
{
η ∈ Gs : ∃vn ∈ TeGs with no converging subsequence in TeG

s and such that

lim
n

expe(vn) = η and lim
n
ν
(
d expe(vn)

)
= 0
}

consisting of critical values and asymptotic critical values of expe, respectively, as well
as the set

K̃ =
{
η ∈ Gs : ∃vn ∈ TeGs such that expe(vn) = η and lim

n
ν
(
d expe(vn)

)
= 0
}
.

It is not difficult to see that K is a closed subset of Gs with K = K0 ∪K∞ and that
K0 ⊂ K̃ ⊂ K ∩ ran(expe). Furthermore, the fact that expe is a Fredholm map by

14We thank Paolo Piccione for pointing out this result to us.
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Theorem 7.1 combined with the Smale-Sard theorem [Sma] implies that K0 must be
of first Baire category in Gs.

Consider now the case when Gs is a strong Riemannian Hilbert manifold.

Theorem 9.1. Any diffeomorphism in U = Gs\K can be connected to the identity e by
a minimizing Hs geodesic. Furthermore, the set K∞\ran(expe) is of first Baire category
in Gs and consists only of points whose Hs distance to e is infinite. In particular, the
set of diffeomorphisms that can be joined to e contains an open and dense subset of Gs.

Proof. First, observe that U is open and by the result of Ekeland (Theorem B, [Ek])
it is the only open connected component of the identity in Gs.

Next, since the exponential map is Fredholm we can apply Theorem 6.1 of [R1] to
deduce that it defines over U a (locally trivial) C0 fibre bundle. Thus, in particular,
expe maps onto U . Furthermore, local trivialization ensures that the fibre exp−1

e (η) over
any η ∈ U is homeomorphic to the fibre over the identity exp−1

e (e) = {0}∪S, a disjoint
union with S ⊂ TeG

s. Since expe is Fredholm of index zero, there is a natural bijection
between the kernel and the cokernel of its derivative. Moreover, by construction, the
surjectivity modulus ν(d expe) is strictly positive on exp−1

e (U), and thus restricted to
this set expe is a local diffeomorphism, by the inverse function theorem. This in turn
implies that S ∩ exp−1

e (U) must be a discrete set without any limit points in exp−1
e (U).

Therefore, given any η ∈ U we can always pick v ∈ exp−1
e (η) with the smallest norm,

and setting γ(t) = expe
(
tv/‖v‖Hs

)
, obtain a minimal geodesic connecting e to η.

In order to prove the second statement we will first show that K∞ \ K̃ is of first
category in Gs. Consider the set Σ = {v ∈ TeGs : ν(d expe(v)) = 0} of all critical points
of expe. We claim that this set has empty interior in TeG

s. In fact, no ray through the
origin in TeG

s intersects Σ along a nonempty interval. Otherwise we would obtain a
whole segment of conjugate points on the corresponding geodesic in Gs, contradicting
the fact that such points must be isolated along finite geodesic segments in Gs by the
Morse Index Theorem of Section 8. The first part of the second statement follows now

from Lemma 3.2 of [R2] since K̃ ⊂ ran(expe).
Finally, given η ∈ K∞ let vn be a sequence in TeG

s without converging subsequences
as in the definition of K∞ and let ηn = expe(vn). Observe that we can assume that
‖vn‖Hs grows without bound. Otherwise, vn would be confined to some Hs ball B in
TeG

s of sufficiently large radius, and since Fredholm maps are locally proper (see Smale
[Sma]), expeB

Hs would be a closed subset of Gs; thus ηn → η in Gs would necessarily
imply that η ∈ expeB

Hs . Next, assume that the Hs distance

d
Hs

(e, η) = inf
{
Ls(ω) : ω is a piecewise smooth curve in Gs from e to η

}
is finite (here Ls is the length functional of the Hs metric). Given any ε > 0 pick a
curve ωε whose length satisfies Ls(ωε) < d

Hs
(e, η) + ε. Since ηn → η in Gs we can pick

an N > 0 sufficiently large such that d
Hs

(ηn, η) < min (ε, ε1) whenever n ≥ N , where
ε1 > 0 is chosen so that expη : B(0, ε1) ⊂ TηG

s → Gs is a diffeomorphism onto some
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neighborhood of η. Then we have

d
Hs

(η, ηn) = ‖ exp−1
η (ηn)‖Hs < ε1

and hence
Ls(ωε) + d

Hs
(η, ηn) < d

Hs
(e, η) + 2 max (ε, ε1).

On the other hand, since d
Hs

(e, ηn) = ‖vn‖Hs ↗ ∞ we can always find n sufficiently
large such that

d
Hs

(e, η) + 2 max (ε, ε1) < ‖vn‖Hs .

However, this implies that the path

t→ ωε(t) ∪ expη
(
t exp−1

η (ηn)/‖ exp−1
η (ηn)‖Hs

)
in Gs from e to ηn is shorter than γn which contradicts minimality of γn. �

For the volumorphism group Dsµ(M2) equipped with the L2 metric we get a weaker

result. As before, we find that the L2 exponential map induces a fibre bundle over
the connected component of the identity and that the set K∞ \ ran(expe) is again of
first Baire category. However, in this case we cannot apply Ekeland’s theorem to rule
out the possibility that the corresponding set K of generalized critical values separates
Dsµ(M2) into disjoint open components. Nevertheless, we will show that the open

connected component U of e is in general a large subset of Dsµ(M2). For simplicity we

assume M2 = T2.

Theorem 9.2. The open connected component U of the identity e in Dsµ(M2) has

infinite L2 diameter. Moreover, the L2 exponential map expe : exp−1
e (U) → U is a

covering space map.

Proof. We only need to prove the first statement. To do this, we use the following
result of Eliashberg and Ratiu [ER].

If η is a symplectomorphism on M such that for some ball Q and a strictly smaller
ball Q0 we have η(Q) ⊂ Q and η|Q\Q0 ≡ id, then the L2 distance between the identity
and η is bounded below by a constant times the Calabi invariant of the restriction to
Q:

C|Cal(η|Q)| ≤ dL2(e, η).

Fix such a ball Q in M2 and choose polar coordinates such that r = 0 is the center
of Q, with r = b the outer radius of Q and r = a the outer radius of Q0. We can
assume that ω = dx ∧ dy = r dr ∧ dθ. Let u = φ(r) ∂θ for some C∞ function φ which
is identically zero for r ≥ a. Then u is a steady solution of the Euler equation (3.14),
and so the flow η(t) of u is a geodesic in Dµ(M2); clearly η(t) is the identity on M\Q0,
and η(t)(Q) ⊂ Q.

We compute the Calabi invariant for a symplectomorphism preserving a ball Q and
fixing a neighborhood of its boundary as follows. Since Q is simply connected, the
symplectic form ω is closed, with ω = dλ for some 1-form λ. Thus if η(t) is a curve in
the group of symplectomorphisms, we have η∗dλ = dλ, and hence d(η(t)∗λ − λ) = 0
for every t. Since (η(t)∗λ− λ) is a closed 1-form which is exact when t = 0, it must be
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exact for all t, and hence η(t)∗λ − λ = dh(t) for some time-dependent function h(t),
which vanishes on the boundary of Q. The Calabi invariant of η restricted to Q is then

Cal(η(1)|Q) =

∫
Q

h(1) dµ.

In this case we have λ = 1
2
(x dy − y dx) = 1

2
r2 dθ. With u = φ(r) ∂θ, we then have

η(t)∗λ = tr2

2
φ′(r) dr + r2

2
dθ, so that hr(t, r) = t r

2

2
φ′(r). Since φ is not constant, we

clearly obtain that |
∫
Q
h| = At for some positive constant A, and hence the distance

from e to η(t) is at least some constant multiple of t.
On the other hand, it is known that for a purely rotational flow on a flat space,

the curvature operator is nonpositive [P1]. Hence there are no conjugate points along
the geodesic η, and so the entire image of η(t) is contained in U . In particular, the
diameter of U is infinite. �
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[Li] L. Lichtenstein, Über einige Existenzprobleme der Hydrodynamik homogener unzusam-

mendrückbarer, reibunglosiger Flüssigkeiten und die Helmholtzischen Wirbelsätze, Math. Z.
23 (1925), 89-154, 309-316; 26 (1927), 196-323; 28 (1928), 387-415, 725; 32 (1930), 608.

[MB] A.J. Majda and A.L. Bertozzi, Vorticity and incompressible flow, Cambridge University
Press, Cambridge, UK 2002.

[Ma] J. Marsden, Well-posedness of the equations of a non-homogeneous perfect fluid, Comm.
Partial Differential Equations 1 (1976).

[MR] J. Marsden and T. Ratiu, Introduction to mechanics and symmetry, a basic exposition of
classical mechanical systems, 2nd ed., Springer, New York 1999.

[Mi1] G. Misio lek, Stability of ideal fluids and the geometry of the group of diffeomorphisms, Indiana
Univ. Math. J. 42 (1993).

[Mi2] G. Misio lek, The exponential map on the free loop space is Fredholm, Geom. Funct. Anal. 7
(1997).

[Mi3] G. Misio lek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J.
Geom. Phys. 24 no. 3 (1998).

[Mi4] G. Misio lek, Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal.
12 (2002).

[O] H. Omori, Infinite-dimensional Lie Groups, Translations of Mathematical Monographs,
Amer. Math. Soc., Providence 1997.

[OK] V. Ovsienko and B. Khesin, The (super) KdV equation as an Euler equation, Funct. Anal.
Appl. 21 (1987).

[P1] S. C. Preston, Nonpositive curvature on the area-preserving diffeomorphism group, J. Geom.
Phys., 53, no. 2 (2005).

[P2] S. C. Preston, On the volumorphism group, the first conjugate point is always the hardest,
Comm. Math. Phys. 267 (2006).

[P3] S. C. Preston, The WKB method for conjugate points in the volumorphism group, Indiana
U. Math. J. 57 (2008).

[R1] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler
manifolds, Ann. of Math. (2) 146 (1997).

[R2] P. J. Rabier, Nonlinear Fredholm operators with noncompact fibres and applications to elliptic
problems on Rn, J. Funct. Anal. 187 (2001).

[Sch] R. Schmid, Infinite Dimensional Hamiltonian Systems, Bibliopolis, Napoli 1987.
[Shk] S. Shkoller, Geometry and curvature of diffeomorphism groups with H1 metric and mean

hydrodynamics, J. Funct. Anal. 160 (1998).
[Shn1] A. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal

incompressible fluid, Mat. Sb. (NS) 128 (1985).



40 GERARD MISIO LEK AND STEPHEN C. PRESTON

[Shn2] A. Shnirelman, Generalized fluid flows, their approximation and applications, Geom. Funct.
Anal. 4 (1994).

[Shn3] A. Shnirelman, Microglobal analysis of the Euler equations, J. Math. Fluid Mech. 7 (2005).
[Sma] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965).
[Smo1] N.K. Smolentsev, A bi-invariant metric on the group of symplectic diffeomorphisms and the

equation (∂/∂t)∆F = {∆F, F}, Siberian Math. J. 27 no. 1 (1986).
[Smo2] N.K. Smolentsev, Curvature of the classical diffeomorphism groups, Siberian Math. J. 35 no.

1 (1994).
[T1] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics,

Birkhauser, Boston 1991.
[T2] M. Taylor, Finite and Infinite Dimensional Lie Groups and Evolution Equations, Lecture

Notes (2003).
[Tr] H. Triebel, Theory of Function Spaces, Geest and Portig, Leipzig 1983 and Birkhauser, Basel

1992.
[Uh] K. Uhlenbeck, The Morse index theorem in Hilbert spaces, J. Differential Geom. 8 (1973).
[V1] C. Vizman, Central extensions of semidirect products and geodesic equations, Phys. Lett. A

330 (2004).
[V2] C. Vizman, Geodesics on extensions of Lie groups and stability; the superconductivity equa-

tion, Phys. Lett. A 284 (1991).
[V3] C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA 4 (2008).
[W] W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène,

incompressible, pendant un temps infiniment long, Math. Z. 37 no. 1 (1933).
[ZK] V. Zeitlin and T. Kambe, Two-dimensional ideal hydrodynamics and differential geometry,

J. Phys. A 26 (1993).

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
E-mail address: gmisiole@nd.edu

Department of Mathematics, University of Colorado, Boulder, CO 80309-0395
E-mail address: stephen.preston@colorado.edu


