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surface with boundary
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Abstract We prove that the Riemannian exponential map of the right-invariant L2 metric on the group
of volume-preserving di�eomorphisms of a two-dimensional manifold with a nonempty boundary is a
nonlinear Fredholm map of index zero.

1 Introduction

Consider a compact n-dimensional manifold M with a smooth boundary ∂M equipped with a Rie-
mannian metric. Let Ds

µ be the volumorphism group; that is, the group of di�eomorphisms of M which
preserve the Riemannian volume form µ and are of Sobolev class Hs. It is well-known that if s > n/2+1,
then Ds

µ is a submanifold of the in�nite dimensional Hilbert manifold Ds of all Hs di�eomorphisms ofM .
Its tangent space TηDs

µ consists of Hs sections X of the pull-back bundle η∗TM whose right-translations
X◦η−1 to the identity element are the divergence-free vector �elds onM that are parallel to the boundary
∂M . The L2 inner product for vector �elds

〈u, v〉L2 =

∫
M

〈u(x), v(x)〉 dµ(x) u, v ∈ TeDs
µ (1.1)

de�nes a right-invariant metric on Ds and hence also on Ds
µ with associated Levi-Civita connections.

The curvature tensor R of this metric on Ds
µ is a bounded trilinear operator on each tangent space and

is invariant with respect to right translations by Ds
µ. Our main references for the basic facts about Ds

µ

and its L2 geometry are the papers [7], [12], [14] and the monograph [2].

Arnold, in his pioneering paper [1], reinterpreted the hydrodynamics of an ideal �uid �llingM in terms
of the Riemannian geometry of the volumorphism group of M equipped with the L2 metric describing
the �uid's kinetic energy. He showed that a curve η(t) is a geodesic of the L2 metric on Ds

µ starting from
the identity element e in the direction v0 if and only if the time dependent vector �eld v = η̇ ◦ η−1 on
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M solves the incompressible Euler equations

∂tv +∇vv = −grad p
div v = 0 (1.2)

〈v, ν〉 = 0 on ∂M

with the initial condition

v(0) = v0 (1.3)

where p is the pressure function, ∇ denotes the covariant derivative on M and ν is the outward pointing
normal to the boundary ∂M .

It turns out that there is a technical advantage in rewriting the Euler equations this way; Ebin and
Marsden [7] showed that the Cauchy problem for the corresponding geodesic equation in Ds

µ can be
solved uniquely on short time intervals by a standard Banach-Picard iteration argument. In particular,
its solutions depend smoothly on the data, and as a result one can de�ne (at least for small t) a smooth
exponential map

expe : TeD
s
µ → Ds

µ, expe tv0 = η(t),

where η(t) is the unique geodesic of (1.1) issuing from the identity with initial velocity v0 ∈ TeDs
µ. The

exponential map is a local di�eomorphism from an open set around zero in TeDs
µ onto a neighborhood

of the identity in Ds
µ. This follows from the inverse function theorem and the fact that the derivative of

expe at time t = 0 is the identity map. Furthermore, if n = 2 then by the classical result of Wolibner [21]
the exponential map can be extended to the whole tangent space TeDs

µ, which is interpreted as geodesic
completeness of the volumorphism group with respect to the L2 metric.

The structure and distribution of singularities of the exponential map of (1.1) has been of considerable
interest ever since the problem of conjugate points in Ds

µ was raised by Arnold in [1]. The �rst examples of
conjugate points were constructed in [12] and [13] in the case when M is a sphere with the round metric
or the �at 2-torus. Further examples can be found in [18], [15], [16], [3] and [4]. In [8] it was proved
that the L2 exponential map is a non-linear Fredholm map of index zero whenever M is a compact
manifold of dimension 2 without boundary and moreover that the Fredholm property fails for a steady
rotation of the solid torus in R3. More pathological counterexamples were constructed in [15] using curl
eigen�elds on the sphere S3 and more recently in [17] in the case of certain axisymmetric �ows in R3.
Furthermore, Shnirelman [19] proved that when M is the �at 2-torus the exponential map on Ds

µ is a
Fredholm quasiruled map. In [14] the authors showed that the failure of the Fredholm property in the
case of three-dimensional manifolds is �borderline,� in the sense that the exponential maps of Sobolev
Hr metrics are necessarily Fredholm whenever r > 0.

An outstanding problem left unresolved in these papers concerns the case when a two-dimensional
manifoldM has a nonempty boundary ∂M . The methods employed in [8] allowed only for a much weaker
result, namely, that the derivative of the exponential map along a geodesic in Ds

µ can be extended to a
linear Fredholm operator de�ned on the L2 completions of the tangent spaces to the volumorphism group.
The question of whether the behavior is genuinely di�erent in case of a boundary has been raised in light
of recent work where phenomena have been discovered that seem to rely heavily on the presence of the
boundary (such as double-exponential growth of the vorticity �eld in 2D [10] and numerically-observed
blowup in 3D [11]).

The main goal of the present paper is to establish the strong Hs Fredholmness property of the
exponential map for incompressible 2D �uids in the presence of boundaries. For notational simplicity
and clarity of exposition we will consider the simplest case of �ow on a cylinderM = S1× [0, L] for some
L > 0, so that we can work in a single chart. The general case of bounded domains in R2 can be treated
in the standard way by choosing a suitable open cover of the boundary ∂M together with a subordinate
smooth partition of unity and applying the result for the cylinder with large L.
Our main result in this paper is thus the following

Theorem 1.1 Let M = S1 × [0, L] be the cylinder of height L > 0 with boundary ∂M = S1 × {0} ∪
S1 × {L}, endowed with the Euclidean metric. For s > 2, the exponential map of the L2 metric (1.1) on
Ds
µ(M) is a nonlinear Fredholm map of index zero.

A direct consequence of Theorem 1.1 is that monoconjugate and epiconjugate points coincide, have
�nite multiplicity and cannot accumulate along �nite geodesic segments. Furthermore, the exponential
map on TDsµ restricts to the same map on TDµ and geodesics remain as smooth as their initial velocity



The exponential map of the group of area-preserving di�eomorphisms of a surface with boundary 3

(see [7] Theorem 12.1) so the exponential map continues to be Fredholm of index zero on Dµ. In the next
section we recall the basic setup from [8] and [14]. The proof of Theorem 1.1 will be given in Sections 3
and 4. The key element of the proof involves deriving lower bounds for the invertible part of the derivative
dexpe with respect to a suitably chosen Sobolev-type norm de�ned on the space of stream functions on
the manifold. The main idea here is that we have an operator that is invertible because it is positive-
de�nite in low Sobolev norms, but in the standard higher Sobolev norms it is not due to boundary terms;
however by weighting the coe�cients di�erently we can make the operator positive-de�nite in the new
inner product up to leading order.

2 The setup: Jacobi �elds and the exponential map

We �rst collect a few well-known facts about Fredholm mappings. A bounded linear operator L
between Banach spaces is said to be Fredholm if it has �nite dimensional kernel and cokernel. It then
follows from the open mapping theorem that ranL is closed. L is said to be semi-Fredholm if it has
closed range and either its kernel or cokernel is of �nite dimension. The index of L is de�ned as indL =
dimkerL−dim cokerL. L is Fredholm of index zero if and only if it can be written in the form L = Ω−Γ
where Ω is invertible and Γ is compact. The set of semi-Fredholm operators is an open subset in the
space of all bounded linear operators and the index is a continuous function on this set into Z ∪ {±∞},
cf. Kato [9]. A C1 map f between Banach manifolds is called Fredholm if its Fréchet derivative df(p) is
a Fredholm operator at each point p in the domain of f . If the domain is connected then the index of
the derivative is by de�nition the index of f , cf. Smale [20].

Let γ be a geodesic in a Riemannian Hilbert manifold. A point q = γ(t) is said to be conjugate to
p = γ(0) if the derivative d expp(tγ̇(0)) is not an isomorphism considered as a linear operator between the
tangent spaces at p and q. It is called monoconjugate if d expp(tγ̇(0)) fails to be injective and epiconjugate
if d expp(tγ̇(0)) fails to be surjective. In general exponential maps of in�nite dimensional Riemannian
manifolds are not Fredholm. For example, the antipodal points on the unit sphere in a Hilbert space
with the induced metric are conjugate along any great circle and the di�erential of the corresponding
exponential map has in�nite dimensional kernel. An ellipsoid constructed by Grossman [6] provides
another example as it contains a sequence of monoconjugate points along a geodesic arc converging
to a limit point at which the derivative of the exponential map is injective but not surjective. Such
pathological phenomena are ruled out by the Fredholm property because in this case monoconjugate
and epiconjugate points must coincide, have �nite multiplicities and cannot cluster along �nite geodesic
segments.

Let M be a Riemannian manifold of dimension n = 2 with boundary ∂M and assume s > 2. Given
any vector v0 in TeDs

µ let η(t) = expe(tv0) be the geodesic of the L2 metric starting from the identity
with velocity v0. The derivative of the exponential map at tv0 can be expressed in terms of the Jacobi
�elds. Since the curvature tensor R of the L2 metric is bounded in the Hs topology it follows that the
solutions of the Jacobi equation

J̈ +R(J, η̇)η̇ = 0 (2.1)

along η(t) with initial conditions

J(0) = 0, J̇(0) = w0 (2.2)

are unique and persist (as long as the geodesic is de�ned) by the standard ODE theory on Banach
manifolds, cf. [12]. De�ne the Jacobi �eld solution operator Φt by

w0 → Φtw0 = d expe(tv0)tw0 = J(t). (2.3)

Next, recall that for any η ∈ Ds
µ the group adjoint operator on TeDs

µ is given by Adη = dRη−1dLη
where Rη and Lη denote the right and left translations by η. Consequently, given any v, w ∈ TeDs

µ we
have

w → Adηw = η∗w = Dη ◦ η−1(w ◦ η−1) (2.4)

and the corresponding algebra adjoint operator

advw = −[v, w]. (2.5)

The associated coadjoint operators are de�ned using the L2 inner product by

〈Ad∗ηv, w〉L2 = 〈v,Adηw〉L2 (2.6)
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and
〈ad∗vu,w〉L2 = 〈u, advw〉L2 (2.7)

for any u, v and w ∈ TeDs
µ. Our general strategy of the proof of Theorem 1 will be similar to that in the

case when M has no boundary. The proof of the following result can be found in [14].

Proposition 2.1 Let v0 ∈ TeDs
µ and let η(t) be the geodesic of the L2 metric (1.1) in Ds

µ starting from
the identity e with velocity v0. Then Φt de�ned in (2.3) is a family of bounded linear operators from TeDs

µ

to Tη(t)D
s
µ. Furthermore, if v0 ∈ TeDs+1

µ then Φt can be represented as

Φt = Dη(t)
(
Ωt − Γt

)
(2.8)

where Ωt and Γt are bounded operators on TeDs
µ given by

Ωt =

∫ t

0

Adη(τ)−1Ad∗η(τ)−1 dτ (2.9)

Γt =

∫ t

0

Adη(τ)−1Kv(τ)dRη−1(τ)Φτ dτ (2.10)

and Kv is a compact operator on TeDs
µ given by

w → Kv(t)w = ad∗wv(t), w ∈ TeDs
µ (2.11)

and where v(t) is the solution of the Cauchy problem (1.2)-(1.3).

Proof See [8], Prop. 4 and Prop. 8.

Remark 2.2 Note that the decomposition (2.8)-(2.11) must be applied with care. This is due to the
loss of derivatives involved in calculating the di�erential of the left translation operator ξ → Lηξ and
consequently of the adjoint operator in (2.4). This is why we consider v0, and hence η(t), in Hs+1 rather
than Hs.

As mentioned in the Introduction we also have the following

Proposition 2.3 For any v0 ∈ TeDs
µ the derivative d expe(tv0) extends to a Fredholm operator on the

L2-completions TeDµ
L2

and Texpe(tv0)
Dµ

L2
.

Proof A detailed proof may be found in [8], Thm. 2, but the main idea is as follows. The operator (2.9)
is invertible on TeDµ

L2
. This follows from Lemma 3.1 below and self-adjointness in the L2 inner product.

Compactness of the operator (2.10) on TeDµ
L2

follows from compactness of the operator Kv, and hence
compactness of the composition appearing under the integral in (2.10), and �nally from viewing the
integral as a limit of sums of compact operators. This represents d expe(tv0) as the sum of an invertible
operator and compact operator which implies d expe(tv0) is Fredholm of index zero.

In particular, it follows that monoconjugate points along η(t) in Ds
µ have �nite multiplicity.

3 Proof of Theorem 1: Preliminary Estimates

To show that the L2 exponential map on Ds
µ is a Fredholm map we will prove that for each t > 0

its derivative Φt is a bounded Fredholm operator from TeDs
e to Tη(t)D

s
µ; that is, Φt can be expressed

as the sum of an invertible operator and a compact operator on TeDsµ. We will assume that the initial
divergence-free vector �eld v0 in (2.3) is of class C∞. The general Hs case will then follow from a density
argument, just as in [8]. Compactness of (2.10) then follows as described in the proof of Proposition 2.3.

It remains to prove that the operator Ωt, de�ned by (2.9), is invertible on the tangent space TeDs
µ.

We begin with an L2 estimate which is straightforward.

Lemma 3.1 Assume s > 2. Given v0 ∈ TeDs
µ let η(t) = expe tv0 be the corresponding L2 geodesic. For

any w ∈ TeDs
µ and any t ≥ 0 we have

〈w,Ωtw〉L2 ≥ Ct‖w‖2L2 (3.1)

where Ωt is de�ned by (2.9) and Ct =
∫ t
0
‖Dη(τ)‖−2∞ dτ .
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Proof From (2.9) we compute

〈w,Ωtw〉L2 =

∫ t

0

〈
w,Adη(τ)−1Ad∗η(τ)−1w

〉
L2dτ

=

∫ t

0

∥∥Ad∗η(τ)−1w
∥∥2
L2dτ ≥ ‖w‖2L2

∫ t

0

∥∥Ad∗η(τ)‖−2L(L2)dτ

and since Ad∗η is an L2 adjoint of Adη, formula (2.4) implies

‖Ad∗η(t)‖2L(L2) = ‖Adη(t)‖2L(L2) ≤ ‖Dη(t)
TDη(t)‖∞

which gives (3.1).

Next, we proceed to derive the estimate in Hs norms. It will be convenient to work with stream
functions on M = S1 × [0, L]. As is well-known, we may write any divergence-free v ∈ TeDs

µ(M) as

vf = −∂yf ∂
∂x+∂xf

∂
∂y , (3.2)

for a uniquely-de�ned function f ∈ Hs+1(M) satisfying f(x, L) = 0 and f(x, 0) = c for some c ∈ R, for
all x ∈ S1. Thus we introduce the space

Fs+1(M) =
{
f ∈ Hs+1(M) : ∃c ∈ R s.t. f(x, L) = 0 and f(x, 0) = c ∀x ∈ S1

}
. (3.3)

From (2.4) and (2.6) we have
vΛtf = Ad∗η(t)Adη(t)vf (3.4)

for a bounded invertible operator Λt : Fs+1(M) → Fs+1(M) which we will compute in Lemma 3.2.

Rewriting Ωt on the space of stream functions as Ω̂t, so that Ωtvf = v
Ω̂tf

, our goal therefore reduces to
establishing the following

Claim: For any t > 0 the operator f → Ω̂tf =

∫ t

0

Λ−1τ f dτ is invertible on Fs+1(M), (3.5)

with Λ−1t the inverse of Λt in (3.4). To this end we will proceed indirectly since the formula for Λt is
somewhat simpler to work with than the formula for the inverse Λ−1t .
Our approach to proving the claim (3.5) is as follows. For some positive constants B0, ..., Bs we de�ne a
semi-inner product on Fs+1 by

〈〈f, g〉〉s+1 =

s∑
j=0

Bj〈∂jx∂s−jy ∇f, ∂jx∂s−jy ∇g〉L2 (3.6)

with associated semi-norm ‖f‖s+1 = 〈〈f, f〉〉1/2s+1, which is equivalent to the standard Hs+1 seminorm on
Fs+1(M) and thus to the Hs norm on TeDs(M). Then, we show that the constants B0, ..., Bs can be
chosen so that

〈〈f, g〉〉s+1 ≥ K‖f‖2s+1 − C‖f‖s+1‖f‖Ḣs (3.7)

for g = Λtf , where ‖f‖Ḣs denotes the homogeneous Sobolev norm de�ned by (3.10) below. Applying
this estimate to f = Λ−1t g allows us to derive the estimate

‖Ω̂tg‖s+1 ≥ K1‖g‖s+1 − C1‖g‖Ḣs

for some positive constants C1 and K1, which shows that Ω̂t has closed range on Fs+1. This, together
with Lemma 1, implies that Ω̂t is semi-Fredholm with trivial kernel whose index at t = 0 is zero. Since
the index is constant on connected components of the space of semi-Fredholm operators (cf. [9]), we

conclude that the index is always zero, so that Ω̂t has trivial cokernel and is therefore invertible.1

To carry out our plan we need to estimate the boundary terms and this is our main goal here; the analysis
of these terms begins in Proposition 3 below. In the next Lemma we derive an explicit formula for the
operator Λt de�ned by formula (3.4). For simplicity we will suppress the dependence on t and just write
η and Λ until the time dependence matters again in Proposition 4.4.

1 We note that if M has no boundary then the estimate (3.7) already holds with B0 = · · · = Bs = 1, as shown in [8], but
one can demonstrate with simple counterexamples that no such universal estimate can hold for all η if M has a boundary;
the details are not terribly interesting and we will omit them here.
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Lemma 3.2 Let f ∈ Fs+1(M) be an Hs+1 stream function onM as in formula (3.3), and let η ∈ Dµ(M)
be a smooth area-preserving di�eomorphism. Then the operator Λ de�ned by formula (3.4) is given, for
g = Λf , as the unique solution of the system

∆g = div (Gη∇f), g(x, L) = 0, g(x, 0) is constant,
∫ 2π

0
∂yg(x, 0) dx =

∫ 2π

0
|∂xη(x, 0)|2f(x, 0) dx,

where Gη = (DηTDη)−1 =

(
|∂yη|2 −〈∂xη, ∂yη〉

−〈∂xη, ∂yη〉 |∂xη|2
)
. (3.8)

Proof First we establish that there exists a unique solution g of the problem (3.8); that is for any Hs−1

function ψ on M and any constant k, there is a unique g ∈ Fs+1(M) satisfying ∆g = ψ, g(x, L) = 0,

g(x, 0) constant, and
∫ 2π

0
∂yg(x, 0) dx = k.

The easiest way to do this is to reduce it to a Dirichlet problem and apply well-known results. To this
end we de�ne γ to satisfy

∆γ = φ, γ(x, L) = γ(x, 0) = 0.

Since φ is inHs−1, we know a unique solution γ exists and is inHs+1(M). Furthermore if we set ζ = g−γ,
then ζ satis�es the problem

∆ζ = 0, ζ(x, L) = 0, ζ(x, 0) is constant.

There is clearly a one-parameter family of solutions uniquely determined by the value of this constant
m, given by ζ(x, y) = m(1− y/L). It follows that there is a unique g given by

g(x, y) = γ(x, y) +m(1− y/L),

where m is determined by the condition

k =

∫ 2π

0

∂yγ(x, 0) dx−
2πm

L
.

Having shown that a unique solution of (3.8) exists, our strategy is now to show that if g solves (3.8),
then 〈vh, vg〉L2 = 〈vh, vΛf 〉L2 for every h ∈ Fs+1(M), which will imply that g = Λf . For any such h, we
have

〈vh, vΛf 〉L2 =

∫
M

〈vh,Ad∗η Adη vf 〉 dxdy =

∫
M

〈Adη vh,Adη vf 〉 dxdy.

Using formula (2.4) for the adjoint action Adη, we have

〈vh, vΛf 〉L2 =

∫
M

〈Dη(vh) ◦ η−1, Dη(vf ) ◦ η−1〉 dxdy =

∫
M

〈vh, (Dη)T(Dη)(vf )〉 dxdy,

using the change of variables formula and the fact that η is volume-preserving.
Since vf = J∇f where J is the antisymmetric operator of rotation by 90◦, we have

〈vh, vΛf 〉L2 = −〈∇h, J(Dη)T(Dη)J∇f〉L2 = 〈Gη∇h,∇f〉L2 ,

as an easy computation shows. Integrating by parts using the divergence theorem, we get

〈vh, vΛf 〉L2 = −
∫
M

hdiv (Gη∇f) dxdy − h(·, 0)
∫ 2π

0

Gη(∂y, ∂y)(x, 0)fy(x, 0) dx,

since h(x, 0) is constant.
The same integration by parts shows that

〈vh, vg〉L2 = −
∫
M

h∆g dxdy − h(·, 0)
∫ 2π

0

∂yg(x, 0) dx,

and this is true for every h ∈ Fs+1(M) if and only if g solves the system (3.8).

The following inequality appears in [8] but without the boundary terms.
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Proposition 3.3 Let η ∈ Dµ(M) be a C∞-smooth area-preserving di�eomorphism and let g = Λf where
f ∈ Fs+1(M), as in Lemma 3.2. For any nonnegative integers m and n, not both zero, let fm,n = ∂mx ∂

n
y f

and gm,n = ∂mx ∂
n
y g. Then we have2

〈∇fm,n,∇gm,n〉L2 ≥ Kη‖∇fm,n‖2L2 − C‖η‖2Cm+n+1‖∇fm,n‖L2‖f‖Ḣm+n

+

∫
∂M

fm+1,n∂
m
x ∂

n−1
y

(
∂xg − |∂yη|2∂xf + 〈∂xη, ∂yη〉∂yf

)
dx (3.9)

where Kη = ‖Dη‖−2∞ , with C some constant independent of η, and

‖f‖Ḣs+1 =
∑

0≤i+j≤s

∥∥∇∂ix∂jyf∥∥L2 . (3.10)

Proof We start with an integration by parts to obtain

〈∇fm,n,∇gm,n〉L2 =

∫
M

〈∇fm,n,∇gm,n〉 dxdy

=

∫
M

div (fm,n∇gm,n) dxdy −
∫
M

fm,n∂
m
x ∂

n
y∆g dxdy.

(3.11)

Using Lemma 3.2 we further rewrite the above as

=

∫
∂M

fm,n〈∇gm,n, ν〉 dx−
∫
M

fm,n div (∂
m
x ∂

n
yGη∇f) dxdy

=

∫
∂M

fm,n|∂M
(
〈∇gm,n, ν〉 − ∂mx ∂ny 〈Gη∇f, ν〉

)
|∂M dx+

∫
M

〈∇fm,n, ∂mx ∂nyGη∇f〉 dxdy,
(3.12)

where we again used the divergence theorem, recalling that the boundary is ∂M = S1 ×{0} ∪ S1 ×{L},
with outward unit normals ν = (0, 1) for y = L and ν = (0,−1) for y = 0.

We proceed to analyze these terms separately. Observe that Gη = (DηTDη)−1 is a positive-de�nite
matrix and the last term can be written as

〈∇fm,n, ∂mx ∂nyGη∇f〉L2 =

∫
M

〈∇fm,n, Gη∂mx ∂ny∇f〉 dxdy +
∫
M

〈∇fm,n, [∂mx ∂ny , Gη]∇f〉 dxdy

≥
∫
M

|(DηT)−1∇fm,n|2 dxdy − ‖∇fm,n‖L2

∥∥[∂mx ∂ny , Gη]∇f∥∥L2 .

Since Gη is a matrix of smooth functions, the commutator with any di�erential operator of order m+ n
is a di�erential operator of lower order with coe�cients involving derivatives of η up to order m+ n+ 1
at most. Hence we have an estimate∥∥[∂mx ∂ny , Gη]∇f∥∥L2 ≤ C‖η‖2Cm+n+1‖f‖Ḣm+n(M)

with ‖ · ‖Ḣm+n denoting the Sobolev Hm+n norm given by (3.10), (in other words, the Hm+n−1 norm of
the gradient). On the other hand we have∫

M

|(DηT)−1∇fm,n|2 dxdy ≥ Kη‖∇fm,n‖2L2

where Kη is the in�mum over M of the eigenvalues of Gη = (DηTDη)−1.
Next, consider the boundary term in (3.12) given by∫

∂M

fm,n ∂
m
x ∂

n
y

(
∂yg − |∂xη|2∂yf + 〈∂xη, ∂yη〉∂xf

)
dx,

where we use the convention here and for the rest of the paper that
∫
∂M

h dx =
∫
S1 h(x, L) dx −∫

S1 h(x, 0) dx. Since f |∂M is constant, we know that fm,0|∂M = 0 so that this term vanishes if n = 0. If
n ≥ 1 then we can use the equation ∆g = div (Gη∇f) to simplify

∂y(∂yg − |∂xη|2∂yf + 〈∂xη, ∂yη〉∂xf) = −∂x(∂xg − |∂yη|2∂xf + 〈∂xη, ∂yη〉∂yf) (3.13)

so that the boundary term becomes the last term of (3.9) after an integration by parts in x.

2 Here we agree to the convention that the boundary integral is zero if n = 0.
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We will need to estimate a number of boundary terms of the form appearing in equation (3.9). The
following lemma simpli�es many of the calculations and will be used repeatedly.

Lemma 3.4 Let M = S1 × [0, L], and for any real function h on M , denote the oriented boundary
integral by ∫

∂M

h dx =

∫
S1

h(x, L) dx−
∫
S1

h(x, 0) dx.

For any H1 functions f and g on M , we have∫
∂M

f∂xg dx ≤ ‖∇f‖L2‖∇g‖L2 .

Proof A straightforward computation gives∫
∂M

f∂xg dx =

∫
S1

∫ L

0

∂

∂y

(
f(x, y)∂xg(x, y)

)
dydx

=

∫
M

∂yf∂xg dxdy −
∫
M

∂xf∂yg dxdy

=
〈
(∂yf,−∂xf), (∂xg, ∂yg)

〉
L2
≤ ‖∇f‖L2‖∇g‖L2 .

Before we proceed further with the proof of Claim (3.5) in full generality, let us illustrate the basic idea
with a simple explicit example.

Example 3.5 For a positive constant ω, consider the di�eomorphism

η(x, y) = (x+ ωy, y).

This is a shear �ow, and the function η(t, x, y) = (x+ tωy, y) is a solution of the inviscid Euler equation
with steady velocity �eld u(x, y) = ωyex. The matrix Gη is given by

Gη = (DηTDη)−1 =

(
1 + ω2 −ω
−ω 1

)
.

Consider the H2 norm on vector �elds, corresponding to the Ḣ3 norm on stream functions. (This is the
�rst interesting case, as H1 on vector �elds has an accidental cancellation3 and L2 on vector �elds is the
weak case already discussed.) The inner product de�ned by (3.6) reduces to

〈〈f, g〉〉3 = B0〈∇fyy,∇gyy〉L2 +B1〈∇fxy,∇gxy〉L2 +B2〈∇fxx,∇gxx〉L2 . (3.14)

The norm de�ned by (3.14) is equivalent to the Ḣ3 norm via the usual interpolation inequalities. Using
the proof of Proposition 3.3, formula (3.14) becomes

〈〈f, g〉〉3 = B0‖Gη∇fyy‖2L2 +B1‖Gη∇fxy‖2L2 +B2‖Gη∇fxx‖2L2

+B0

∫
∂M

fxyy
(
gxy − (1 + ω2)fxy + ωfyy

)
dx

+B1

∫
∂M

fxxy
(
gxx − (1 + ω2)fxx + ωfxy

)
dx

≥ B0Kη‖∇fyy‖2L2 +B1Kη‖∇fxy‖2L2 +B2Kη‖∇fxx‖2L2

+B0

∫
∂M

fxyy
(
gxy − (1 + ω2)fxy

)
dx

(3.15)

after integrating by parts, an example of the accidental cancellation mentioned above. Here we use Kη

to estimate the lowest eigenvalue of Gη, which is the reciprocal of the largest eigenvalue since Gη has
determinant one.
We estimate the boundary term as follows, using Lemma 3.4 to get the following prototype of Proposition
4.1: ∫

∂M

fxyy
(
gxy − (1 + ω2)fxy

)
dx = 〈J∇fyy,∇gxy − (1 + ω2)∇fxy〉

≥ −‖∇fyy‖L2‖∇gxy‖L2 − (1 + ω2)‖∇fyy‖L2‖∇fxy‖L2 ,

(3.16)

3 See Lemma 4.2.
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Now as a prototype of Lemma 4.2, we get an upper bound for ‖∇gxy‖L2 using formulas (3.11)�(3.12)
with f replaced by g to get

‖∇gxy‖2L2 =

∫
M

〈∇gxy, ∂x∂y(Gη∇f)〉 dxdy

+

∫
∂M

gxxy∂x(gx − |∂yη|2∂xf + 〈∂xη, ∂yη〉∂yf) dx

=

∫
M

〈∇gxy, Gη∇fxy〉 dxdy + ω

∫
∂M

gxxyfxy dx

≤ (1 + ω)2‖∇gxy‖L2‖∇fxy‖L2 ,

using Lemma 3.4 and the fact that the largest eigenvalue of Gη satis�es 1 + ω2 < λ < 1 + ω + ω2.
Formula (3.16) then becomes∫

∂M

fxyy
(
gxy − (1 + ω2)fxy

)
dx ≥ −2(1 + ω)2‖∇fxy‖L2‖∇fyy‖L2

≥ −ε(1 + ω)2‖∇fyy‖2 −
(1 + ω)2

ε
‖∇fxy‖2,

for any ε > 0.
Formula (3.15) now becomes

〈〈f, g〉〉3 ≥ KB0‖∇fyy‖2L2 +KB1‖∇fxy‖2 +KB2‖∇fxx‖2L2 −
B0ε

K
‖∇fyy‖L2 − B0

εK
‖∇fxy‖2L2 ,

where K = (1 + ω)−2 is a simple lower bound for Kη.
Now choose ε = K2/2 with B0 = B2 = 1 and B1 = 3/K4. Then we end up with

〈〈f, g〉〉3 ≥
K

3
‖f‖23.

This gives formula (3.7) for s = 2, where the lower-order terms disappeared because Gη has constant
coe�cients. This is the main idea of the proof we give in the next section.

4 Proof of Theorem 1: Estimates at the Boundary

Now we estimate the boundary terms in Proposition 3.3 in terms of norms on the entire space M , using
the fundamental Lemma 3.4.

Proposition 4.1 Let η ∈ Dµ(M). If f ∈ Fs+1(M) and g = Λf as in Lemma 3.2, then given any m ≥ 0
and n ≥ 1, the boundary terms in (3.9) can be estimated by∫

∂M

fm+1,ngm+1,n−1 dx ≤ ‖∇fm,n‖L2‖∇gm+1,n−1‖L2 (n > 1) (4.1)∫
∂M

fm+1,n∂
m
x ∂

n−1
y

(
|∂yη|2∂xf

)
dx ≤ ‖Dη‖2L∞‖∇fm,n‖L2‖∇fm+1,n−1‖L2

+ C‖η‖2Cm+n+1‖∇fm,n‖L2‖f‖Ḣm+n (4.2)∫
∂M

fm+1,n∂
m
x ∂

n−1
y

(
〈∂xη, ∂yη〉∂yf

)
dx ≤ C‖η‖2Cm+n+1‖∇fm,n‖L2‖f‖Ḣm+n (4.3)

where C > 0 is independent of η and the Ḣm+n norm is de�ned in (3.10).

Proof Inequality (4.1) follows at once from Lemma 3.4. To estimate (4.2) we use Lemma 3.4 and the
Leibniz rule to get∫

∂M

fm+1,n∂
m
x ∂

n−1
y

(
|∂yη|2∂xf

)
dx ≤ ‖∇fm,n‖L2‖∇∂mx ∂n−1y

(
|∂yη|2∂xf

)
‖L2

≤ ‖Dη‖2L∞‖∇fm+1,n−1‖L2‖∇fm,n‖L2 + C‖η‖2Cm+n+1‖f‖Ḣm+n‖∇fm,n‖L2
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For (4.3) we use a trick on the highest-order term to improve over Lemma 3.4:∫
∂M

fm+1,n∂
m
x ∂

n−1
y

(
〈∂xη, ∂yη〉∂yf

)
dx ≤

∫
∂M

fm+1,n〈∂xη, ∂yη〉fm,n dx

+ C‖η‖2Cm+n+1‖f‖Ḣm+n‖∇fm,n‖L2

Now integrating the �rst term on the right by parts and estimating as in the proof of Lemma 3.4, we
obtain∫

∂M

fm+1,n〈∂xη, ∂yη〉fm,n dx =
1

2

∫
∂M

〈∂xη, ∂yη〉 ∂x(f2m,n) dx = −1

2

∫
∂M

∂x〈∂xη, ∂yη〉f2m,n dx

. ‖η‖2C2‖fm,n‖L2‖∇fm,n‖L2 . ‖η‖2C2‖f‖Ḣm+n‖∇fm,n‖L2 ,

and thus this term folds into our previous term.

To understand the term (4.1), we want an upper bound for ‖∇gm,n‖L2 in terms of ‖∇fm,n‖L2 . When
n is small this works as in Example 3.5; when n is large we need to do the estimate recursively by
replacing y derivatives with x derivatives using ∆g, an extra complication.

Lemma 4.2 Let η, f and g = Λf be as in Proposition 4.1, with m ≥ 1 an integer. For any integer n > 1
we have

‖∇gm,n‖L2 ≤ ‖∇gm+1,n−1‖L2 + ‖Dη‖2L∞‖∇fm+1,n−1‖L2 + ‖Dη‖2L∞‖∇fm,n‖L2

+ C‖η‖2Cm+n+1‖f‖Ḣm+n (4.4)

while for n = 0 or n = 1 we have

‖∇gm,n‖L2 ≤ ‖Dη‖2L∞‖∇fm,n‖L2 + C‖η‖2Cm+n+1‖f‖Ḣm+n (4.5)

where C is a constant depending on m and n but not on η.

Proof Integrating by parts as in (3.12), we have

‖∇gm,n‖2L2 =

∫
M

div (gm,n∇gm,n) dxdy −
∫
M

gm,n∆gm,n dxdy

=

∫
∂M

gm,n∂
m
x ∂

n
y (〈∇g −Gη∇f, ν〉) dx+ 〈∇gm,n, ∂mx ∂nyGη∇f〉L2 .

(4.6)

We �rst consider the case when m ≥ 1 and n > 1. Since 〈Gη∇f, ∂y〉 = −〈∂xη, ∂yη〉∂xf + |∂xη|2∂yf
from (3.13) we get

∂y(∂yg −Gη∇f, ∂y〉) = −∂x(∂xg − |∂yη|2∂xf + 〈∂xη, ∂yη〉∂yf)

Using this identity and integrating by parts in x the right hand side of (4.6) becomes

=

∫
∂M

gm+1,n∂
m
x ∂

n−1
y (∂xg − |∂yη|2∂xf + 〈∂xη, ∂yη〉∂yf) dx+ 〈∇gm,n, ∂mx ∂nyGη∇f〉L2

=

∫
∂M

gm+1,n

(
gm+1,n−1 − |∂yη|2fm+1,n−1 + 〈∂xη, ∂yη〉fm,n

)
dx

+
∑

0<k+l<m+n

∫
∂M

αklgm+1,nfk,ldx+ 〈∇gm,n, ∂mx ∂nyGη∇f〉L2

= I + II + III

where αij are functions depending on the derivatives up to order m+ n− 1 of |∂yη|2 and 〈∂xη, ∂yη〉 and
the binomial coe�cients. Using Lemma 3.4 and (3.10) we have

|I| ≤ ‖∇gm,n‖L2

(
‖∇gm+1,n−1‖L2 + ‖∇(|∂yη|2fm+1,n−1)‖L2 + ‖∇(〈∂xη, ∂yη〉fm,n)‖L2

)
(4.7)

≤ ‖∇gm,n‖L2

(
‖∇gm+1,n−1‖L2 + ‖Dη‖2L∞

(
‖∇fm+1,n−1‖L2 + ‖∇fm,n‖L2

)
+ ‖η‖2C2‖f‖Ḣm+n

)
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and similarly

|II| .
∑

0<k+l<m+n

‖∇gm,n‖L2‖∇(αklfk,l)‖L2 . ‖η‖2Cm+n+1‖∇gm,n‖L2‖f‖Ḣm+n . (4.8)

Using the Cauchy-Schwarz inequality and the Leibniz rule

|III| ≤ ‖∇gm,n‖L2‖∂mx ∂nyGη∇f‖L2 (4.9)

≤ ‖Dη‖2L∞‖∇gm,n‖L2‖∇fm,n‖L2 + C‖∇gm,n‖L2‖η‖2Cm+n+1‖f‖Ḣm+n .

Combining (4.7), (4.8) and (4.9) we obtain (4.4), as desired.
Next, if m ≥ 1 and n = 0 then the boundary term in (4.6) vanishes since f |∂M and g|∂M are constant,

and we have

‖∇gm,0‖2L2 ≤ ‖∇gm,0‖L2‖∂mx Gη∇f‖L2 (4.10)

≤ ‖Dη‖2L∞‖∇gm,0‖L2‖∇fm,0‖L2 + C‖∇gm,0‖L2‖η‖2Cm+1‖f‖Ḣm .

Finally, if m ≥ 1 and n = 1 we use a trick to do a little better than (4.4). Integrating by parts in
(4.6) as before we have

‖∇gm,1‖2L2 =

∫
∂M

gm+1,1∂
m+1
x g dx−

∫
∂M

gm+1,1∂
m
x (|∂yη|2∂xf) dx

+

∫
∂M

gm+1,1∂
m
x (〈∂xη, ∂yη〉∂yf) dx+ 〈∇gm,1, ∂mx ∂y(Gη∇f)〉L2

The �rst two terms on the right hand side drop out since g|∂M and f |∂M are both constant. The remaining
terms can be estimated using Lemma 3.4 and the Cauchy-Schwarz inequality as before to get

‖∇gm,1‖2L2 ≤ ‖Dη‖2L∞‖∇gm,1‖L2‖∇fm,1‖L2 + C‖∇gm,1‖L2‖η‖Cm+2‖f‖Ḣm+1 (4.11)

where we used the homogeneous norm (3.10).

Our next task is to eliminate all g-terms on the right side of the basic inequality (4.4) using a simple
recursive formula.

Proposition 4.3 Let η, f and g = Λf be as in Lemma 4.2. For any m ≥ 1 and n ≥ 0 we have

‖∇gm,n‖L2 ≤ ‖Dη‖2L∞‖∇fm,n‖L2 + 2‖Dη‖2L∞
n−1∑
k=1

‖∇fm+n−k,k‖L2 + C‖η‖2Cm+n+1‖f‖Ḣm+n (4.12)

for some constant C independent of η.

Proof Adding and subtracting terms and using inequalities (4.4) and (4.5) we have

‖∇gm,n‖L2 = ‖∇gm+n−1,1‖L2 +

n−1∑
k=1

(
‖∇gm+n−k−1,k+1‖L2 − ‖∇gm+n−k,k‖L2

)
≤ ‖Dη‖2L∞‖∇fm+n−1,1‖L2 + ‖Dη‖2L∞

n−1∑
k=1

(
‖∇fm+n−k−1,k+1‖L2 + ‖∇fm+n−k,k‖L2

)
+ C‖η‖2Cm+n+1‖f‖Ḣm+n ,

and (4.12) follows.

Given an integer s ≥ 0 and any positive numbers B0, . . . Bs de�ne a semi-inner product on the space
of stream functions (3.3) on M by

〈〈f, g〉〉s+1 =

s∑
j=0

Bj〈∂jx∂s−jy ∇f, ∂jx∂s−jy ∇g〉L2 (4.13)

and the associated seminorm by ‖f‖s+1 = 〈〈f, f〉〉1/2s+1. Interpolation inequalities show that this is actually
a norm on Fs+1(M). Our goal is to show, using Propositions 4.1 and 4.3, that the Bj can be chosen so
that Λt is positive-de�nite up to highest-order terms in the inner product (4.13).
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Proposition 4.4 Let η(t) be a smooth curve in Dµ(M) on [0, T ]. Let f be a smooth function with f |∂M
constant, and let g(t) = Λtf . Given s ≥ 1 there exist positive coe�cients B0, . . . Bs depending on η but
independent of t such that for su�ciently small ε > 0 we have

〈〈f, g〉〉s+1 ≥ K‖f‖2s+1 − C‖f‖s+1‖f‖Ḣs (4.14)

where K > 0 and C > 0 are constants depending on ε and s; in addition K depends on the L∞C1
x-norm

and C depends on the L∞t C
s+1
x -norm4 of η.

Proof From Proposition 3.3 for any t ≥ 0 and any integers m ≥ 0 and n ≥ 0 with m+ n = s we have

〈〈∇fmn,∇gmn(t)〉〉L2 ≥ Kη‖∇fm,n‖2L2 − C‖η‖2L∞t Cs+1‖∇fm,n‖L2‖f‖Ḣs

+

∫
∂M

fm+1,n∂
m
x ∂

n−1
y

(
∂xg − |∂yη|2∂xf + 〈∂xη, ∂yη〉∂yf

)
dx

for some constant C independent of η. Note that by convention5 the integral over the boundary vanishes
if n = 0 and, furthermore, the �rst term of the integral (corresponding to the factor ∂xg) also vanishes
if n = 1 (since g|∂M is constant by assumption). Therefore, using Proposition 4.1, we can now estimate
the above expression from below by (using various constants, all of which we denote by C)

〈∇fm,n,∇gm,n〉L2 ≥ Kη‖∇fm,n‖2L2 − ‖∇fm,n‖L2

(
‖∇gm+1,n−1‖L2 + ‖Dη‖2L∞

[0,T ]×M
‖∇fm+1,n−1‖L2

)
− C‖η‖2

L∞t Cs+1
x
‖f‖Ḣs‖∇fm,n‖L2

and, with the help of Proposition 4.3 and rearranging and combining like terms, estimate it even further
by

〈∇fm,n,∇gm,n〉L2 ≥ Kη‖∇fm,n‖2L2 − 2‖Dη‖2L∞
[0,T ]×M

‖∇fm,n‖L2

n−1∑
k=1

‖∇fm+n−k,k‖L2

− C‖η‖2
L∞t Cs+1

x
‖∇fm,n‖L2‖f‖Ḣs

≥
(
Kη − (s− 1)ε‖Dη‖2L∞

[0,T ]×M

)
‖∇fm,n‖2L2 −

1

ε
‖Dη‖2L∞

[0,T ]×M

n−1∑
k=1

‖∇fm+n−k,k‖2L2

− C‖η‖2
L∞t Cs+1

x
‖∇fm,n‖L2‖f‖Ḣs

for any positive ε.
Setting

Cη = C‖η‖2
L∞t Cs+1

x
(4.15)

Qε =
1

ε
‖Dη‖2L∞

[0,T ]×M
(4.16)

Kε = inf
0≤τ≤t

Kη −
(s− 1)

2
ε‖η‖2

L∞t Cs+1
x

(4.17)

and choosing

0 < ε <

inf
0≤τ≤t

Kη

(s− 1)‖η‖2L∞
[0,T ]×M

(4.18)

we therefore obtain

〈∇fm,n,∇gm,n〉L2 ≥ Kε‖∇fm,n‖2L2 −Qε
n−1∑
k=1

‖∇fm+n−k,k‖2L2 − Cη‖∇fm,n‖L2‖f‖Ḣm+n (4.19)

for any integers m ≥ 0 and n ≥ 0.

4 That is, ‖ϕ‖L∞t Ck
x
= sup

0≤τ≤t
‖ϕ(τ)‖Ck .

5 See the footnote to Proposition 3.3.
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Next, let s ≥ 1. In terms of the inner product (4.13) consider

〈〈f, g〉〉s+1 =

s∑
j=0

Bj〈∂jx∂s−jy ∇f, ∂jx∂s−jy ∇g〉L2 =

s∑
j=0

Bj〈∇fj,s−j ,∇gj,s−j〉L2

≥
s∑
j=0

Bj

(
Kε‖∇fj,s−j‖2L2 −Qε

s−j−1∑
k=1

‖∇fs−k,k‖2L2 − Cη‖∇fj,s−j‖L2‖f‖Ḣs

)

≥ B0Kε‖∇f0,s‖2L2 +BsKε‖∇fs,0‖2L2 +

s−1∑
k=1

KεBk −Qε
k−1∑
j=0

Bj

 ‖∇fk,s−k‖2L2

− Csη,B‖f‖s+1‖f‖Ḣs

where Csη,B = Cη(s+ 1)1/2 max
0≤j≤s

√
Bj . Now, for any 1 ≤ k ≤ s− 1 pick

Bk =
2

Kε
Qε

k−1∑
j=0

Bj (4.20)

and set B0 = Bs = 1. Note that the solution of the recurrence equation in (4.20) is easily found to be
Bk = (1+2Qε/Kε)

k−12Qε/Kε where Qε, Kε and ε > 0 are given by (4.16), (4.17) and (4.18). Combining
these we now obtain

〈〈f, g〉〉s+1 ≥
1

2
Kε

(
‖∇f0,s‖2L2 +

s−1∑
k=1

Bk‖∇fk,s−k‖2L2 + ‖∇fs,0‖2L2

)
− Csη,B‖f‖s+1‖f‖Ḣs

=
1

2
Kε‖f‖2s+1 − Csη,B‖f‖s+1‖f‖Ḣs

which is the desired estimate. Finally note that since the determinant of Gη is one, the in�mum Kη is
the reciprocal of ‖Dη‖2L∞ , and thus the constant K appearing in (4.14) is the reciprocal of ‖Dη‖2L∞

[0,T ]×M
,

as claimed.

We can now address the Claim (3.5).

Proposition 4.5 Let M = S1× [0, L] and let η(t) be a smooth curve of area-preserving di�eomorphisms

Dµ(M). Given any t > 0 the operator Ω̂t =
∫ t
0
Λ−1τ dτ de�ned in (3.5) on the space Fs+1(M) of stream

functions to itself is invertible.

Proof For any 0 ≤ τ ≤ t applying Proposition 4.4 to f = Λ−1t g we obtain

〈〈g, Λ−1τ g〉〉s+1 ≥ K‖Λ−1τ g‖2s+1 − C‖Λ−1τ g‖s+1‖Λ−1τ g‖Ḣs . (4.21)

Proposition 4.3 implies that Λt is a bounded operator in the topology de�ned by (4.13) (or in any Sobolev
norm on Fs+1(M)), so that

‖g‖s+1 = ‖ΛτΛ−1τ g‖s+1 ≤ ‖Λτ‖s+1‖Λ−1τ g‖s+1.

The open mapping theorem then implies that Λ−1τ is also bounded in the same topology. The inequality
(4.21) then becomes

〈〈g, Λ−1τ g〉〉s+1 ≥ KN−21 ‖g‖2s+1 − CN−12 N−13 ‖g‖s+1‖g‖Ḣs ,

where

N1 = sup
0≤τ≤t

‖Λt‖s+1, N2 = inf
0≤τ≤t

‖Λt‖s+1 and N3 = inf
0≤τ≤t

‖Λt‖Ḣs .

Integrating both sides of (4.21) over [0, t] and using Cauchy-Schwarz we get

‖Ω̂tg‖s+1 ≥ KtN−21 ‖g‖s+1 − CtN−12 N−13 ‖g‖Ḣs .

It follows that Ω̂t has closed range. By Lemma 1, Ω̂t has trivial null-space and it follows that Ω̂t is
semi-Fredholm. Since the index of semi-Fredholm operators is constant under continuous perturbations,
and since it is zero at t = 0, we conclude that the index is always zero. Therefore, Ω̂t also has trivial
cokernel and must be invertible on the space Fs+1.
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It now follows that given any smooth divergence-free vector �eld v0 onM the corresponding operator
Ωt on TeDµ is also invertible which, in light of Proposition 2.1, implies that Φt = Dηt(Ωt − Γt) is the
sum of an invertible operator and a compact operator. We conclude that Φt is a Fredholm operator of
index zero. This concludes the proof of Theorem 1.1 in the smooth case v0 ∈ TeDµ. The H

s case follows
by a perturbation argument as in [8] or [14] and will be omitted. The only important thing to note is
that our leading-term estimates depend only on the C1 norm ‖Dη‖L∞ , and thus when we approximate
an η ∈ Hs by an η̃ ∈ C∞, the coe�cients in the leading term can be made as close as we want to those
we found above. Again we refer to [8] for details.
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