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1 Introduction

The motion of an incompressible fluid filling up a domain may be studied from
two perspectives: either by considering the time-dependent velocity field, or by
considering the paths followed by each fixed fluid particle. The first approach
is the Eulerian view, while the second is the Lagrangian view. Although the
two approaches are equivalent (since the velocity field may be integrated to
determine the flow), they lead to different forms of the equations.

These differences lead to two notions of stability: the Eulerian and the La-
grangian. Loosely speaking, if the initial velocity field is perturbed, a fluid
motion which is stable in the Eulerian sense will have its velocity field remain
close to the unperturbed state, while a motion which is stable in the Lagrangian
sense will have particle paths remaining close to the unperturbed paths. We are
interested in the connection between these two notions.

More specifically we look at linearizations of the fluid equations and estimate
the growth in time of solutions. If all Eulerian perturbations are bounded in
time, in some norm, the fluid motion is Eulerian stable. If all Lagrangian
perturbations are bounded, the fluid motion is Lagrangian stable. We can also
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distinguish types of instability: a fluid motion is called (Eulerian or Lagrangian)
polynomially unstable if all perturbations grow at most polynomially in time;
it is exponentially unstable if at least one perturbation grows exponentially in
time.

Many aspects of Eulerian stability had been well understood by the late
1800s, thanks to the efforts of Lord Rayleigh and others. By contrast, much less
was known about Lagrangian stability until 1966, when Arnold [1] discovered a
geometric approach to the field.

Arnold showed that an incompressible fluid traces out a geodesic in the group
of volume-preserving diffeomorphisms, Dµ(M), of its domain M . Thus infinites-
imal Lagrangian perturbations are Jacobi fields along this geodesic. Arnold
suggested that the sign of the curvature could therefore be used to predict La-
grangian instability, as quoted in Arnold-Khesin [2] (Chapter IV, Remark 4.3):
“One can expect that the negative curvature of the diffeomorphism group causes
exponential instability of geodesics (i.e. flows of the ideal fluid) in the same way
as for a finite-dimensional Lie group.”

The geometry of the volume-preserving diffeomorphism group was originally
studied using general techniques of one-sided invariant metrics on Lie groups.
In the past decade, the use of submanifold geometry has facilitated many new
results; see for example Bao-Lafontaine-Ratiu [3] or Misio lek [8]. In Section 2
we review the geometry of the full diffeomorphism group D(M), along with the
geometry of Dµ(M) as a submanifold of D(M). The major result of Section 2
is Proposition 2.4, which says that the Jacobi equation on Dµ(M) splits into
two decoupled first-order partial differential equations: the standard linearized
Euler equation, and the linearized flow equation, an analogue of the dynamo
equation of magnetohydrodynamics.

In Section 3, we use this decoupling to give a counterintuitive example of
the connection between curvature and stability, by finding explicit formulas for
the Jacobi fields along the geodesic generated by plane parallel Couette flow on
the cylinder [0, π]×S1. Plane parallel Couette flow has a nonpositive curvature
operator along its corresponding geodesic, with strictly negative curvature in
many directions. Thus one would expect Jacobi fields to grow exponentially.
However, we find that in fact all Jacobi fields grow at most linearly in time at
each point of M .

We conclude that the sign of the curvature of Dµ(M) does not reliably
predict the asymptotic growth rate of Jacobi fields, and thus that it cannot be
used as a criterion for Lagrangian stability.

In fact, it turns out that Eulerian instability and Lagrangian instability are
very closely related, as we demonstrate in Section 4 for the two-dimensional
case. The decoupling of the Jacobi equation establishes a relationship between
Jacobi fields and linear Eulerian perturbations. We use this relation to show
that if all Eulerian perturbations are bounded, then no Jacobi field can grow
more than quadratically with time, in the L2 norm—the natural Riemannian
metric on the diffeomorphism group. Thus it is impossible to have an Eulerian
stable flow that is exponentially Lagrangian unstable.

The general principle in two dimensions is that a given fluid flow either has
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1. at most polynomial instability in both the Eulerian and the Lagrangian
senses, or

2. exponential instability in both the Eulerian and Lagrangian senses.

Similar results are valid in the three-dimensional case. The techniques
are essentially the same and thus for simplicity we have focused on the two-
dimensional case.

For general background information on the subject, we highly recommend
the recent text of Arnold-Khesin [2]. We will need a number of basic facts about
Riemannian geometry; do Carmo [4] is a good reference for this material and
we will use the notation of that book.

Much of this research was conducted while the author pursued graduate
studies at the State University of New York at Stony Brook, and portions were
published in the author’s dissertation [10]. The author would like to thank David
G. Ebin, Gerard Misio lek, and Herman Gluck for advice and useful discussions.

2 Geometry of D(M) and Dµ(M)

2.1 The diffeomorphism group

The group of diffeomorphisms, under composition, of a manifold M is denoted
D(M). The geometrical properties of D(M) are very closely related to those of
M itself. This space is the ambient manifold for the configuration space Dµ(M)
for ideal fluid dynamics, so it is worth understanding in depth. For simplicity
we will assume all objects are C∞.

At a diffeomorphism η ∈ D(M), the tangent space TηD(M) consists of
elements U ◦η, where U is a vector field on M . If 〈·, ·〉 is the Riemannian metric
on M and µ is the corresponding volume form, the Riemannian metric 〈〈·, ·〉〉
on TηD(M) is given by the formula

〈〈U ◦η, V ◦η〉〉 =

∫

M

〈U, V 〉◦η µ, for any vector fields U and V . (2.1)

Given a vector field X on M , we may construct a right-invariant vector field
X on D(M) by defining Xη = X◦η for each η ∈ D(M). The covariant derivative
of right-invariant vector fields satisfies

(
∇XY

)
η

= (∇XY ) ◦ η. (2.2)

One consequence of equation (2.2) is that the curvature tensor R of D(M)
satisfies

Rη(X,Y)Z = R(X,Y )Z ◦ η. (2.3)

See Misio lek [8] or Bao-Lafontaine-Ratiu [3] for details and references.
As another consequence, we have the following formula for the covariant

derivative of a vector field along a curve.
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Proposition 2.1. If η : (−ε, ε) → D(M) is a smooth curve, and we define a
vector field X(t) by the formula

∂η

∂t
= X(t)◦η(t),

then the covariant derivative of a right-translated vector field Y (t)◦η(t) along η
is

D

∂t

(
Y (t)◦η(t)

)
=

(
∂Y

∂t
+ ∇X(t)Y (t)

)
◦ η, (2.4)

2.2 The volume-preserving diffeomorphism group

The configuration space of an incompressible fluid is Dµ(M), the submanifold
of D(M) consisting of diffeomorphisms η satisfying η∗µ = µ, where µ is the
Riemannian volume form.

At any η, the elements of the tangent space TηDµ(M) are of the form X◦η,
where X is divergence-free and tangent to the boundary. The L2 metric (2.1)
on D(M) induces a metric on Dµ(M) defined by

〈〈U ◦η, V ◦η〉〉 ≡
∫

M

〈U, V 〉◦η µ =

∫

M

〈U, V 〉 µ.

This induced metric is right-invariant.
An arbitrary vector field (not necessarily tangent to ∂M) can be orthogonally

projected onto the space of divergence-free vector fields tangent to the boundary
using the Hodge decomposition. Given a vector field X, we solve the Neumann
boundary value problem

∆f = div X, 〈∇f, n̂〉
∣∣
∂M

= 〈X, n̂〉
∣∣
∂M

to obtain a function f , unique up to a constant, and then define the orthogonal
projection P(X) as

P(X) = X −∇f. (2.5)

By construction, P(X) is divergence-free and tangent to the boundary.
The covariant derivative on the submanifold Dµ(M) is the projection of the

covariant derivative on the larger manifold D(M). So the geodesic equation on
Dµ(M) is given by

D̃

∂t

∂η

∂t
≡ P

(
D

∂t

∂η

∂t

)
= 0. (2.6)

Using formula (2.1), the geodesic equation (2.6) may be decoupled into the
two equations

∂η

∂t
− X(t)◦η(t) = 0 (2.7)

∂X

∂t
+ P

(
∇X(t)X(t)

)
= 0. (2.8)
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For smooth initial data η(0) and X(0), Ebin-Marsden [5] proved that these
equations have local solutions that are smooth in time and space.

Equation (2.7) is called the flow equation, which relates the Eulerian de-
scription X(t) to the Lagrangian description η(t). Equation (2.8) is the incom-
pressible Euler equation. Its independence from η reflects the right-invariance
of the metric on Dµ(M).

The second fundamental form of the immersion of Dµ(M) into D(M) is given
by the formula

B(X,Y ) = ∇XY − P(∇XY ) = −∇pXY , (2.9)

where the function pXY is the solution of the Neumann problem

∆pXY = −div (∇XY ), 〈∇pXY , n̂〉
∣∣
∂M

= −〈∇XY, n̂〉
∣∣
∂M

and X and Y are divergence-free vector fields tangent to ∂M .
If X is the velocity field of an incompressible fluid flow, then the function

pXX gives the pressure of the fluid. We can use this notation to write the Euler
equation (2.8) more explicitly as

∂X

∂t
+ ∇XX = −∇pXX . (2.10)

If X does not depend on time, then it satisfies the steady Euler equation,

∇XX = −∇pXX . (2.11)

Geodesics which start at the identity in the direction of a steady Euler flow form
1-parameter subgroups of Dµ(M).

From the second fundamental form (2.9) and formula (2.3) for the curvature

of D(M), we can use the Gauss-Codazzi formula to compute the curvature R̃
of Dµ(M).

Proposition 2.2. If W , X, Y , and Z are divergence-free vector fields on M
tangent to ∂M , then the curvature R̃ of Dµ(M) at the identity id ∈ Dµ(M) is
given by

〈〈R̃(X,Y )Z,W 〉〉 =

∫

M

〈R(X,Y )Z,W 〉µ

+

∫

M

〈∇pY Z ,∇pXW 〉µ −
∫

M

〈∇pXZ ,∇pY W 〉µ. (2.12)

Corollary 2.3. The curvature R̃(X,Y )Z may be written as

R̃(X,Y )Z = P
(
R(X,Y )Z + ∇X∇pY Z −∇Y ∇pXZ

)
. (2.13)
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Proof. Since ∇pXW is the orthogonal projection of the vector field −∇XW onto
the space of gradients, we have

∫

M

〈∇pY Z ,∇pXW 〉µ = −
∫

M

〈∇pY Z ,∇XW 〉µ

= −
∫

M

X〈∇pY Z ,W 〉µ +

∫

M

〈∇X∇pY Z ,W 〉µ

=

∫

M

〈∇X∇pY Z ,W 〉µ,

where we used the fact that
∫

M
X(f) µ = 0 for any divergence-free vector field

X tangent to ∂M and any function f .
Performing the same simplification on the other term of (2.12), we get

〈〈R̃(X,Y )Z,W 〉〉 =

∫

M

〈R(X,Y )Z + ∇X∇pY Z −∇Y ∇pXZ ,W 〉µ

and formula (2.13) follows since W was arbitrary.

2.3 The splitting of the Jacobi equation

The curvature appears in the Jacobi equation on Dµ(M) along a geodesic η with
velocity field X:

D̃

∂t

D̃

∂t

(
Y (t)◦η(t)

)
+ R̃

(
Y (t), X(t)

)
X(t) ◦ η = 0, (2.14)

where Y (t) ◦ η(t) is a geodesic deviation along η. Misio lek [8] proved that
equation (2.14) has a unique smooth solution for given smooth initial data Y (0)

and D̃Y
∂t

∣∣
t=0

.
The Jacobi equation (2.14) is obtained by the standard procedure of lin-

earization of the geodesic equation. However we can also linearize the equations
(2.7) and (2.8) directly.

Proposition 2.4. Suppose that for each fixed s, the curve t 7→ η(t, s) is a
geodesic in Dµ(M) with η(0, s) = id, and that X(t, s) satisfies

∂η

∂t
= X(t, s) ◦ η(t, s).

Then the linearizations Y (t) and Z(t) defined by

Y (t) ◦ η(t, 0) ≡ ∂η

∂s

∣∣∣
s=0

and Z(t) ≡ ∂X

∂s

∣∣∣
s=0

satisfy the linearized geodesic equations

∂Y

∂t
+ [X(t), Y (t)] = Z(t) (2.15)

∂Z

∂t
+ P

(
∇X(t)Z(t) + ∇Z(t)X(t)

)
= 0. (2.16)

6



In addition, the linearized geodesics equations (2.15) and (2.16), with initial
conditions Y (0) = 0 and Z(0) = Z0, are equivalent to the Jacobi equation (2.14),

with initial conditions Y (0) = 0 and D̃Y
∂t

∣∣
t=0

= Z0.

Proof. We derive (2.15) and (2.16) simply by differentiating equations (2.7)
and (2.8) with respect to s. That these equations are equivalent to the Jacobi
equation follows from the fact that equations (2.7) and (2.8) are equivalent to
the geodesic equation, and the fact that we are using the same linearization
procedure along η.

It is also instructive to perform the calculation directly, by using (2.15) as a
formula for Z and plugging in to (2.16). Using the formula

D̃

∂t

(
Y (t)◦η(t)

)
=

(
∂Y

∂t
+ ∇XY + ∇pXY

)
◦η(t)

for the covariant derivative and formula (2.13) for the curvature R̃, we can check
that the partial differential equations are identical.

Proposition 2.4 was also proved by Rouchon [11], who used it to compute
the curvature (2.13) that we derived from the Gauss-Codazzi formula.

The equation (2.16) is the usual linearized Euler equation, typically studied
for a time-independent steady flow X. Equation (2.15) is a nonhomogeneous
version of the equation

∂Y

∂t
+ [X(t), Y (t)] = 0, (2.17)

which in magnetohydrodynamics is called the “fast dynamo equation.” (See
Arnold-Khesin [2] for details.)

In general, the linearized flow equation is fairly easy to solve explicitly, while
the linearized Euler equation is far more difficult. But it can be done in some
very special cases, as we will show in the next section.

3 Explicit solutions of the Jacobi equation

In this section we compute Jacobi fields explicitly, using the splitting in Propo-
sition 2.4. In what follows we will always suppose the initial conditions on the

Jacobi field are Y (0) = 0 and D̃Y
∂t

|t=0 6= 0, which follows from the assumption
that geodesics start at the identity.

One of the simplest flows for which there is an explicit solution of the lin-
earized Euler equation is plane parallel Couette flow, given by the formula
X = x ∂y on the flat cylinder M = [0, π] × S1. The choice 0 ≤ x ≤ π is
not important but it makes formulas simpler.

Because we have ∇XX = 0, the function pXX is constant. Thus by formula
(2.12), for every divergence-free Y tangent to the boundary of M , we have

〈〈R̃(Y,X)X,Y 〉〉 = −
∫

M

〈∇pXY ,∇pXY 〉 µ ≤ 0,
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and this is strictly negative if ∇pXY 6= 0. Since

∆pXY = −div (∇Y X) = −∂Y 1

∂y
,

the curvature is strictly negative unless Y = v(x) ∂y for some function v.
Despite the nonpositivity of the curvature operator, we find that there are

no exponentially growing Jacobi fields.

Theorem 3.1. Suppose X = x ∂y is plane parallel Couette flow on the flat
cylinder M = [0, π]×S1, and that Y (t) is a Jacobi field along the corresponding

geodesic in Dµ(M) with initial conditions Y (0) = 0 and D̃Y
∂t

∣∣
t=0

= Z(0). Then
|Y (t)| = O(t) at every point of M .

Proof. We first solve the linearized Euler equation. The solution of (2.16) was
first presented by Orr [9], and we will repeat the derivation in order to then
solve for the Jacobi field.

Let us write Z = h ∂x + j ∂y. We first expand h and j in a Fourier series in
y:

h(t, x, y) =

∞∑

n=−∞

hn(t, x)einy, j(t, x, y) =

∞∑

n=−∞

jn(t, x)einy.

Then the condition div Z = 0 translates into the equation

∂hn

∂x
+ injn = 0 for every n. (3.1)

If n 6= 0, this determines jn in terms of hn.
The condition that Z remains tangent to the boundary translates into the

requirements that

hn(t, 0) = 0 and hn(t, π) = 0, for all t. (3.2)

The linearized Euler equation (2.16) can be written as

∂Z

∂t
+ ∇XZ + ∇ZX = −2∇q.

The function q can also be expanded as a Fourier series in y, and we find that
h and j satisfy

∂hn

∂t
+ inxhn = −∂qn

∂x
∂jn

∂t
+ inxjn + hn = −inqn.

(3.3)

For n = 0, equation (3.1) along with the boundary conditions (3.2) immedi-
ately imply that h0(t, x) ≡ 0. Then equations (3.3) imply that j0(t, x) = j0(0, x).
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So in what follows we will assume n 6= 0. Eliminating qn from equations
(3.3), we obtain

∂

∂t

(
∂2hn

∂x2
− n2hn

)
+ inx

(
∂2hn

∂x2
− n2hn

)
= 0. (3.4)

The first step to solve equation (3.4) is writing

∂2hn

∂x2
(t, x) − n2hn(t, x) = e−inxt

(
∂2hn

∂x2
(0, x) − n2hn(0, x)

)
. (3.5)

To proceed further, it helps to expand hn(0, x) in a Fourier sine series, using
the conditions (3.2). We will work with each component individually; then we
can use linearity to add the solutions. So suppose

hn(0, x) =
2i

m2 + n2
sin (mx), for some integer m,

the coefficient being chosen to simplify later formulas.
For fixed t, equation (3.5) is an ordinary differential equation in x, and the

explicit solution may be obtained by standard methods. We get

hn(t, x) = 1
(m−nt)2+n2 eimxe−inxt − 1

(m+nt)2+n2 e−imxe−inxt

−
(

1
(m−nt)2+n2 − 1

(m+nt)2+n2

) sinh
(
n(π − x)

)
+ (−1)me−inπt sinh

(
nx

)

sinh (nπ)
.

(3.6)

From the divergence-free condition (3.1), we can obtain a formula for jn(t, x).
We can see that hn asymptotically grows like O(1/t2), while jn asymptotically
grows like O(1/t) at every point.

Our real interest, however, is in the Jacobi field Y , which we find by solving
equation (2.15). Writing Y = f ∂x +g ∂y, we proceed as before. First we expand
f and g in Fourier series in y:

f(t, x, y) =
∞∑

n=−∞

fn(t, x)einy, g(t, x, y) =
∞∑

n=−∞

gn(t, x)einy.

Again the divergence-free condition implies that

∂fn

∂x
+ ingn = 0, (3.7)

so we only need to solve for fn.
The horizontal component of (2.15) is

∂fn

∂t
+ inxfn = hn, (3.8)
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whose solution with fn(0, x) ≡ 0 is

fn(t, x) =

∫ t

0

hn(s, x)einx(s−t) ds.

Using equation (3.6), we get

f(t, x)einxt =
eimx

n2

∫ t

0

1

(s − m
n

)2 + 1
ds − e−imx

n2

∫ t

0

1

(s + m
n

)2 + 1
ds

− sinh
(
n(π − x)

)
pm,n(t, x) + (−1)m sinh

(
nx

)
pm,n(t, x − π)

n2 sinh (nπ)
, (3.9)

where

pm,n(t, x) =

∫ t

0

(
1

(s − m
n

)2 + 1
− 1

(s + m
n

)2 + 1

)
einxs ds. (3.10)

To determine the asymptotic behavior of Y for large t, we first need to find
an asymptotic expansion for fn. We can easily derive the asymptotic expansions
for the first two integrals in (3.9):

∫ t

0

1

(s + c)2 + 1
ds =

π

2
− arctan c − 1

t
+ O

( 1

t2

)
. (3.11)

We get an asymptotic expansion for pm,n, defined by (3.10), as follows:

pm,n(t, x) =

∫ ∞

0

(
1

(s − m
n

)2 + 1
− 1

(s + m
n

)2 + 1

)
einxs ds

−
∫ ∞

t

4m
n

s einxs

(s2 − m2

n2 )2 + 2(s2 + m2

n2 ) + 1
ds

= pm,n(∞, x) + O
( 1

t2

)
,

where pm,n(∞, x) is defined as the improper integral (a half-Fourier transform).
Thus we can write

fn(t, x) =

[
α(x) − 2i

n2t
sin (mx)

]
e−inxt + O

( 1

t2

)
, (3.12)

where

α(x) ≡ 1

n2

(
iπ sin (mx) + 2 arctan

(
m
n

)
cos (mx)

)

− sinh
(
n(π − x)

)
pm,n(∞, x) + (−1)m sinh

(
nx

)
pm,n(∞, x − π)

n2 sinh (nπ)
.

So for large time and fixed x, fn(t, x) is approximately sinusoidal with period
2π
nx

and complex amplitude α(x).

10



P
S

frag
rep

lacem
en

ts

Re
(
gn(t, x0)einx0t

)

t

0.5

−
0.25

0.25

0 1 2 3 4 5

6

Figure 3.1: The real part of the amplitude of gn(t, x0), plotted against time, for
the case n = 1, m = 2, and x0 = π

3 . For comparison, the linear approximation

Re
(
α(x0)t + i

n
α′(x0)

)
is also shown.

From the asymptotic expansion (3.12) of fn, we obtain an asymptotic ex-
pansion for gn using formula (3.7):

gn(t, x) =

[
α(x)t +

i

n
α′(x) − 2

n
sin (mx)

]
e−inxt + O

(1

t

)
. (3.13)

So the vertical component of the Jacobi field grows linearly in time at each
point. A typical plot of gn(t, x) is shown in Figure 3.1.

The important point is obviously that the Jacobi fields do not grow expo-
nentially, despite the fact that the curvature 〈〈R̃(Y,X)X,Y 〉〉 is negative for
most vector fields Y and zero for the rest. This is quite counterintuitive, and
no similar phenomenon is known in finite-dimensional Lie groups.

4 Asymptotic growth of Jacobi fields

In this section we study the growth of Jacobi fields along geodesics in Dµ(M2)
which are generated by steady solutions of the Euler equation. We show that
if all linear Eulerian perturbations grow polynomially in time, then so do all
Jacobi fields in the L2 norm. At the end of the section we mention analogous
results for the three-dimensional case. We first need two lemmas.
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Lemma 4.1. If X is a divergence-free vector field on a surface M , and we
define a vector field W by the formula

W =
1

〈X,X〉 ?X, (4.1)

where ? is the operation of rotation by 90◦ in each tangent space, then the Lie
bracket [X,W ] satisfies

[X,W ] = ξX (4.2)

for some function ξ.

Proof. To verify equation (4.2), we only need to show that 〈?X, [X,W ]〉 ≡ 0.
We have

〈?X, [X,W ]〉 = 〈?X,∇XW 〉 − 〈?X,∇W X〉

= 〈X,X〉 〈W,∇XW 〉 − 1

〈X,X〉 〈?X,∇?XX〉

= − 1

〈X,X〉 〈X,∇XX〉 − 1

〈?X, ?X〉 〈?X,∇?XX〉

= −div X = 0.

Thus [X,W ] is proportional to X.

Lemma 4.2. Suppose X is a divergence-free vector field on a surface M , tan-
gent to ∂M . Let q be some time-dependent function on M , and let p be the
solution of the equation

∂p

∂t
+ X(p) = q, p(0) = 0. (4.3)

Then the L2 norms of p and q are related by

‖p(t)‖ ≤
∫ t

0

‖q(s)‖ ds

Proof. Let η(t) be the flow of X. Then since X is divergence-free, η(t) is volume-
preserving. Since equation (4.3) can be written as

∂

∂t

(
p(t)◦η(t)

)
= q(t)◦η(t),

its solution is

p(t) =

∫ t

0

q(s)◦η(s − t) ds.
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Therefore the L2 norm of p can be estimated using the Schwartz inequality:

∫

M

p2(t) µ =

∫ t

0

∫ t

0

∫

M

[
q(s)◦η(s − t)

]
·
[
q(σ)◦η(σ − t)

]
µds dσ

≤
∫ t

0

∫ t

0

[√∫
M

q2(s)◦η(s − t) µ

]
·
[√∫

M
q2(σ)◦η(σ − t) µ

]
ds dσ

=

[∫ t

0

√∫
M

q2(s)◦η(s − t) µds

]2

=

[∫ t

0

‖q(s)‖ ds

]2

,

where in the last line we used the change of variables formula and the fact that
η(s − t)∗µ = µ. The lemma follows on taking square roots.

Theorem 4.3. Suppose X is a divergence-free vector field on a two-dimensional
compact manifold M , with no stagnation points. Then if Y and Z are solutions
of equations (2.15) and (2.16) with Y (0) = 0, then the L2 norms of Y and Z
satisfy

‖Y (t)‖ ≤
√

3 + 2A2t2
supM |X|
infM |X|

∫ t

0

‖Z(s)‖ ds, (4.4)

for some constant A.
In particular, if the L2 norm of Z is bounded for all time, then the L2 norm

of Y grows at most quadratically in time.

Proof. Suppose we are given a solution Z(t) of the linearized Euler equation
(2.16). We define W by equation (4.1), and write Y and Z in terms of the basis
{W,X} as

Z(t) = h(t)W + j(t)X and Y (t) = f(t)W + g(t)X.

Then by Lemma 4.1, we can write the linearized flow equation (2.15) in com-
ponents as

∂g

∂t
+ X

(
g
)

+ ξ f = j

∂f

∂t
+ X

(
f
)

= h

Now using Lemma 4.2, we find that

‖f(t)‖ ≤
∫ t

0

‖h(s)‖ ds,

and thus that

‖g(t)‖ ≤
∫ t

0

‖j(s) − ξ f(s)‖ ds

≤
∫ t

0

‖j(s)‖ ds + sup
M

|ξ|
∫ t

0

‖f(s)‖ ds

≤
∫ t

0

‖j(s)‖ ds + t sup
M

|ξ|
∫ t

0

‖h(s)‖ ds.

13



Since ‖Z‖2 =
∫

M
1

〈X,X〉 h2 µ +
∫

M
〈X,X〉 j2 µ, we have

‖j‖ ≤ 1

infM |X|

√∫

M

〈X,X〉 j2 µ ≤ 1

infM |X| ‖Z‖

and

‖h‖ ≤ sup
M

|X|
√∫

M

1

〈X,X〉 h2 µ ≤ sup
M

|X| ‖Z‖.

Thus we can compute

‖Y (t)‖2 =

∫

M

〈X,X〉g2(t) µ +

∫

M

1

〈X,X〉 f2(t) µ

≤ sup
M

〈X,X〉‖g(t)‖2 +
1

infM 〈X,X〉‖f(t)‖2

≤
[
sup
M

|X|2
( 1

infM |X| + t sup
M

|ξ| sup
M

|X|
)2

+
supM |X|2
infM |X|2

]
·
[∫ t

0

‖Z(s)‖ ds

]2

.

Equation (4.4) follows as desired, with

A = sup
M

|ξ| · inf
M

|X| · sup
M

|X|.

If ‖Z(s)‖ ≤ C for all s, then ‖Y (t)‖ ≤ CKt
√

3 + 2A2t2, and thus ‖Y (t)‖ =
O(t2) as t → ∞.

Remark 4.4. Although the coefficient in Theorem 4.3 is not sharp, the quadratic
growth estimate of the L2 norm is, in general, the best possible. To see this, we
construct the following example. Let M be the torus T

2, with a metric given
by ds2 = dr2 + ϕ2(r) dθ2 with ϕ(r) a periodic, nowhere-zero function of r. (For
example, the standard embedding of the torus in R

3 gives ϕ(r) = c + d cos r,
with |c| > |d|.) Let

X =
1

ϕ2(r)

∂

∂θ
.

Then P(∇XX) = 0 and div X = 0, so that X is a steady solution of the Euler
equation (2.11).

Define

Z =
1

ϕ(r)

∂

∂r
.

We have div Z = 0, and since ∇XZ + ∇ZX = 0, Z is a steady solution of the
linearized Euler equation (2.16).

The corresponding Jacobi field can be computed as

Y (t, r, θ) =
t

ϕ(r)

∂

∂r
− t2ϕ′(r)

ϕ4(r)

∂

∂θ
. (4.5)

Thus if ϕ is not constant, the Jacobi field grows quadratically in time at each
point.
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The important conclusion is that growth is polynomial in time: we have
ruled out exponential growth of the Jacobi field Y unless the perturbed velocity
field Z also grows exponentially in time. Arnold-Khesin [2] had suggested that
“a stationary flow can be a Lyapunov stable solution of the Euler equation,
while the corresponding motion of the fluid is exponentially unstable.” (Chapter
IV, Remark 4.3). Theorem 4.3 shows that this is actually impossible for two-
dimensional flows without stationary points.

A drawback of Theorem 4.3 is that it relies on X having no stagnation points,
which is a severe topological restriction on the surface. However, if X does have
isolated stagnation points, we can remove an X-invariant neighborhood of the
points and apply Theorem 4.3 to the remaining portion of the manifold. Then
we can analyze the behavior near the singularities separately.

The two simplest cases are nondegenerate stationary points of elliptic and
hyperbolic types. We shall see that a flow with only elliptic fixed points has no
Lagrangian instability. On the other hand, a flow with a hyperbolic fixed point
has an exponential Lagrangian instability, as well as an exponential Eulerian
instability.

Theorem 4.5. If X is an analytic vector field on a surface M with a nonde-
generate elliptic stationary point, then the L2 norm of the Jacobi field Y in a
neighborhood of the stationary point satisfies an estimate of the form

‖Y (t)‖ ≤
√

3 + 2A2t2
∫ t

0

‖Z(s)‖ ds,

for some constant A.

Proof. We use the fact that for any vector field of the form described, there is
a system of analytic coordinates (x, y) and an analytic function f such that

X = −yf(x2 + y2) ∂x + xf(x2 + y2) ∂y,

with f(0) 6= 0; see for example Mañosas-Villadelprat [7].
We can use any Riemannian metric to estimate the L2 norm, since all metrics

generate an equivalent norm and equation (2.15) does not depend on the metric
components. So we may as well use the flat metric ds2 = dx2 + dy2.

From here the analysis proceeds very much like the proof of Theorem 4.3.
The difference is that 〈X,X〉 is invariant under the flow η(t), so that we don’t
need the term supM 〈X,X〉/ infM 〈X,X〉, which is unbounded in this case. On
the other hand ξ is given by

ξ(x, y) =
2f ′(x2 + y2)

[f(x2 + y2)]2
,

which remains bounded in a neighborhood of 0, so that supM |ξ| is finite.

On the other hand, a hyperbolic stagnation point will create exponential
instability even in a small neighborhood.
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Theorem 4.6 (Arnold-Khesin). If X is a divergence-free vector field on a
surface M with an isolated nondegenerate hyperbolic fixed point, then there are
Jacobi fields with exponentially growing L2 norm.

Proof. The easiest way to prove this is to simply look at solutions of the de-
coupled Jacobi equations (2.16) and (2.15) satisfying Z(0) = 0 and Y (0) 6= 0.
Thus we only need to solve the homogeneous linearized flow equation, i.e. the
dynamo equation (2.17). The fact that this equation has solutions which grow
exponentially in the L2 norm was demonstrated in Arnold-Khesin [2], Chapter
V, Theorem 1.7.

The existence of a hyperbolic fixed point not only guarantees exponential
growth of the dynamo equation, but also of the linearized Euler equation itself,
as proven by Friedlander-Vishik [6].

Theorem 4.7 (Friedlander-Vishik). If X is a steady solution of the Euler
equation on a surface with a hyperbolic stagnation point, then there are expo-
nentially growing solutions of the linearized Euler equation in the L2 norm.

Now we combine the results of Theorems 4.3–4.7.

Theorem 4.8. Suppose X is an analytic solution of the steady Euler equation
on a surface M , with only isolated nondegenerate singularities. If X is at most
Eulerian polynomially unstable, then X is at most Lagrangian polynomially un-
stable.

There are theorems analogous to Theorem 4.3 in the three-dimensional case.
We recall that if X is a steady three-dimensional solution of the Euler equation
(2.11), then there is a function α (the Bernoulli function) such that X×curl X =
∇α. If α is not constant, then we can define

W = 1
〈∇α,∇α〉 ∇α.

Since
〈[X,W ],W 〉 = 0 and [X, curl X] = 0,

the vector fields {X, curl X,W} form a convenient basis to study the linearized
flow equation (2.15), and we can perform an analysis very similar to the above.

If α is constant, on the other hand, then curl X and X are collinear, so X
is a “force-free field” in the language of magnetohydrodynamics. If X happens
to have an integral of motion (that is, a function β on M such that X(β) ≡ 0,
or more generally, a curl-free vector field U such that 〈X,U〉 ≡ 0), then we can
again define a convenient basis by the formulas

W = 1
〈U,U〉 U and V = 1

〈X,X〉X × U.

These vector fields satisfy

〈[X,V ], V 〉 = 0, 〈[X,V ],W 〉 = 0, 〈[X,W ],W 〉 = 0, and 〈[V,W ],W 〉 = 0.
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So they also form a convenient basis.
If X is an eigenfunction of the curl operator with no integral of motion,

then there may not be a simple Jordan-form basis of the Lie bracket operator
Y 7→ [X,Y ], and thus we could not prove any theorem like Theorem 4.3.

5 Conclusion

In this research we have tried to clarify the relationship between Eulerian in-
stability and Lagrangian instability, using a decoupling of the Jacobi equation.
Using this method, we have found an explicit counterexample to the hypothesis
that negative curvature on the diffeomorphism group is responsible for exponen-
tial Lagrangian instability. Instead, we conclude that only exponential Eulerian
instability can create exponential Lagrangian instability.

This complements the work of Friedlander-Vishik [6], who showed that any
exponential instability (even in the C∞ norm) of the dynamo equation (2.17)
will cause an exponential instability in the linearized Euler equation (2.16), in
the L2 norm.

In general, one expects not to be able to achieve true Lagrangian stability
in the L2 norm. The Jacobi fields computed here grow at least linearly in time,
while Theorem 4.3 suggests the growth could be a higher-order polynomial.
However, one should distinguish between polynomial growth of Jacobi fields and
exponential growth. In the case of polynomial growth, one can still predict the
Lagrangian motion in a practical sense. However, if Lagrangian perturbations
grow exponentially, then long-term prediction is impossible.

Thus rather than distinguishing between stability and instability, one should
distinguish between “slow” polynomial instability and “fast” exponential insta-
bility.

It would be interesting to study extensions of these results. In our case
we have dealt with two-dimensional ideal fluids, in the simple cases where the
fluid flow has only isolated nondegenerate stagnation points. It is possible that
other types of stagnation points would create intermediate instabilities, such as
higher-order polynomial growth of Jacobi fields in the case of degenerate elliptic
zeroes. Using normal form theory, one should be able to work this out in detail.
The various types of stagnation points in the three-dimensional case present
still more possibilities.

The techniques used in this paper can also be applied to study stability in
other norms besides L2. Sobolev norms are useful in technical studies of the
diffeomorphism group (as shown by work of Ebin-Marsden [5] and Misio lek [8]).
In future research we will compare Sobolev norms of Jacobi fields to those
of Euler perturbations, and will show that in many cases, either both grow
polynomially or both grow exponentially. Thus results presented here are not
special to the L2 case, but in fact apply for any reasonable definition of linear
stability.

All of our results have dealt with linearizations and infinitesimal perturba-
tions. This leads to a natural question: what effects, if any, do the differences

17



in growth rates of linear perturbations have on nonlinear instability? We have
shown that typically, linear perturbations will grow in time. When they be-
come large enough that the linear approximation is no longer valid, is there still
any sense in which one can distinguish different forms of Lagrangian instabil-
ity? Arnold famously demonstrated nonlinear stability in the Eulerian sense
for certain flows (see Arnold-Khesin [2]), but there is almost nothing known
about nonlinear stability in the Lagrangian sense. We expect that this will be
a stimulating area of future research.
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