
EULER-ARNOLD EQUATIONS AND TEICHMÜLLER THEORY
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Abstract. In this paper we prove that for s > 3/2, all Hs solutions of the Euler-Weil-Petersson
equation, which describes geodesics on the universal Teichmüller space under the Weil-Petersson
metric, will remain in Hs for all time. This extends the work of Escher-Kolev for strong Riemannian
metrics to the borderline case of H3/2 metrics. In addition we show that all Hs solutions of the
Wunsch equation, a variation of the Constantin-Lax-Majda equation which also describes geodesics
on the universal Teichmüller curve under the Velling-Kirillov metric, must blow up in finite time
due to wave breaking, extending work of Castro-Córdoba and Bauer-Kolev-Preston. Finally we
illustrate these phenomena numerically.
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1. Introduction

Euler-Arnold equations are PDEs that describe the evolution of a velocity field for which the
Lagrangian flow is a geodesic in a group of smooth diffeomorphisms of a manifold, for some choice
of right-invariant Riemannian metric; see Arnold-Khesin [1]. In the one-dimensional case, we will
consider the diffeomorphism group of the circle S1 = R/2πZ. If the Riemannian metric is defined
at the identity by

(1) 〈u, u〉r =

∫
S1

uΛ2ru dθ,

where Λ2r is a symmetric, positive pseudodifferential operator of order r, we call it a Sobolev Hr

metric, and the Euler-Arnold equation is given by

(2) mt + umθ + 2muθ = 0, m = Λ2ru, u = u(t, θ), u(0) = u0 ∈ C∞(S1).

Special cases include the Camassa-Holm equation when r = 1 and Λ2 = 1−∂2
θ , or the right-invariant

Burgers’ equation when r = 0 and Λ0 = 1 [4]. One can also allow Λ2r to be degenerate (nonnegative
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rather than positive); the best known example is when r = 1 and Λ2 = −∂2
θ , for which we get the

Hunter-Saxton equation [12]. Here we are interested in the fractional order cases r = 1
2 and r = 3

2
(see Escher-Kolev [7]), which arise naturally in Teichmüller theory [10]. Both cases are critical in
some sense, due to the Sobolev embedding being critical: for r < 1

2 Lagrangian trajectories do not

depend smoothly on initial conditions, while for r > 3
2 conservation of energy is strong enough to

ensure global existence [8]. In this paper we will show that all solutions for r = 1
2 blow up in finite

time while for r = 3
2 all smooth solutions exist globally; previously only some solutions were known

to blow up in the r = 1
2 case [2] and smooth solutions were only known to stay in H3/2 in the r = 3

2
case [10].

Specifically the cases we are interested in are

• (r = 1
2) the Wunsch equation [22],[2]: Λ1 = Huθ,

• and (r = 3
2) the Euler-Weil-Petersson equation [10]: Λ3 = −H(uθθθ + uθ),

where H is the Hilbert transform defined for periodic functions by H(einθ) = −i signneinθ. The
Wunsch equation is a special case of the modified Constantin-Lax-Majda equation [16] which models
vorticity growth in an ideal fluid.

When paired with the flow equation

(3)
∂η

∂t
(t, θ) = u

(
t, η(t, θ)

)
, η(0, θ) = θ,

the Euler-Arnold equation (2) describes geodesics η(t) of the right-invariant Riemannian metric
defined at the identity element by (1) on the homogeneous space Diff(S1)/G. Here G is the group
generated by the subalgebra ker Λ of length-zero directions: for the Euler-Weil-Petersson equation
we have G = PSL2(R), and for the Wunsch equation we have G = Rot(S1) ∼= S1.

The local existence result was obtained by Escher-Kolev [7], a strengthening of a result of Escher-
Kolev-Wunsch [9].

Theorem 1 (Escher-Kolev). Suppose Λr is either Λ1 = Huθ or Λ3 = −H(uθθθ + uθ). Then the
system (2)–(3) is a smooth ODE for η ∈ Diffs(S1)/G, for s > 3

2 and G = Rot(S1) or G = PSL2(R),

respectively. Hence for any u0 ∈ Hs(S1), there is a unique solution η : [0, T ) → Diffs(S1)/G with
η(0) = id and ηt(0) = u0, with the map u0 7→ η(t) depending smoothly on u0.

Loss of smoothness in the equation (2) occurs due to the fact that composition required to get
u = η̇ ◦η−1 is not smooth in η; thus although the second-order equation for η (with u eliminated) is
an ODE, the first-order equation (2) for u alone is not an ODE. This approach to the Euler equations
was originally due to Ebin-Marsden [6]; for the Wunsch equation it was proved by Escher-Kolev-
Wunsch [9] for large Sobolev indices, while for the Euler-Weil-Petersson equation it was proved by
Escher-Kolev [7]. Castro-Córdoba [3] showed that if u0 is initially odd, then solutions to the Wunsch
equation blow up in finite time; the authors of [2] extended this result to some data without odd
symmetry. For the Euler-Weil-Petersson equation, it was not known whether initially smooth data
would remain smooth for all time. However Gay-Balmaz and Ratiu [10] interpreted the equation

in H3/2 as a strong Riemannian metric on a certain manifold and concluded that the velocity field
u remains in H3/2(S1) for all time. We complement this to obtain a uniform C1 bound, which then
by bootstrapping gives uniform bounds on all Sobolev norms Hs for s > 3

2 , and thus in particular
we show that initially smooth solutions remain smooth.

The main theorems of this paper settle the global existence question for the degenerate Ḣr metrics
corresponding to r = 1

2 (the Wunsch equation) and r = 3
2 (the Euler-Weil-Petersson equation).

Theorem 2. Suppose s > 3
2 and u0 is an Hs velocity field on S1 with mean zero (i.e., u0 ∈

Hs(S1)/R). Then the solution u(t) of the Wunsch equation with u(0) = u0 blows up in finite time.
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Theorem 3. Suppose s > 3
2 and u0 is an Hs velocity field on S1, and that the Fourier series of u0

has vanishing n = 0, n = 1, and n = −1 component; i.e., u0 ∈ Hs(S1)/sl2(R). Then the solution
u(t) of the Euler-Weil-Petersson equation with u(0) = u0 remains in Hs for all time. In particular
if u0 is C∞ then so is u(t) for all t > 0.

Additionally, Theorem 2 almost immediately gives us that every mean zero solution of the
Constantin-Lax-Majda equation [5] blows up in finite time. Overall, these two Theorems mean
that the case r = 3

2 behaves the same as the cases for r > 3
2 , while the case r = 1

2 behaves the same
as for r = 1 (since all solutions of the Hunter-Saxton equation blow up in finite time [14]). We
may conjecture that there is a critical value r0 such that for r > r0 all smooth mean-zero solutions
remain smooth for all time, while for r < r0 all smooth mean-zero solutions blow up in finite time.
Our guess is that r0 = 3

2 , but the current method does not prove this; furthermore we do not know

what happens with geodesics for 1
2 < r < 1 or 1 < r < 3

2 even in the degenerate case.
Both equations arise naturally in the study of universal Teichmüller spaces. The Euler-Weil-

Petersson equation was derived in [10] as the Euler-Arnold equation arising from the Weil-Petersson
metric on the universal Teichmüller space. This geometry has been studied extensively by Takhtajan-
Teo [18]; in particular they constructed the Hilbert manifold structure that makes Weil-Petersson
a strong Hilbert metric (thus ensuring that geodesics exist globally). The Weil-Petersson geometry
is well-known: the sectional curvature is strictly negative, and it is a Kähler manifold with almost
complex structure given by the Hilbert transform. See Tromba [21] and Yamada [23] for further
background on the Weil-Petersson metric on the universal Teichmüller space.

The Wunsch equation arises from the Riemannian metric 〈u, u〉 =
∫
S1 uHuθ dx, which is called

the Velling-Kirillov metric and was proposed as a metric on the universal Teichmüller curve by
Teo [19][20]. The Velling-Kirillov geometry was originally studied by Kirillov-Yur’ev [13]; although
the sectional curvature is believed to be always positive, this is not yet proved. Furthermore the
geometries are related in the sense that integrating the square of the symplectic form for the W-P
geometry gives the symplectic form for the V-K geometry. Yet the properties of these geometries
seem to be opposite in virtually every way: from Fredholmness of the exponential map [15][2] to
the sectional curvature to the global properties of geodesics mentioned above.

The authors would like to thank Martin Bauer and Boris Kolev for suggesting the problem
and useful discussions on the result. The first author would like to thank the organizers and
participants of the “Math on the Rocks” shape analysis workshop in Grundsund, Sweden during
July 2015, where parts of the proofs of several theorems were discovered.

2. Proof of the Main Theorems

2.1. Rewriting the Equations and Proof of Theorem 2. Let us first sketch the blowup
argument for the Wunsch equation from [2], which extended the argument of Castro-Córdoba [3].
The Wunsch equation is given for smooth mean-zero vector fields u on S1 (identified with functions)
by the formula

(4) ωt + uωθ + 2uθω = 0, ω = Huθ.

In terms of the Lagrangian flow η given by (3), we may rewrite this as

∂tω
(
t, η(t, θ)

)
+ 2ηtθ(t, θ)ω

(
t, η(t, θ)

)
/ηθ(t, θ) = 0

which leads to the conservation law

ηθ(t, θ)
2ω
(
t, η(t, θ)

)
= ω0(θ).

Applying the Hilbert transform to both sides of (4) and using the following Hilbert transform
identities (valid for mean-zero functions f):

(5) H(Hf) = −f and 2H(fHf) = (Hf)2 − f2,
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one obtains [2] an equation for uθ = −Hω:

(6) utθ + uuθθ + u2
θ = −F + ω2

where the function F is a spatially nonlocal force given for each fixed time t by

(7) F = −uuθθ −H(uHuθθ).

This function F is positive everywhere for any mean-zero function u: see Theorem 6.
In Lagrangian form, using the conservation law equation (6) becomes

(8) ηttθ(t, θ) =
ω0(θ)2

ηθ(t, θ)3
− F

(
t, η(t, θ)

)
ηθ(t, θ).

Now although we derive (8) for smooth solutions, we may observe that the equation (8) for ηθ is
an ordinary differential equation which makes sense for η ∈ Hs for s > 3

2 . In particular it is not

hard to show that F (t, θ) given by (7) is in Hs−1 as long as u ∈ Hs for s > 3
2 , and in fact F is

differentiable as a function of u since it depends only quadratically on u. As such the right side
of (8) is a smooth function of ηθ ∈ Hs−1 in the sense of Fréchet derivatives, and thus we obtain a
smooth ODE on the space of positive Hs−1 functions. We omit the details since the result is the
same as that of Escher-Kolev [7] quoted above in Theorem 1.

If there is a point θ0 such that u′(θ0) < 0 and ω0(θ0) = 0, then we will have ηθ(0, θ0) = 1 and
ηtθ(0, θ0) = uθ(0, θ0) < 0. Since F (t, η(t, θ0)) > 0 for every t, we see that ηttθ(t, θ0) < 0 for all
t, so that ηθ(t, θ0) must reach zero in finite time (which leads to uθ → −∞). Our proof that all
solutions blow up consists of showing that this condition happens for every initial condition u0 with
ω0 = Hu0.

Proof of Theorem 2. Note that u0 ∈ Hs for s > 3
2 , and thus u′0 is continuous. From the discussion

above, the proof reduces to proving the following statement. Suppose f : S1 → R is a continuously
differentiable function with mean zero, and let g = Hf . Then there is a point θ0 ∈ S1 with
f ′(θ0) < 0 and g′(θ0) = 0.

Let p be the unique harmonic function in the unit disc D such that p|S1 = f , and let q be its
harmonic conjugate normalized so that q|S1 = g. Then in polar coordinates we have the Cauchy-
Riemann equations

(9) rpr(r, θ) = qθ(r, θ) and rqr(r, θ) = −pθ(r, θ),
and we have p(1, θ) = f(θ) and q(1, θ) = g(θ).

Since q is harmonic, its maximum value within D occurs on the boundary S1 at some point θ0.
The maximum of g occurs at the same point, so that g′(θ0) = 0. By the Hopf lemma, we have
qr(1, θ0) > 0, so equations (9) imply that f ′(θ0) = pθ(1, θ0) < 0. �

Remark 4. This argument also works when the domain is R and the functions have suitable decay
conditions imposed. It can thus be applied to demonstrate that every mean zero solution of the
Constantin-Lax-Majda equation [5]

ωt − vxω = 0, vx = Hω

blows up in finite time, using the same argument as in that paper via the explicit solution formula.

Now let us rewrite the Euler-Weil-Petersson equation to obtain the analogue of formula (6).
Recall from the introduction that it is given explicitly by

(10) ωt + uωθ + 2uθω = 0, ω = −Huθθθ −Huθ.

Proposition 5. For a smooth velocity field u, the Euler-Weil-Petersson equation (10) is equivalent
to the equation

(11) utθ = H(uHuθθ) +H(1 + ∂2
θ )−1

[
2uθHuθ − uθθHuθθ

]
,
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In terms of the Lagrangian flow (3), equation (11) takes the form

(12)
∂

∂t
uθ(t, η(t, θ)) = −F (t, η(t, θ)) +G(t, η(t, θ))

where F is defined by formula (7) and G is given by

(13) G = H(1 + ∂2
θ )−1[2uθHuθ − uθθHuθθ].

Here the operator (1 + ∂2
θ ) is restricted to the orthogonal complement of the span of {1, sin θ, cos θ}

so as to be invertible.

Proof. Equation (10) may be written

−H(1 + ∂2
θ )utθ = (1 + ∂2

θ )(uHuθθ)− uθθHuθθ + 2uθHuθ,

using the product rule. We now solve for utθ by applying H to both sides and inverting (1 + ∂2
θ ).

To do this, we just need to check that the term (2uθHuθ − uθθHuθθ) is orthogonal to the subspace
spanned by {1, sin θ, cos θ}. In fact this is true for every function fHf when f is 2π-periodic with
mean zero, since the formulas (5) imply both that fHf has mean zero and that it has period π.

The only additional thing happening in equation (12) is the chain rule formula

∂tuθ(t, η(t, θ)) = utθ(t, η(t, θ)) + uθθ(t, η(t, θ))ηt(t, θ) = (utθ + uuθθ)(t, η(t, θ)).

�

Equation (12) may now be written in the form

(14) ηttθ(t, θ) =
(
G(t, η(t, θ))− F (t, η(t, θ))

)
ηθ(t, θ) +

ηtθ(t, θ)
2

ηθ(t, θ)
.

As mentioned earlier, u 7→ F is a smooth function from Hs mean-zero functions u to positive Hs−1

functions. It is also not difficult to prove that G given by (13) also takes Hs to Hs−1, and thus we
see that (14) is a smooth second-order ODE in the space of positive Hs−1 functions ηθ. Again we
omit the details since the result is equivalent to the Escher-Kolev Theorem 1.

To prove Theorem 3, we want to show that ‖uθ‖L∞ remains bounded for all time, and by formula
(12) it is sufficient to bound both ‖F‖L∞ and ‖G‖L∞ . We will do this in the next Section.

2.2. The Bounds on F and G. In [2], it was shown that the function F given by (7) is positive for
any mean-zero function u : S1 → R. This is essential for proving blowup for the Wunsch equation.

Theorem 6 (Bauer-Kolev-Preston). Let u : S1 → R be a function with Fourier series u(θ) =∑
n∈Z cne

inθ with c0 = 0. If Λ = H∂θ so that Λ(einθ) = |n|einθ, and if gp = H(uHΛpu) + uΛpu for

a positive number p, then for every θ ∈ S1 we have

(15) gp(θ) = 2

∞∑
k=1

[kp − (k − 1)p] |φk(x)|2, where φk(θ) =

∞∑
m=k

cme
imθ

In particular F = −uu′′ −H(uHu′′) is positive at every point if u is not constant.

Another perspective on the positivity of F is discussed in Silvestre-Vicol [17]. There, while
studying a slightly different version of the generalized Constantin-Lax-Majda equation over R,
they demonstrated that for any function u on R rather than on S1, the function F defined by (7)
can also be represented as

F (0) =

∥∥∥∥u(x)− u(0)

x

∥∥∥∥2

Ḣ1/2(R)

.
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This insight into the structure of F helps explain the positivity result of the previous Theorem.
There is a similar integral formula for functions on the circle, but we will not need it here. We
would now like a pointwise bound for bound F in terms of ‖u‖2

Ḣ3/2 .

Theorem 7. Let u : S1 → R be a smooth function with Fourier coefficients cn such that c0 = c1 =
c−1 = 0, and let F = −uu′′ −H(uHu′′). Then for every θ ∈ S1, we have

F (θ) ≤ 1
2π‖u‖

2
Ḣ3/2 ,

where

‖u‖2
Ḣ3/2(S1)

=

∫
S1

(Hu)(u′′′ + u′) dθ = 4π
∞∑
n=2

(n3 − n)|cn|2.

Proof. Without loss of generality we may assume that θ = 0 for simplicity. Since c1 = 0, we have
φ1(0) = φ2(0), and thus by equation (15) we have (using the Cauchy-Schwarz inequality)

F (0) =
∞∑
n=1

(2n− 1)
∣∣∣ ∞∑
m=n

cm

∣∣∣2 ≤ ∞∑
n=2

2n

∞∑
m=n

m(m+ 1)|cm|2
∞∑
m=n

1

m(m+ 1)

≤
∞∑
n=2

2n

n

∞∑
m=n

m(m+ 1)|cm|2 ≤ 2

∞∑
m=2

m∑
n=2

m(m+ 1)|cm|2 = 2

∞∑
m=1

m(m2 − 1)|cm|2.

On the other hand we have∫
S1

(Hu)(u′′′ + u′) dθ =
∑
n∈Z

∑
m∈Z

∫ 2π

0
−i(signm)cme

imθ(−in3 + in)cne
inθ dθ

=
∑
n∈Z

2πi(signn)c−n(−in3 + in)cn =
∑
n∈Z

2π|n|(n2 − 1)|cn|2 = 4π

∞∑
n=2

n(n2 − 1)|cn|2.

�

Note that G given by (13) consists of two similar terms, and the following Theorem takes care
of both at the same time as a consequence of Hilbert’s double series inequality.

Theorem 8. Suppose f : S1 → R is a smooth function and that g = H(1 + ∂2
θ )−1(f ′Hf ′). Then

‖g‖L∞ ≤ 1
3‖f‖

2
Ḣ1/2.

Proof. Expand f in a Fourier series as f(θ) =
∑

n∈Z fne
inθ, and let h = f ′Hf ′. Then we have

f ′Hf ′(θ) = i
∑
m,n∈Z

mnfmfn(signn)ei(m+n)θ = i
∑
k∈Z

(∑
n∈Z
|n| (k − n)fk−nfn

)
eikθ = i

∑
k∈Z

hke
ikθ,

where

hk =
∑
n∈Z
|n| (k − n)fk−nfn.

Now let us simplify hk: we have for k > 0 that

hk =

∞∑
n=1

n(k − n)fnfk−n +

∞∑
n=1

n(k + n)fnfk+n

=

k−1∑
n=1

n(k − n)fnfk−n +

∞∑
m=1

(k +m)(−m)fk+mfm +

∞∑
n=1

n(k + n)fnfk+n,
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where we used the substitution m = n− k. Clearly the middle term cancels the last term, so

hk =
k−1∑
n=1

n(k − n)fnfk−n.

It is easy to see that h0 = 0 due to cancellations, while if k < 0, we get

hk = −
|k|−1∑
n=1

n(|k| − n)fnf|k|−n = −h|k|.

Note in particular that h1 = h−1 = 0. We thus obtain

f ′Hf ′(θ) =
∞∑
k=2

(
ihke

ikθ − ihke−ikθ
)
,

so that

H(f ′Hf ′)(θ) =

∞∑
k=2

hke
ikθ + hke

−ikθ = 2Re

( ∞∑
k=2

hke
ikθ

)
.

It now makes sense to apply (1 + ∂2
θ )−1 to this function, and we obtain

g(θ) = 2Re

( ∞∑
k=2

hk
1− k2

eikθ

)
,

so that

‖g‖L∞ ≤ 2
∞∑
k=2

k−1∑
n=1

n(k − n)|fn||fk−n|
k2 − 1

= 2
∞∑
n=1

∞∑
k=n+1

n(k − n)|fn||fk−n|
k2 − 1

= 2

∞∑
n=1

∞∑
m=1

nm|fn||fm|
(n+m)2 − 1

≤ 4

3

∞∑
n=1

∞∑
m=1

√
nm|fn||fm|
n+m

≤ 4π

3

( ∞∑
n=1

n|fn|2
)

=
1

3
‖f‖2

Ḣ1/2(S1)
,

where the inequality in the last line is precisely the well-known Hilbert double series theorem ([11],
Section 9.1). �

Applying this Theorem to the terms in (13), we obtain the following straightforward Corollary
which takes care of the second term in the equation (12) for uθ in the Euler-Weil-Petersson equation.

Corollary 9. Suppose u is a vector field on S1, and let G = H(1 + ∂2
θ )−1[2uθHuθ − uθθHuθθ] as

in (13). Then we have

‖G‖L∞ ≤ 2

3
‖u‖2

Ḣ1/2(S1)
+

1

3
‖u‖2

Ḣ3/2(S1)
,

in terms of the degenerate seminorm ‖u‖2
Ḣ3/2(S1)

=
∫
S1(Hu)(u′′′ + u′) dθ.

2.3. Proof of Theorem 3. The work of Escher and Kolev shows that solutions of (10) are global
as long as we can control the C1 norm ‖u‖C1(S1). This follows in part from the no-loss/no-gain
Lemma of [7].

Lemma 10 (Escher-Kolev, “No-loss/no-gain”). For any s > 3
2 , the maximal time of existence for

the Euler-Weil-Petersson geodesic equation is independent of s.

In addition the following simple computation from [8] shows that global existence for (10) in H3

is ensured once we have a C1 bound on u.
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Proposition 11 (Escher-Kolev). If ω = −Hu′′′ −Hu′ and ω satisfies the Euler-Arnold equation
ωt + uωx + 2uxω = 0, then

‖ω(t)‖L2 ≤ ‖ω0‖L2 exp

(
−3

2

∫ t

0
m(s) ds

)
,

where m(s) = inf
x∈S1

ux(s, x).

Hence all we need to do is obtain a bound for the C1 norm of u. Since the Ḣ3/2 seminorm of a
solution of (10) is constant by energy conservation, it is sufficient to bound the C1 norm in terms

of the Ḣ3/2 seminorm. Note that the H3/2(S1) norm does not in general control the C1(S1) norm
of an arbitrary function f on S1; we need to use the special structure of the equation (10) to get
this.

Proof of Theorem 3. By Proposition 5, we have

∣∣uθ(t, η(t, θ))
∣∣ ≤ ∫ t

0

∣∣G(s, η(s, θ))
∣∣+
∣∣F (s, η(s, θ))

∣∣ ds ≤ ∫ t

0
2‖u(s)‖2

Ḣ3/2 ds = 2t‖u0‖2Ḣ3/2 .

As a result, we know ‖u(t)‖L∞ remains bounded on any finite time interval, and thus we have
global existence in all Sobolev spaces for s > 3

2 . �

Remark 12. We proved the theorems above for solutions u ∈ Hs for s > 3
2 , which by the Sobolev

embedding theorem ensures that u ∈ C1. In fact our arguments can also be extended to cover
solutions with data u0 ∈ H3/2 ∩ C1. On the other hand with u0 ∈ H3/2 with no assumption of
continuity, we cannot ensure that the Lagrangian flow exists (see [10] for the details of the issues
here), and thus our basic assumptions may fail here. Nonetheless, our techniques show that if u0 is

strictly smoother than generic H3/2 functions, then solutions u(t) remain strictly smoother; hence

running time backwards, we conclude that if u0 is a “rough” H3/2 function which is not in Hs for
any s > 3

2 , then the solution can never spontaneously become smoother than H3/2.

3. Numerical Simulations

In this section we show the results of numerical simulations solving the Wunsch and Euler-Weil-
Petersson equations.

3.1. Solutions to EWP and Wunsch. Here we implemented a Fourier-Galerkin method to get
a system of ODES, coupled with a 4th order Runge-Kutta method to solve each ODE that arises.
The following is a collection of solutions for the EWP and Wunsch equations with initial condition
u0(x) = sin(2x) + 1

2 cos(3x). For each equation we have t0 = 0 and tfin = .5 (or the blowup time).
(See Tables 1–4.)
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Table 1. Eulerian solutions to Wunsch with u0 = sin(2x)+ 1
2 cos(3x). Note that the

slopes approach −∞; after this the numerical solution appears to become singular
everywhere simultaneously. It is not clear if this is what actually happens.

0 1.05 2.09 3.14 4.19 5.24 6.28

-1.5

-1

-0.5

0

0.5

1

1.5

0 1.05 2.09 3.14 4.19 5.24 6.28

-1.5

-1

-0.5

0

0.5

1

1.5

t=.125 (before blowup) t=.25 (after blowup)

Table 2. Eulerian solutions to EWP with u0 = sin(2x) + 1
2 cos(3x). The profile

steepens but does not become singular.

0 1.05 2.09 3.14 4.19 5.24 6.28

-1.5

-1

-0.5

0

0.5

1

1.5

0 1.05 2.09 3.14 4.19 5.24 6.28

-1.5

-1

-0.5

0

0.5

1

1.5

t=.25 t=.5

Table 3. Lagrangian solutions to Wunsch with u0 = sin(2x) + 1
2 cos(3x). As uθ

approach −∞, the slope of η approaches zero, and η leaves the diffeomorphism
group.

0 1.05 2.09 3.14 4.19 5.24 6.28

0

1.05

2.09

3.14

4.19

5.24

6.28

0 1.05 2.09 3.14 4.19 5.24 6.28

0

1.05

2.09

3.14

4.19

5.24

6.28

t=.125 (before blowup) t=.25 (after blowup)
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Table 4. Lagrangian solutions to EWP with u0 = sin(2x) + 1
2 cos(3x). It appears

that η is flattening substantially, but the slope still remains positive.

0 1.05 2.09 3.14 4.19 5.24 6.28

0

1.05

2.09

3.14

4.19

5.24

6.28

0 1.05 2.09 3.14 4.19 5.24 6.28

0

1.05

2.09

2.14

4.19

5.24

6.28

t=.25 t=.5
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