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Abstract. In this paper, we study Ricci curvature and conjugate points on Lie groups equipped with left-
invariant metrics: both general Lie groups and a particular class known as quadratic Lie groups (which

includes all semisimple ones). We give general results on conjugate points along geodesics in Lie groups,
both in the steady and nonsteady cases. We focus particularly on two prominent families of examples coming

from physics: first, SO(n) with metrics that model n-dimensional rigid body dynamics for n ≥ 3, for which

we show that the Ricci curvature is diagonal and positive-definite; second, SU(n) under the Zeitlin metric,
which serves as a model for fluid dynamics on a sphere. Notably, we identify SU(3) as an instance of a

Berger-Cheeger group—Lie groups whose metrics are a deformation of a bi-invariant form along a subgroup.

For Berger-Cheeger groups, we establish that their Ricci curvature admits a block decomposition and find
explicit solutions to their geodesic equations.
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1. Introduction

One of the most basic questions in Riemannian geometry is the behavior of geodesics emanating from a
point, and how it compares to the behavior in flat space. In particular, the presence of conjugate points,
indicating the geodesic’s failure to minimize length past some time, is a phenomenon linked to positive
curvature.

Since the seminal work of Jacobi [34], many efforts have been made to understand the conjugate locus
in various spaces and geometries, such as homogeneous Riemannian manifolds [47], symmetric, normal
homogenenous and naturally reductive spaces [10, 11, 12, 55, 56], nilpotent Lie groups [52, 19, 35]; for
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Lorentzian and sub-Riemannian geometries [26, 15, 4, 48]; length spaces [50]; and finally in the infinite-
dimensional Riemannian setting as well [2, 3, 6, 18, 45]. In spite of all this, few criteria are known that can
be used to detect conjugate points on a general Lie group with a left-invariant metric.

A much simpler framework is when one requires both left- and right-translations to be isometries. Then
the Lie group admits a bi-invariant metric, and the sectional curvature is forced to be nonnegative. The
bi-invariant case is therefore essentially trivial, since positive Ricci curvature yields the existence of conjugate
points along any geodesic by a result of Gromoll and Meyer [25]. With only one-sided invariance, as illustrated
in the well-known paper of Milnor [42], the curvature typically takes on both signs, so that standard conjugate
point results that require a positive lower bound on some curvature do not apply.

An intermediate setting between the bi-invariant case and the one-sided invariant case is that of quadratic
Lie groups: those admitting a non-degenerate bi-invariant (not necessarily positive definite) form. All
semisimple Lie groups fall into this category, since one can take the Killing form. Two particular families of
examples stand out due to their applications to physics: rigid body metrics on SO(n) and the Zeitlin metric
on SU(n).

The metric on SO(3) describing the motion of a three-dimensional free rigid body, generated by an operator
containing the body’s moments of inertia, goes back to Euler himself. It admits a natural generalization to
n dimensions, as first pointed out by Frahm [23]. This n-dimensional generalization has since been studied
from many points of view, e.g., of complete integrability in [40, 22, 46] and of stability of stationary solutions
in [5, 21, 31, 32].

The Zeitlin metric on SU(n) [54] gives a finite-dimensional approximation for the L2 geometry of the
volume-preserving diffeomorphism group, which describes fluid dynamics on a two-dimensional sphere [44].
In the case of SU(3), the Zeitlin metric is related to a construction of Cheeger [13], where the left-invariant
metric of a Lie group G is a deformation of a bi-invariant metric in the direction of a subgroup H ⊆ G
(SO(3) in the case of the Zetilin metric). This type of deformation, which can be carried out relative to
any Lie subgroup H of a Lie group G, was studied by Huizenga and Tapp in [29]. We call such groups
Berger-Cheeger, since when G = S3 and H = S1 they are Berger spheres. Among the Zeitlin metrics on
SU(n), only the case n = 3 is of Berger-Cheeger type.

The aim of this paper is two-fold. First, to describe results on conjugate points on general Lie groups
with a left-invariant metric, and to quadratic Lie groups in particular. Second, to study curvature, geodesics
and apply the previous conjugate point results to two families of quadratic Lie groups: the family of metrics
on SO(n) connected to rigid bodies; and the Berger-Cheeger groups, with a special focus on Zeitlin’s metric
on SU(3).

1.1. Main results. Here we list the main contributions of this paper.
The first part of the paper is devoted to conjugate points. We start by considering the case of nonsteady

geodesics. We prove that in a Lie group under a left-invariant metric, every closed, nonsteady geodesic
develops conjugate points (Theorem 3.1). Using this theorem, we establish a link between curvature and
closed geodesics, namely that if a Lie group with a left-invariant metric has dense closed geodesics, then it
must have positive curvature in some section at the identity, or be abelian and flat (Corollary 3.2). This
result also gives an alternative proof of the known fact that the only compact Lie group with nonpositive
sectional curvature is the abelian flat torus (see Remark 3.3).

For steady geodesics, we give a necessary and sufficient criterion for conjugacy on any Lie group, provided
one can solve a Sylvester equation (Theorem 3.4). This condition is fulfilled when the two operators defining
the Sylvester equation do not share any eigenvalues. On a quadratic Lie group (see Section 2.2), we show that
the previous criterion is particularly simple and is a consequence of a commutativity condition (Theorem 3.5).
Our criterion works through a different mechanism than existing methods relying on averaging properties
(cf. Gromoll & Meyer [25]) or a curvature formula (cf. Misiolek [43]), and can capture conjugate points in
cases where these existing methods fail (see Remark 3.6).

The rest of the paper is devoted to two particular families of quadratic Lie groups, which have well-known
applications in physics.

The first is connected to rigid bodies: on SO(n), we introduce a family of metrics that are diagonal in the
canonical basis of the Lie algebra of antisymmetric matrices, and that correspond to the rigid body metrics
when the diagonal elements satisfy certain triangle inequalities (see Section 4). We show that the Ricci
curvature of these metrics is diagonal in that same basis (Proposition 4.2), and positive in the rigid body
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case. If we drop the rigid body condition, then the Ricci curvature can be made negative in some directions.
Nevertheless, our criterion for conjugacy along steady geodesics says that they all develop conjugate points
(Proposition 4.4). It is worth noting that this result includes stable as well as unstable geodesics, such as
rotations around the middle axis in three dimensions. It is not clear what happens in the nonsteady case if
we drop the assumption that the metric comes from a rigid body.

The second family of quadratic Lie groups studied in this paper are Berger-Cheeger groups, a family of
Lie groups where the left-invariant metric is a deformation of a bi-invariant metric in the direction of a
subgroup (see Section 5). Under some additional assumptions, we show that the Ricci tensor of such groups
is “block Einstein” (Proposition 5.9), in the sense that it is a constant multiple of the metric along the
subalgebra, and a different multiple of the metric on its orthogonal complement. Furthermore, we show
that geodesics on any Berger-Cheeger group can be computed explicitly in terms of their initial conditions
and the group exponential map (Propositions 5.3 and 5.4). These formulas yield a first way to obtain
conjugate points along nonsteady geodesics, starting from geodesics that are closed for the bi-invariant
metric (Corollary 5.5). We then obtain a second explicit criterion for conjugacy along nonsteady geodesics
(Proposition 5.7), using a method involving the index form that can be easily generalized to an arbitrary
quadratic Lie group (see Appendix A). Finally, we apply this result to Berger spheres, as well as the Zeitlin
model SU(3) (Corollary 5.8), showing the existence of conjugate points along any nonsteady geodesic in
both cases.

1.2. Outline of the paper. In Section 2, we provide background material on geodesics and Jacobi fields
on left-invariant metric on Lie groups, with a specific focus on quadratic Lie groups. Section 3 gathers our
results on conjugate points. Section 4 is devoted to generalized rigid bodies on SO(n), and Section 5 to
Berger-Cheeger groups in general and the Zeitlin model in particular.

2. Background

2.1. General left-invariant metrics. We first summarize some basic facts about general left-invariant
metrics on Lie groups. We refer the reader to do Carmo [16] for further details concerning standard Rie-
mannian geometry facts, Milnor [42] for curvature and group-theoretic properties, Arnold-Khesin [3] for
stability and properties of geodesics, and Khesin et al. [36] for information about the Jacobi equation and
conjugate points.

Let G be any finite-dimensional Lie group, and g an inner product on its Lie algebra g. It defines a
left-invariant Riemannian metric on G in the following way: for any η ∈ G and x, y ∈ TpG,

gη(x, y) := g(u, v), where x = ηu, y = ηv, u, v ∈ g.

Let γ(t), t ∈ [0, 1], be a curve in G and u(t) = γ(t)−1γ′(t) its velocity vector left translated to the Lie algebra.
Then γ is a geodesic for g if and only if it is a critical point of the energy functional

E(γ) :=
1

2

1∫
0

g(γ′, γ′)dt =
1

2

1∫
0

g(u, u)dt,

where we have used the left-invariance of g. From this characterization, we can write the geodesic equations
purely in terms of u(t) and the operator ad⋆ defined by the condition

(2.1) g(ad⋆
uv, w) = g(v, aduw) ∀u, v, w ∈ g.

Proposition 2.1 ([3]). Suppose G is a Lie group with left-invariant metric g. A curve γ : [0, 1] → G is a
geodesic for g if and only if it satisfies

(2.2) γ′(t) = γ(t)u(t), u′(t) = ad⋆
u(t)u(t).

The following terminology, mentioned in the introduction, will be used throughout the paper, so we repeat
it here in one definition.

Definition 2.2. The first equation in (2.2) is called the flow equation, while the second is called the Euler-
Arnold equation. When ad⋆

u0
u0 = 0, then u(t) = u0 for all t, and u0 is called a steady solution of the

Euler-Arnold equation. If ad⋆
u0
u0 ̸= 0, then u′(t) is never zero, by uniqueness of solutions of ODEs, and in

this case we call the solution u(t) nonsteady.
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Note that if u0 is steady, then the corresponding geodesic γ(t) is a one-parameter subgroup of G. The
Euler-Arnold equation can also be rewritten as a conservation law.

Proposition 2.3 ([3]). Suppose G is a Lie group with a left-invariant metric g. For η ∈ G, let Ad⋆
η : g → g

denote the operator defined by the condition

g(Ad⋆
ηu, v) = g(u,Adηv) = g(u, ηvη−1) ∀u, v ∈ g.

Then the Euler-Arnold equation in (2.2) may be written in the form

d

dt

(
Ad⋆

γ(t)−1u(t)
)

= 0.

The Riemannian exponential map exp: g → G based at the identity TidG ≃ g sends each initial condition
u0 to γ(1), where γ solves (2.2) with γ(0) = id and γ′(0) = u0. By homogeneity, we have γ(τ) = exp(τu0).
Its derivative

(2.3) D(exp)(τu0) : g → Tγ(τ)G

is always an invertible linear map for small values of τ , depending on u0, but can become singular for large
τ . A conjugate point along a geodesic γ is defined to be a value γ(τ) = exp(τu0) for which the linear map
(2.3) is singular. Geometrically, this means that there exists a family of geodesics containing γ that start at
γ(0), spread out and eventually reconverge, up to first order, at γ(τ). Such a variation of the Riemannian
exponential map defines a Jacobi field

J(t) =
∂

∂s

∣∣∣∣
s=0

γ(s, t).

satisfying J(0) = 0 and J(τ) = 0. A Jacobi field satisfies the Jacobi equation,

(2.4)
D2J

dt2
+R(J(t), γ′(t))γ′(t) = 0,

where R is the Riemann curvature tensor and D
dt is the covariant derivative. This is obtained by linearizing

the geodesic equation. On a Lie group, equation (2.4) can be translated to the Lie algebra using the group
structure as follows.

Proposition 2.4. Let G be a Lie group with left-invariant metric g, γ : [0, 1] → G a geodesic on G, and
γ(s, t) a family of curves such that γ(0, t) = γ(t) for all t. We define

(2.5) u(s, t) := γ(s, t)−1∂tγ(0, t), y(t) = γ(t)−1∂sγ(0, t), z(t) = ∂su(0, t).

Then J(t) := ∂sγ(0, t) is a Jacobi field along γ if and only if

(2.6) y′(t) + adu(t)y(t) = z(t), z′(t) = ad⋆
u(t)z(t) + ad⋆

z(t)u(t).

Thus, having a nonzero y(t) as in Proposition 2.4 satisfying y(0) = y(τ) = 0 is equivalent to γ(0) and
γ(τ) being conjugate.

For conjugate points to appear, there needs to be at least some positive sectional curvature along the
geodesic. This can easily be seen by considering the index form, defined for vector fields W (t) along γ(t)
that vanish at t = 0 and t = τ by

(2.7) I(W,W ) =

∫ τ

0

g
(DW
dt

,
DW

dt

)
− g
(
R
(
W (t), γ′(t)

)
γ′(t),W (t)

)
dt,

where R is the curvature tensor and D
dt is the covariant derivative. A standard fact in Riemannian geome-

try [16] is that the index form is negative for some W (t) vanishing at the endpoints if and only if there is a
Jacobi field J(t) which vanishes at time t = 0 and some at some time t = t0 with 0 < t0 < τ . In particular,
there can be no conjugate points if the sectional curvature is everywhere non-positive, since the sectional
curvature K(W,γ′) is proportional to g(R(W,γ′)γ′,W ). On a Lie group, this quantity can be computed by
Arnold’s formula [3]

g(R(u, v)v, u) =
1

4
∥ad⋆

uv + ad⋆
vu∥2 − g(ad⋆

uu, ad⋆
vv) − 3

4
∥aduv∥2 +

1

2
g(aduv, ad⋆

vu− ad⋆
uv),

for any u, v ∈ g. In the sequel, it will be helpful to use a slightly different formula, as in [38],

(2.8) g(R(u, v)v, u) =
1

4
∥ad⋆

uv + ad⋆
vu+ aduv∥2 − g(ad⋆

uv + aduv, aduv) − g(ad⋆
uu, ad⋆

vv).



CURVATURE AND CONJUGATE POINTS ON QUADRATIC LIE GROUPS 5

As for the index form (2.7), it can be written in the following way.

Proposition 2.5. In the notations of Proposition 2.4, the index form is given by

(2.9) I(y, y) =

∫ τ

0

g(z(t), z(t)) − g(ady(t)z(t), u(t)) dt,

for variations y(t) which vanish at t = 0 and t = τ . If there is such a y and τ > 0 such that I(y, y) < 0,
then there is a conjugate point occurring at a time t = t0 < τ .

A well-known method to find conjugate points that relies on the index form is the Misio lek criterion,
particularly effective for finding conjugate points along steady flows of the Euler equation for ideal fluids
[18, 43, 45], which can also be used for some nonsteady flows such as Rossby-Haurwitz waves [6]. Although
it has so far only been applied in the context of geometric hydrodynamics, it can be readily generalized to
any Lie group as follows.

Given an initial condition u0 which determines a steady solution of the Euler-Arnold equation, let y(t) =
f(t)v be a variation vector field, for some fixed vector v and scalar function f(t). Then z(t) = f ′(t)v +
f(t)adu0v, and the index form (2.9) becomes

I(y, y) =

τ∫
0

(f ′)2∥v∥2 + 2ff ′g
(
v, adu0

v
)

+ f2∥adu0
v∥2 − f2g

(
adv(adu0

v), u0
)
dt

=

τ∫
0

(f ′)2∥v∥2 + 2ff ′g
(
v, adu0

v
)

+ f2g
(
advu0 + ad∗

vu0, advu0
)
dt.

Now choosing f(t) = sin
(
πt
τ

)
and taking τ > 0 large, the first term can be made arbitrarily small since

f ′ ∼ 1/τ and the second even integrates to zero, so if

(2.10) g
(
advu0 + ad∗

vu0, advu0
)
< 0 for some v ∈ g,

then the geodesic with initial velocity u0 will eventually develop conjugate points. Condition (2.10) is
precisely the Misio lek criterion. Comparing it with formula (2.8), and using the fact that u0 is a steady
solution, we see that (2.10) directly implies positive curvature on the 2-plane spanned by u0 and v.

In 4.2, we give new examples on generalized rigid bodies where the Misio lek criterion does not apply even
in the steady case, but Theorem 3.5 is able to detect conjugate points.

2.2. Quadratic Lie groups. A special focus of this paper is on quadratic Lie groups. A Lie group G is
said to be quadratic if there is a nondegenerate bilinear form ⟨·, ·⟩ (not necessarily positive-definite) on the
Lie algebra, which has the property of being bi-invariant

⟨aduv, w⟩ + ⟨v, aduw⟩ = 0 for all u, v, w ∈ g.

Not every Lie group has such a bilinear form: compact and abelian groups have positive-definite ones [42],
and more generally any semisimple Lie group has a nondegenerate Killing form which is bi-invariant [27],
while for example the upper half-plane considered as a Lie group has none.

Every left-invariant Riemannian metric on a quadratic group G can be defined from an invertible sym-
metric operator Λ on g

(2.11) g(u, v) = ⟨u,Λv⟩.
In this case, the operator ad⋆ can be written in terms of Λ.

Lemma 2.6. If ⟨·, ·⟩ is a nondegenerate bi-invariant bilinear form on g, and if Λ is a symmetric operator
such that g(u, v) := ⟨u,Λv⟩ defines a Riemannian metric, then

(2.12) ad⋆
uv = −Λ−1(aduΛv).

We can now express the Euler-Arnold equation in the quadratic case.

Lemma 2.7. If ⟨·, ·⟩ is a bi-invariant bilinear form on g, and if Λ is a symmetric operator such that
g(u, v) := ⟨u,Λv⟩ defines a Riemannian metric, then the geodesic equation is given by

(2.13) γ′(t) = γ(t)u(t), Λu′(t) + adu(t)Λu(t) = 0.
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Similarly, the Jacobi equation and the index form can be written in terms of the Λ operator.

Lemma 2.8. Let G be a quadratic Lie group with left-invariant metric induced by an operator Λ. Then in
the notations of Proposition 2.4, the Jacobi equation (2.6) is written

(2.14) y′(t) + adu(t)y(t) = z(t), Λz′(t) + adu(t)Λz(t) + adz(t)Λu(t) = 0.

The index form is given by

(2.15) I(y, y) =

∫ τ

0

⟨Λz(t) + ady(t)Λu(t), z(t)⟩ dt,

for variations y(t) which vanish at t = 0 and t = τ .

3. Conjugate points on general Lie groups

3.1. Nonsteady geodesics. We first prove the existence of conjugate points along any closed, nonsteady
geodesic, then discuss a simple consequence: a compact nonabelian Lie group with a left-invariant metric
must have some positive sectional curvature. Of course every closed geodesic has a cut point, since the
geodesic stops minimizing, but a conjugate point requires nearby geodesics that are shorter.

Theorem 3.1. Suppose γ(t) is a solution of (2.2), with velocity u(t) nonconstant. If right multiplication
by γ(τ)γ(0)−1 is an isometry of the left-invariant metric for some τ > 0, then γ(τ) is conjugate to γ(0). In
particular this applies if γ(τ) = γ(0).

Proof of Theorem 3.1. By left-invariance, we may assume without loss of generality that γ(0) is the identity.
Let u(t) be defined by the flow equation γ′(t) = γ(t)u(t). By Proposition 2.3, u(t) satisfies the angular
momentum conservation law

(3.1) u(t) = Ad⋆
γ(t)u0

in terms of the initial condition u(0) = u0. Differentiating the Euler equation (2.1) for u(t) with respect to
time gives

u′′(t) − ad⋆
u(t)u

′(t) − ad⋆
u′(t)u(t) = 0,

showing that zp(t) := u′(t) is a particular solution of the linearized Euler equation (2.6). Since u′(t) is
nowhere zero, this is a nontrivial solution. If we rewrite (2.6) in the form

d

dt

(
Adγ(t)y(t)

)
= Adγ(t)z(t),

we see that the general solution of the complementary homogeneous equation is yc(t) = Adγ(t)−1w0 for some
vector w0 ∈ g. Thus the general solution is

y(t) = yp(t) + yc(t) = u(t) + Adγ(t)−1w0.

To have y(0) = 0 as desired, we choose w0 = −u0. Inserting (3.1) in this, we obtain

y(t) = Ad⋆
γ(t)u0 − Adγ(t)−1u0.

If right multiplication by γ(τ) is an isometry, then Ad⋆
γ(τ)Adγ(τ) = I, and we will obtain y(τ) = 0. Clearly

the corresponding Jacobi field y(t) is nontrivial on [0, τ ] since zp(t) is nontrivial. □

In order to state a Corollary of Theorem 3.1, recall that a Riemannian manifold M is said to have dense
closed geodesics if for every p ∈ M and every unit v ∈ TpM and every ε > 0, there is a w ∈ TpM such that
|v − w| < ε and the geodesic γ(t) = expp(tw) is closed (i.e., γ(τ) = p for some τ > 0).

Examples of manifolds with dense closed geodesics include: compact manifolds with negative curvature,
by the Anosov theorem; certain quotients of nilpotent Lie groups, all of which have curvatures of both signs
(so long as they are not abelian) ([14], [19], [39], [41]); and of course many examples with positive curvature,
such as U(n) with the bi-invariant metric (see also [8]). By left-invariance, it is enough to check this condition
when p is the identity.

Corollary 3.2. If a (finite-dimensional) Lie group G with left-invariant metric has dense closed geodesics,
then either it has positive curvature in some section at the identity, or it is abelian and flat.
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Proof. For every v ∈ TidG there is a nearby vector w such that the geodesic in the direction of w is closed.
If any such geodesic is nonsteady, the previous theorem gives a conjugate point along it, which implies there
must be positive curvature somewhere along the geodesic. Otherwise every closed geodesic is steady.

If the geodesic t 7→ expid(tw) is steady, then we must have ad⋆
ww = 0. Now the quadratic form v 7→

A(v) := ad⋆
vv is continuous on a finite-dimensional Lie algebra, and density of closed geodesics implies that

for every v ∈ TidG and δ > 0 there is a w ∈ TidG such that |v − w| < δ and A(w) = 0. Hence we must have
A(v) = 0 for all v ∈ TidG.

Now ad⋆
vv = 0 for all v ∈ TidG implies that the metric is bi-invariant, and thus the sectional curvature

K(u, v) is given by the well-known formula K(u, v) = 1
4 |[u, v]|2. Thus either [u, v] = 0 for all u, v ∈ TidG, so

that G is abelian and flat, or we again get some positive curvature. □

Remark 3.3. This result also gives an alternative proof of the known fact that the only compact Lie group
with nonpositive sectional curvature is the abelian flat torus. This arises from the fact that nonpositive
curvature requires solvability of the group, and the only compact solvable groups are abelian – see, e.g., [37].

3.2. Steady geodesics. Here we prove our criterion for conjugate points along steady geodesics for general
left-invariant metrics.

Theorem 3.4. Suppose u0 is a steady solution of the Euler-Arnold equation (2.2), i.e., that ad⋆
u0
u0 = 0.

Let L and F be the linear operators on the Lie algebra g defined by

L(v) := adu0
v, F (v) = ad⋆

u0
v + ad⋆

vu0.

Then both operators map the g-orthogonal complement of u0 to itself. If there is an operator R defined on
this orthogonal complement such that RF +LR = I, then there is a conjugate point along the geodesic if and
only if for some τ > 0 we have

det (eτLReτF − e−τLRe−τF ) = 0.

Proof. Let u0 ∈ g be a steady solution of the Euler-Arnold equation (2.2), i.e. such that ad⋆
u0
u0 = 0. There

are conjugate points along the corresponding geodesic γ if there is a time τ > 0 and vector fields y(t) and
z(t) of the Lie algebra satisfying y(0) = y(τ) = 0 and the system of equations (2.5), that is,

(3.2) y′ + L(y) = z, z′ = F (z)

in terms of the linear operators on the Lie algebra g

(3.3) L(y) = adu0
y, F (y) = ad⋆

u0
y + ad⋆

yu0.

Both these operators map into the g-orthogonal complement of u0. Indeed, for any y ∈ g,

g(L(y), u0) = g(y, ad⋆
u0
u0) = 0

g(F (y), u0) = g(y, adu0
u0) + g(u0, adyu0) = −g(ad⋆

u0
u0, y) = 0.

Now, if there is an operator R defined on this orthogonal complement such that RF + LR = I, then every
solution of (3.2) with y(0), z(0) ∈ u⊥0 is obtained as

y(t) = RetFx0 + e−tLw0,

for some choice of w0, x0 ∈ u⊥0 , since the first part solves the nonhomogeneous equation for y, while the
second part solves the homogeneous equation.

A conjugate point eventually occurs if and only if there is a time τ such that y(0) = y(2τ) = 0, or
equivalently, y(−τ) = y(τ), since the geodesic is steady and this time translation has no impact. This means

ReτFx0 + e−τLw0 = 0

Re−τFx0 + eτLw0 = 0

Left multiplying by eτL and e−τL respectively the first and second equation, and eliminating w0, we obtain
that the condition for the existence of a conjugate point along the steady geodesic γ is the existence of a
nontrivial x0 ∈ g such that

(eτLReτF − e−τLRe−τF )x0 = 0,

which is equivalent to asking that the determinant of the matrix multiplying x0 be zero, as claimed. □

In practice we will see that this form is especially convenient when L and F are block-diagonal matrices,
so that the matrix exponentials can be computed easily.
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3.3. Steady geodesics in quadratic Lie groups. In this section, we specialize to quadratic Lie groups,
and give a criterion for conjugate points along the simplest steady geodesics: those generated by eigenvec-
tors of the operator Λ. For a conjugacy criterion along nonsteady geodesics in a quadratic Lie group, see
Appendix A. For simplicity we will assume the underlying bi-invariant form is positive-definite to make the
constants appearing in the proof positive and simplify the formulas, though this assumption is not necessary.

Theorem 3.5. Suppose G is a quadratic group, with a left-invariant metric g given by (2.11) for an operator
Λ with a bi-invariant metric ⟨·, ·⟩. Let u0 be an eigenvector of Λ with Λu0 = λu0, and let L = adu0

. If
L2 commutes with Λ, then there is eventually a conjugate point along the geodesic γ(t) solving the geodesic
equation (2.13).

Proof. By assumption, both L2 and Λ can be diagonalized in the same basis {w1, . . . , wn}, orthonormal
with respect to the bi-invariant metric. Since L is antisymmetric in the bi-invariant metric, we know L2 is
symmetric and nonpositive. Thus, there exists a basis {w1, . . . , w2m, w2m+1, . . . , wn} of eigenvectors of L
such that

L(w2j−1) = ϵjw2j , L(w2j) = −ϵjw2j−1,

Λ(w2j−1) = αjw2j−1, Λ(w2j) = βjw2j , 1 ≤ j ≤ m,

and

L(wk) = 0 Λ(wk) = γkwk, 2m+ 1 ≤ k ≤ n,

with the vector u0 itself a constant multiple of one of the wk, and all numbers α, β, γ, and ϵ are strictly
positive. See for example Greub [24], Section 8.4.

We now compute the operators defined by (3.3). Here we have L(z) = adu0
z and

F (z) = ad⋆
u0

(z) + ad⋆
zu0 = −Λ−1(adu0

Λz + adzΛu0)

= −Λ−1(adu0Λz + λadzu0)

= −Λ−1L(Λ − λI)(z),

where we have used (2.12). F is given in the orthonormal basis {w1, . . . , wn} by

F (w2j−1) = −ϵj(αj − λ)

βj
w2j , F (w2j) =

ϵj(βj − λ)

αj
w2j−1, 1 ≤ j ≤ m,

F (wk) = 0, 2m+ 1 ≤ k ≤ n.

Now let X denote the span of {w1, . . . , w2m}, and observe that L, Λ, and F all map X to itself. We thus
restrict F and L to X and note that L is invertible on this subspace, so that

R = λ−1L−1Λ =⇒ RF + LR = I.

In the basis, R is given by

R(w2j−1) = − αj

λϵj
w2j , R(w2j) =

βj
λϵj

w2j−1.

We thus find that the matrices L, R, and F restricted to X can be written as (2m)×(2m) matrices consisting
of 2 × 2 nonzero blocks along the diagonal, and zero everywhere else. Hence the matrices etL and etF also
split this way, and the determinant from Theorem 3.4 splits into a product:

det
(
etLRetF − e−tLRe−tF

)
=

k∏
j=1

det
(
etLjRje

tFj − e−tLjRje
−tFj

)
,

where each 2 × 2 matrix acting in Xj = span{w2j−1, w2j} is given by

Lj =

(
0 −ϵj
ϵj 0

)
, Fj =

(
0

ϵj(βj−λ)
αj

− ϵj(αj−λ)
βj

0

)
, Rj =

(
0

βj

λϵj

− αj

λϵj
0

)
.

Obviously the product of determinants is zero if and only if at least one of them is zero; thus it is sufficient
to fix a j ∈ {1, . . . ,m}. The matrix exponential of tLj is easy: since Lj is always antisymmetric, we have

etLj = cos (ϵjt)I + ϵ−1
j sin (ϵjt)Lj .
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On the other hand the form of the matrix exponential of τFj depends on the quantity

dj = detFj =
ϵ2j (βj − λ)(αj − λ)

αjβj
.

We have etFj = cj(t)I + sj(t)F , where the pair of generalized trigonometric functions are

(
cj(t), sj(t)

)
:=


(cosh rt, r−1 sinh rt) if dj = −r2,
(1, t) if dj = 0,

(cos rt, r−1 sin rt) if dj = r2.

It is then easy to see that each matrix etLjRje
tFj−e−tLjRje

−tFj is diagonal, and so the condition in Theorem
3.4 becomes simply verifying that at least one of the following quantities is zero at some t = τ :

fj(t) = sin (ϵjt)cj(t) −
ϵj(αj − λ)

αj
sj(t) cos (ϵjt)

gj(t) = sin (ϵjt)cj(t) −
ϵj(βj − λ)

βj
sj(t) cos (ϵjt).

Note that for small positive values of t, both these functions are small and positive.
If dj = r2 > 0, then (αj − λ) and (βj − λ) have the same sign. We assume without loss of generality that

they are both positive. The functions become

fj(t) = sin (ϵjt) cos (rt) −

√
βj(αj − λ)

αj(βj − λ)
sin (rt) cos (ϵjt)

gj(t) = sin (ϵjt) cos (rt) −

√
αj(βj − λ)

βj(αj − λ)
sin (rt) cos (ϵjt).

We can simplify the following positive linear combination of f(t) and g(t) to get√
αj(βj − λ) fj(t) +

√
βj(αj − λ) gj(t) =

(√
αj(βj − λ) +

√
βj(αj − λ)

)
sin (ϵj − r)t.

Since we can obviously make this negative for some choice t = τ , we find that at least one of fj(t) or gj(t)
must have been negative at this time. Hence at least one of them must have crossed the axis already.

The situation when dj = −r2 is simpler, when (αj −λ) and (βj −λ) have opposite signs. Again assuming
without loss of generality that αj − λ > 0, the function fj is

fj(t) = sin (ϵjt) cosh (rt) −

√
βj(αj − λ)

αj(λ− βj)
sinh (rt) cos (ϵjt),

and we observe that

fj

(
2π

ϵj

)
= −

√
βj(αj − λ)

αj(λ− βj)
sinh

(
2πr

ϵj

)
< 0,

so that fj(t) must have crossed the axis before τ . The cases where αj < λ or αj = λ are straightforward
using the same approach. □

In the context of Theorem 3.5 above, we make the following remark on the Misio lek criterion (2.10), which
explains why it captures some conjugate points but not others, and its connection with stability. Note that
we have stability of u0 in the Eulerian sense if and only if all eigenvalues of F are nonpositive, corresponding
to dj ≤ 0 for all j. This happens if for example λ is smaller than all αj , βj or larger than all of them.

Remark 3.6. If u0 is a steady solution of the Euler equation on a quadratic Lie group, corresponding to
eigenvalue λ of Λ, the Misio lek criterion is written in terms of L = adu0

as

0 > g(advu0 + ad⋆
vu0, advu0) = ⟨Λadvu0 − λadvu0, advu0⟩ = ⟨(Λ − λI)Lv,Lv⟩.

Thus, we see that for steady solutions corresponding to, e.g., the smallest eigenvalue λ of Λ, the Misio lek
criterion fails to detect the existence of conjugate points, that do exist when L2 commutes with Λ, as for the
generalized rigid body metric studied in the following section.



CURVATURE AND CONJUGATE POINTS ON QUADRATIC LIE GROUPS 10

4. Generalized rigid body metric on rotations

The motion of a three-dimensional free rigid body has a long history, going back to Euler himself. Ignoring
translations, at any point in time the body is rotating around an axis, but the axis itself can vary with time,
which leads to fairly complicated phenomena. Already in three dimensions, the general equations of motion
cannot be integrated by elementary functions, but require the so-called Jacobi elliptic functions [33].

In this section, we begin by showing that the Ricci curvature of the kinetic energy metric describing the
n-dimensional rigid body system on SO(n) is everywhere positive, generalizing a result of Milnor [42] when
n = 3, and leading to the existence of conjugate points along any geodesic, steady or nonsteady, by a result
of Gromoll and Meyer [25]. This motivates the study of a larger class of metrics on SO(n) that generalize the
classical rigid body metrics in a natural way, while admitting some negative Ricci curvatures. We will see
that our criterion finds conjugate points along steady geodesics even in the presence of negative curvature.
The main takeaway here is that our criterion works through a different mechanism than existing methods,
since it detects conjugate points not by an averaging method (cf. Gromoll & Meyer [25]), and is also not
tied to a specific curvature formula or spectral condition (see Remark 3.6).

Consider the group of rotations SO(n). A basis of its Lie algebra so(n) is given by the matrices
{eij}1≤i<j≤n, where eij is the matrix full of zeros except for −1 in position (i, j) and 1 in position (j, i).
We consider a symmetric operator Λ : so(n) → so(n) with eigenvectors eij , i.e., such that there exist real
numbers λij with

Λeij = λijeij , 1 ≤ i < j ≤ n.

For convenience in the curvature formula later, we define λji = λij . We equip SO(n) with the left-invariant
Riemannian metric generated on the Lie algebra by

(4.1) g(u, v) := ⟨u,Λv⟩, where ⟨u, v⟩ = 1
2Tr(uv⊤), u, v ∈ so(n),

is the bi-invariant metric and Tr is the trace. We refer to this metric as the generalized rigid body metric,
since when Λ(u) := 1

2 (Mu+ uM) with M a symmetric matrix with positive eigenvalues µ1, . . . , µn, it is the
kinetic energy metric, describing the rotations of a rigid body with principal moments of inertia µi. We will
consider this special case at the end of this section.

4.1. Ricci curvature. We start by computing the Ricci curvature. We first need the following lemma.

Lemma 4.1. The Lie brackets between the eigenvectors {eij}1≤i<j≤n are given by

(4.2)
∀ i < j < k, [eij , eik] = ejk, [eik, ejk] = eij , [ejk, eij ] = eik,

if {i, j} ∩ {k, ℓ} = ∅, then [eij , ekℓ] = 0.

Proof. For any i, j, k, ℓ and any p, q, we have that the (p, q) component of eij is given by (eij)pq = −δipδjq +
δiqδjp, and a straightforward computation gives

[eij , ekℓ]pq =
∑
m

(eij)pm(ekℓ)mq −
∑
n

(ekℓ)pn(eij)nq = (δikejℓ − δjkeiℓ + δjℓeik + δiℓekj)pq.

□

Now we can compute the Ricci curvature.

Proposition 4.2. The Ricci curvature tensor of the generalized rigid body metric (4.1) on SO(n) is diagonal
in the basis {eij}1≤i<j≤n with diagonal terms

Ric(eij , eij) =
∑
k ̸=i,j

(λij − λik + λjk)(λij + λik − λjk)

2λikλjk

Remark 4.3. In particular, for the standard case where the metric corresponds to the kinetic energy of a
rigid body with moments of inertia µ1, . . . µn > 0, then λij =

µi+µj

2 and we obtain

Ric(eij , eij) =
∑
k ̸=i,j

2µiµj

(µi + µk)(µj + µk)
.

Thus the Ricci curvature of the rigid body metric on SO(n) is everywhere positive.
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Proof. Using Lemmas 2.6 and 4.1, we see that the operator ad⋆ takes the following values:

∀ i < j < k, ad⋆
eik
eij =

λij
λjk

ejk, ad⋆
ejk
eik =

λik
λij

eij , ad⋆
eijejk =

λjk
λik

eik,

ad⋆
eijeik = −λik

λjk
ejk ad⋆

eik
ejk = −λjk

λij
eij ad⋆

ejk
eij = −λij

λik
eik

(4.3)

and all others are zero. Our goal is to compute the Ricci curvature in this orthogonal basis, and we recall
that for any vectors v and w, we have

Ric(v, w) =
∑
k<ℓ

g
(
R(ekℓ, v)w, ekℓ

)
λkℓ

.

Polarizing formula (2.8) for the curvature, fixing u, we have

(4.4) g(R(u, v)w, u) =
1

4
g(ad⋆

uv + ad⋆
vu+ aduv, ad⋆

uw + ad⋆
wu+ aduw) − 1

2g(ad⋆
uv + aduv, aduw)

− 1
2g(ad⋆

uw + aduw, aduv) − 1
2g(ad⋆

uu, ad⋆
vw + ad⋆

wv).

Thus when we consider u = ekℓ, the last term will be zero since ad⋆
uu = 0. Furthermore if v = eij , then by

formulas (4.2) and (4.3), the only way to have ad⋆
uv, ad⋆

vu, or aduv nonzero is if {i, j} ∩ {k, ℓ} has exactly
one element, and all of those terms are proportional to the same basis element. Thus the only way to have
either of these inner products nonzero is if w is the same basis element as v. Since this is true for every
u = ekℓ, we conclude that the Ricci curvature is diagonal in the basis {eij}.

When performing the sum with fixed v = eij for i < j, it is therefore sufficient to compute only terms of
the form g(R(u, v)v, u) when either k < i < j with u = eki or u = ekj ; or i < k < j with u = eik or u = ekj ;
or i < j < k with u = eik or u = ejk. The computations are similar in the three ranges for k, and we end up
with the same answer, so we will only present this last case.

The Ricci curvature is given in the orthogonal basis by

(4.5) Ric(eij , eij) =
∑
k ̸=i,j

1

λik
g
(
R(eij , eik)eik, eij

)
+
∑
k ̸=i,j

1

λjk
g
(
R(eij , ejk)ejk, eij

)
.

Fixing k > j and using (2.8), we get

g
(
R(eij , eik)eik, eij

)
= 1

4

∥∥ad⋆
eijeik + ad⋆

eik
eij + [eij , eik]

∥∥2 − g
(
ad⋆

eijeik + [eij , eik], [eij , eik]
)

=
(λij + λjk − λik)2

4λjk
+ λik − λjk.

Similarly we get

g
(
R(eij , ejk)ejk, ejk

)
=

(−λij + λjk − λik)2

4λik
+ λjk − λik.

Combining these, we thus have that the k term in (4.5) simplifies to

g
(
R(eij , eik)eik, eij

)
λik

+
g
(
R(eij , ejk)ejk, eij

)
λjk

=
(λij − λik + λjk)(λij + λik − λjk)

2λikλjk
.

The terms with k < i and i < k < j are similar. □

4.2. Conjugate points along steady geodesics. Using Theorem 3.5, we show that although the Ricci
curvature of the generalized rigid body metric (4.1) can be negative, we still get conjugate points along
steady geodesics, just like for the standard rigid body metric. As pointed out in Remark 3.6, some of these
conjugate points are not detected by the Misio lek criterion.

Proposition 4.4. If u0 = eij is a steady solution of the Euler equation for the generalized rigid body metric
(4.1), then there are conjugate points along the corresponding steady geodesic.

Proof. According to Lemma 4.1, the basis vectors ekℓ for which adeij is not zero are the ones where {k, ℓ} ∩
{i, j} ≠ ∅, i.e. 2m vectors in total with m := n − 2. We can then reorder and rename the basis vectors
{eij}1≤i<j≤n into {wk}1≤k≤n(n−1)/2 so that

[u0, w2j−1] = w2j , [w2j−1, w2j ] = u0, [w2j , u0] = w2j−1, 1 ≤ j ≤ m,
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which yields L(w2j−1) = w2j , L(w2j) = −w2j−1 for 1 ≤ j ≤ m, and L(wk) = 0 for all other k. Thus the
matrix representation of L = adu0 in the basis {wi}1≤i≤2m is a (2m) × (2m) matrix composed of 2 × 2
nonzero blocks on the diagonal, all equal to (

0 −1
1 0

)
,

and zero everywhere else. Therefore the matrix representation of L2 is the identity, which obviously commutes
with Λ. This proves the existence of conjugate points by Theorem 3.5. □

5. Berger-Cheeger groups

As pointed out by Huizenga and Tapp in [29], all known examples of compact manifolds with positive
curvature can be traced back to a Lie group with a bi-invariant metric. Such groups always have non-negative
curvature, but bi-invariance is a rather restrictive condition. To obtain a much larger class of examples, one
can allow Cheeger deformations of a starting bi-invariant metric along any subgroup as follows.

Definition 5.1. Let G be a Lie group endowed with a positive-definite bi-invariant metric ⟨·, ·⟩, and H a
subgroup of G. Let g and h denote the respective Lie algebras of G and H. The Cheeger deformation along
H is the left-invariant metric g on G given by

(5.1) g(u, v) = ⟨u, v⟩ + δ⟨Pu, Pv⟩,

where δ ∈ (−1,∞) and P is the orthogonal projection onto h ⊂ g. We denote the associated symmetric
operator Λ = I + δP .

Remark 5.2. It should be noted here that the Cheeger deformation is typically defined in terms of 1/δ rather
than δ. Our convention just makes some formulas in this paper easier to write down, but both definitions
are virtually the same.

The first examples of this construction are due to Berger [7], known as Berger spheres. In that case, one
shrinks the round metric on G = S3 along the fibers of the Hopf fibration, which correspond to integral
curves of the Hopf vector field, so H = S1 and δ < 0.

The curvatures of metrics defined by (5.1) have been explored in some detail. If we shrink the metric along
H, which in our notation corresponds to δ < 0, it is known that sectional curvature remains nonnegative,
whereas in the expanding case (δ > 0) sectional curvature can become negative (see [29], [49]). The same
technique can be used to construct examples of manifolds with positive Ricci curvature [9].

We obtain several new results about metrics of the form (5.1). First, we derive an explicit formula for
its geodesics in terms of the Lie group exponential. Using this formula, we develop two new criteria for
conjugate points along nonsteady geodesics. The first is Corollary 5.5 of Theorem 3.1 for closed geodesics.
The second criterion, Proposition 5.7, is explicitly computable from the initial condition u0, the subspace H
and the deformation parameter δ. Thus, it allows one to see exactly how a metric deformation affects the
presence of conjugate points.

As a further application of the calculations mentioned above, we present a new proof of Chavel’s descrip-
tion [11] of the conjugate locus of Berger spheres and illustrate how the conjugate locus changes for different
values of the deformation parameter δ.

Finally, we show that if the extra condition

(5.2) [h⊥, h⊥] ⊆ h

is imposed, the Ricci curvature of (5.1) is “block Einstein,” which means that it becomes a multiple of the
identity when restricted to h, and a different multiple of the identity when restricted to h⊥.

An unexpected feature of these metrics is that despite the changes in curvature as δ varies, even to the
extent of producing metrics with some negative Ricci curvatures, the behavior of geodesics and conjugate
points remains essentially the same.

5.1. Explicit solution of the geodesic equation. We begin with the solution of the Euler-Arnold equa-
tion.



CURVATURE AND CONJUGATE POINTS ON QUADRATIC LIE GROUPS 13

Proposition 5.3. In the same notation as Definition 5.1, let h⊥ denote the orthogonal complement of h in
g under the bi-invariant metric ⟨·, ·⟩. Then

(5.3) [h, h] ⊆ h and [h, h⊥] ⊂ h⊥.

As a consequence, if we write u(t) = p(t) + q(t) where p ∈ h and q ∈ h⊥, then the Euler-Arnold equation
(2.13) for u becomes

(5.4) p′(t) = 0,
dq

dt
= δadp(t)q(t),

with solution
p(t) = p0, q(t) = Adη(t)q0, η(t) := exp (δtp0).

Proof. The first part of (5.3) is just the definition of a Lie subalgebra. To show the second part, let u ∈ h
and w ∈ h⊥: we will show that ⟨aduw, v⟩ = 0 for any v ∈ h. This follows from ad-invariance of the metric
and aduv ∈ h, since

⟨aduw, v⟩ = −⟨w, aduv⟩ = 0.

Writing u = p+ q where p ∈ h and q ∈ h⊥, we obtain Λu = (1 + δ)p+ q, so that

aduΛu = adp+q

(
(1 + δ)p+ q

)
= adpq + (1 + δ)adqp = −δadpq.

The Euler-Arnold equation (2.13) thus becomes

(1 + δ)p′(t) + q′(t) − δadp(t)q(t) = 0,

and since adpq ∈ h⊥, we obtain the splitting (5.4). Obviously p(t) = p0 solves the first part, and the second
part follows from the definition of ad as the derivative of Ad on any group. □

Geodesics can be described explicitly in terms of the group exponential map as follows.

Proposition 5.4. In the same notation as Definition 5.1, if γ(t) is a geodesic with γ(0) = id and γ′(0) =
u0 = p0 + q0, for p0 ∈ h and q0 ∈ h⊥, then

(5.5) γ(t) = etΛu0e−δtp0 .

Proof. In Proposition 5.3, we found that the solution u(t) of the Euler-Arnold equation (2.13) was given by

u(t) = eδtp0(p0 + q0)e−δtp0 = η(t)u0η(t)−1.

Now using the flow equation γ′(t) = γ(t)u(t), we find that

d

dt

(
γ(t)η(t)

)
= γ′(t)η(t) + γ(t)η′(t) = γ(t)η(t)u0η(t)−1η(t) + δγ(t)η(t)p0

= γ(t)η(t)(u0 + δp0) = γ(t)η(t)Λu0.

Thus since γ(0)η(0) = id, we must have
γ(t)η(t) = etΛu0 ,

and formula (5.5) follows using η(t) = eδtp0 . □

Formula (5.4) together with Theorem 3.1 gives a simple criterion for conjugate points along nonsteady
geodesics in any Berger-Cheeger group. Essentially, if the initial velocity Λu0 would yield a closed geodesic
under the bi-invariant metric on G, then the initial velocity u0 yields a geodesic with conjugate points
under the Berger-Cheeger metric. Since closed geodesics for bi-invariant metrics on compact Lie groups are
common, many examples can be obtained this way.

Corollary 5.5. Suppose G is a Berger-Cheeger group, and γ is a nonsteady geodesic with γ(0) = id and
γ′(0) = u0. Assume that eτΛu0 = id for some τ > 0. Then there is a conjugate point along the geodesic γ
given by (5.5).

Proof. By the inclusions (5.3), the operators adp0 for p0 ∈ h preserve the orthogonal decomposition, and
therefore so does Adη(t) for any t; in particular Adη(t) commutes with Λ = I + δP . We conclude that Adη(t)

is an isometry of the Berger-Cheeger metric, since it is an isometry of the bi-invariant metric.
By the explicit formula (5.5), we will have γ(τ) = η(τ)−1. Thus Adγ(τ) preserves the Berger-Cheeger

metric as well, and we conclude that right-translation by γ(τ) is an isometry. Thus Theorem 3.1 implies
that γ(τ) is conjugate to γ(0). □
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5.2. The Jacobi equation and the index form.

Proposition 5.6. Suppose G is a Lie group with subgroup H and left-invariant metric defined at the identity
by an operator Λ = I + δPh for δ > −1, as in Proposition 5.3, and assume the additional condition (5.2)
holds: [h⊥, h⊥] ⊆ h. Then the Jacobi equation for a Jacobi field J(t) = y(t) ◦ γ(t) along a geodesic γ(t) with
γ(0) = id and γ′(0) = p0+q0 is given by a constant-coefficient system for Adη(t)y(t), where η(t) = exp (δtp0).

Proof. As in Lemma 2.8, the Jacobi equation takes the form (2.14). For Λ = δPh + I, writing z(t) =
Adη(t)

(
z1(t) + z2(t)

)
where z1(t) ∈ h and z2(t) ∈ h⊥, we have Λu(t) = δp0 + u(t) = Adη(t)

(
(1 + δ)p0 + q0

)
and Λz(t) = Adη(t)

(
(1 + δ)z1(t) + z2(t)

)
, since Adη(t) is an isometry and commutes with Λ. Thus the terms

in the linearized Euler equation (2.14) become

aduΛz + adzΛu = adAdη(δp0+u0)Adη

(
δz1 + z1 + z2

)
+ adAdη(δz1+z1+z2)Adη

(
δp0 + u0

)
= δAdη

(
adq0z1 − adp0

z2
)
.

Since
Λz′(t) = ΛAdη(t)

(
z′1(t) + δadp0

z1(t) + z′2(t) + δadp0
z2(t)

)
,

we conclude that the linearized Euler equation for z(t) splits into h and h⊥ components as

(5.6) z′1(t) + δadp0
z1(t) = 0, and z′2(t) + δadq0z1(t) = 0.

Similarly for the linearized flow equation in (2.6). Write y(t) = Adη(t)

(
y1(t) + y2(t)

)
, where y1(t) ∈ h and

y2(t) ∈ h⊥ for all time. then the equation (2.14) for y(t) becomes

y′1 + y′2 + δadp0
(y1 + y2) + adp0+q0(y1 + y2) = z1 + z2,

which splits into components y1(t) ∈ h and y2(t) ∈ h⊥ as the constant-coefficient system

y′1(t) + (1 + δ)adp0
y1(t) + adq0y2(t) = z1(t), y′2(t) + adq0y1(t) + (1 + δ)adp0

y2(t) = z2(t).

□

We can attempt to solve this constant-coefficient system using the same method as in Theorem 3.4, but
we face some difficulties: first of all, the corresponding operators L and F will no longer map the orthogonal
complement of u0 to itself, and so it is possible there is no solution R of the equation. Secondly the algebraic
properties of adp0

and adq0 as operators on h and h⊥ need to be considered separately in each case depending
on precisely what the Lie algebra is. In principle however the analysis could be easily done in any specific
case.

We will instead illustrate how to detect conjugate points using the index form, via a method that also
generalizes to apply for nonsteady geodesics on an arbitrary quadratic Lie group (see Appendix A).

Proposition 5.7. Let u0 = p0 + q0 be an initial condition for a geodesic γ, with p0 ∈ h and q0 ∈ h⊥ and
[p0, q0] ̸= 0. If

(5.7) δ|p0|2|q0|2
∣∣[q0, [p0, q0]

]∣∣2 < (1 + δ)
∣∣[p0, q0]

∣∣4((1 + δ)|p0|2 + |q0|2
)
,

then γ(τ) is conjugate to γ(0) for sufficiently large τ .

Proof. By Lemma 2.8, the index form is given by

I(y, y) =

∫ τ

0

⟨Λz − adΛuy, z⟩ dt, z := ẏ + aduy,

for fields y(t) vanishing at t = 0 and t = τ . We choose a test field of the form

y(t) = Adη(t)

(
f(t)p0 + g(t)q0 + h(t)r0

)
, r0 := [p0, q0] ∈ h⊥,

where again η(t) = exp (δtp0) as in Proposition 5.3.
It is easy to compute that

z = Adη

(
ḟp0 + h[q0, r0] + ġq0 +

(
ḣ+ (1 + δ)g − f

)
r0 + (1 + δ)h[p0, r0]

)
,

where the components are expressed in the h and h⊥ parts since [q0, r0] ∈ h and [p0, r0] ∈ h⊥. We similarly
find that

Λz − adΛuy = Adη

(
(1 + δ)ḟp0 + δh[q0, r0] + ġq0 + ḣr0

)
.
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Using the elementary computations

⟨p0, [q0, r0]⟩ = |r0|2, ⟨q0, [p0, r0]⟩ = −|r0|2, ⟨q0, r0⟩ = 0, ⟨r0, [p0, r0]⟩ = 0,

we obtain

⟨z,Λz − adΛuy⟩ = (1 + δ)|p0|2
(
ḟ + |r0|2

|p0|2h
)2

+ |q0|2
(
ġ − (1 + δ) |r0|2

|q0|2h
)2

+ |r0|2ḣ2 − βh2,

β := (1 + δ) |r0|4
|p0|2 + (1 + δ)2 |r0|4

|q0|2 − δ
∣∣[q0, r0]

∣∣2.
The first two terms will vanish if we choose ḟ and ġ proportional to h, which works as long as

∫ τ

0
h(t) dt = 0,

since we need f and g to vanish at the endpoints. Therefore choosing h(t) = sin
(
2πt
τ

)
and f and g to be the

appropriate time integrals, we have that the integral of h is zero on [0, τ ], and that

I(y, y) =

∫ τ

0

⟨z,Λz − adΛuy⟩ dt =

∫ τ

0

|r0|2ḣ(t)2 − βh(t)2 dt =
2π2|r0|2

τ
− βτ

2
.

This is negative for sufficiently large τ as long as β > 0, which is equivalent to (5.7). □

When −1 < δ ≤ 0, condition (5.7) is satisfied automatically when [p0, q0] ̸= 0 (the nonsteady case), and
every such geodesic has a conjugate point. This reflects the fact that the Ricci curvature is strictly positive
in this case, and conjugate points are ensured along every geodesic by the Gromoll-Meyer theorem. When
δ > 0, some eigenvalues of the Ricci curvature can become negative, and the condition gives new information.
The Zeitlin model. The Zeitlin metric on SU(3) [54] gives a finite-dimensional approximation for the L2 ge-
ometry of the volume-preserving diffeomorphism group, which describes fluid dynamics on a two-dimensional
sphere [44]. It can be described as the Berger-Cheeger metric obtained from taking G = SU(3), H = SO(3)
and δ = −2/3 in Definition 5.1. In particular, since δ is negative, we immediately obtain the following
corollary of Proposition 5.7.

Corollary 5.8. Every nonsteady geodesic in the SU(3) Zeitlin model has a conjugate point.

As for the higher-dimensional groups SU(n) in the Zeitlin model, it turns out that they are no longer
Berger-Cheeger groups, but are still quadratic groups since SU(n) carries a bi-invariant metric. Thus we
can use a similar criterion for general quadratic Lie groups (see next paragraph), but the computations are
more complicated. We leave this problem for a future project.
Generalization to any quadratic Lie group. In Appendix A we use a similar technique to obtain a criterion
for conjugate points along a nonsteady geodesic in an arbitrary quadratic Lie group, not just one of Berger-
Cheeger type. The main idea is that there is a natural three-dimensional orthogonal frame along any
nonsteady geodesic in the same way that

{
{p0,Adη(t)q0,Adη(t)[p0, q0]

}
is a natural orthogonal frame in the

proof of Proposition 5.7.
Berger spheres. In the special case of Berger spheres, where dim (h) = 1, we see that

|p0|2
∣∣[q0, [p0, q0]]

∣∣2 =
〈
p0, [q0, [p0, q0]]

〉2
=
∣∣[p0, q0]

∣∣4,
so that (5.7) reduces to

δ|q0|2 < (1 + δ)
(
(1 + δ)|p0|2 + |q0|2

)
,

which is satisfied for any δ, and we conclude that every nonsteady geodesic in a Berger sphere has a conjugate
point. In fact a direct computation using Proposition 5.6 shows that the solution operator Ω(t) := z0 7→ y(t)
has determinant

(5.8) det Ω(t) = sin (Rt)
(
− δ|q0|2Rt cos (Rt) + (1 + δ)S sin (Rt)

)
,

R :=
√

(1 + δ)2|p0|2 + |q0|2, S := (1 + δ)|p0|2 + |q0|2.

Note that if δ < 0, the first solution t of det Ω(t) = 0 will be the unique solution t ∈ ( π
2R ,

π
R ) of the equation

tan (Rt)

Rt
=

δ|q0|2

(1 + δ)
(
(1 + δ)|p0|2 + |q0|2

) .
Meanwhile if δ ≥ 0, then the first solution of det Ω(t) = 0 is t = π/R. Hence the conjugarte locus is the image
under the exponential map of a topological sphere in so(3), a surface of revolution which is an ellipsoid when
δ ≥ 0 and a more interesting shape when δ < 0. This computation was also done in the typical case δ < 0 by
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Chavel [11], using a different method. Below we show two-dimensional slices of the tangent conjugate locus
for various values of δ.

π

2
π

p

π

2

π

q

Tangent conjugate locus for decreasing values of δ = −0.001,−0.25,−0.5,−0.75,−0.95.
The outermost curve corresponds to δ = −0.001 and the innermost one to δ = −0.95.

5.3. Ricci curvature. In this section, we compute the Ricci curvature of Berger-Cheeger groups. In the
special case that h and h⊥ factor g into a Cartan decomposition, which requires the additional assumption
[h⊥, h⊥] ⊆ h, we get a substantial simplification of the Ricci curvature: the group becomes “block Einstein”
in the sense that the Ricci curvature is a constant multiple of the metric when restricted to h, and a different
constant multiple of the metric when restricted to h⊥. We focus on this case, and provide a general formula
without this assumption at the end – see Remark 5.11.

Proposition 5.9. Suppose G is a Berger-Cheeger group with subgroup H. Assume that

(5.9) [h⊥, h⊥] ⊆ h.

Let P denote the orthogonal projection of g onto h (in the bi-invariant form on g), and let Q = I − P be
the projection onto h⊥. If u ∈ h and v ∈ g, then the curvature of G under the left-invariant metric (5.1) is
given by

(5.10) g(R(u, v)v, u) =
1 + δ

4

∣∣aduP (v)
∣∣2 +

(1 + δ)2

4

∣∣aduQ(v)
∣∣2.

Meanwhile if u ∈ h⊥ and v ∈ g, then

(5.11) g(R(u, v)v, u) =
(1 + δ)2

4
|aduP (v)|2 +

1 − 3δ

4
|aduQ(v)|2 .

As before, for any w ∈ g, we write |w|2 = ⟨w,w⟩ while ∥w∥2 = g(w,w) = ⟨w,Λw⟩.

Proof. We begin with the general formula for sectional curvature on a Lie group with left-invariant metric g
as in [38]:

(5.12) g
(
R(u, v)v, u

)
= 1

4∥ad⋆
uv + ad⋆

vu+ aduv∥2 − g(ad⋆
uv + aduv, aduv) − g(ad⋆

uu, ad⋆
vv).
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Recalling the formula (2.12) for ad⋆, and using the formula Λ = I+δP and its consequence Λ−1 = I− δ
1+δP ,

we find that for any u and v, we have

ad⋆
uv = −aduv − δaduP (v) + δ

1+δP (aduv) + δ2

1+δP
(
aduP (v)

)
,

and we conclude, using the commutator relations (5.3) and (5.9) between h and h⊥, that

(5.13) ad⋆
uv + aduv = δ

(
adQ(u)

(
Q(v)

1 + δ
− P (v)

))
,

where as expected if δ = 0 the right side is zero since then the metric becomes bi-invariant on g. If u ∈ h,
then clearly (5.13) is zero, and together with ad⋆

uu = 0 this shows that the last two terms in (5.12) disappear.
Decomposing v into P (v) +Q(v) immediately gives (5.10).

Now suppose that u ∈ h⊥. Using (5.13), after simplifying we get

ad⋆
uv + aduv + ad⋆

vu = aduQ(v) + (1 − δ)aduP (v),

g (ad⋆
uv + aduv, aduv) = δ

(
|aduQ(v)|2 − |aduP (v)|2

)
.

Thus, formula (5.12) becomes

⟨R(u, v)v, u⟩ =
1 + δ

4
|aduQ(v)|2 +

(1 − δ)2

4
|aduP (v)|2 − δ

(
|aduQ(v)|2 − |aduP (v)|2

)
=

1 − 3δ

4
|aduQ(v)|2 +

(1 + δ)2

4
|aduP (v)|2 ,

which is (5.11). □

Theorem 5.10. Suppose G is a compact simple Lie group and H is a compact simple Lie subgroup, with
respective Lie algebras g and h, and consider the metric g given by (5.1). Then the Ricci curvature of G
under g splits into block diagonal form as

Ric(v, v) = C1(δ)|P (v)|2 + C2(δ)|Q(v)|2,
for some constants C1 and C2 depending on G, H and the parameter δ.

Proof. In the bi-invariant metric ⟨·, ·⟩, construct an orthonormal basis e1, . . . , em of h and an orthonormal
basis f1, . . . , fn of h⊥. Write v = x+ y, where x ∈ h and y ∈ h⊥. Then, formulas (5.10) and (5.11) become

g
(
R(ei, v)v, ei

)
=

1 + δ

4
|adeix|2 +

(1 + δ)2

4
|adeiy|2, 1 ≤ i ≤ m,

g
(
R(fj , v)v, fj

)
=

(1 + δ)2

4
|adfjx|2 +

1 − 3δ

4
|adfjy|2, 1 ≤ j ≤ n.

(5.14)

Note that the vectors {e1, . . . , em, f1, . . . , fn} form an orthonormal basis in the bi-invariant metric, but not
in the g metric; instead the vectors {(1 + δ)−1/2e1, . . . , (1 + δ)−1/2em, f1, . . . , fn} are g-orthonormal. Thus
by (5.14), the Ricci curvature is

(5.15) Ric(v, v) =
1

1 + δ

m∑
i=1

g
(
R(ei, v)v, ei

)
+

n∑
j=1

g
(
R(fj , v)v, fj

)
=

1

4

m∑
i=1

|adeix|2 +
1 + δ

4

m∑
i=1

|adeiy|2 +
1 − 3δ

4

n∑
j=1

|adfjy|2 +
(1 + δ)2

4

n∑
j=1

|adfjx|2.

We conclude that the Ricci curvature is given for v = x+ y by

Ric(v, v) = Ric(x, x) + Ric(y, y)

since there are no cross-terms in (5.15), and thus it is sufficient to compute them separately. The claim of
the theorem now reduces to showing that Ric(x, x) = C1|x|2 and Ric(y, y) = C2|y|2 for x ∈ h and y ∈ h⊥.

The main principle we will use is that since G is a compact simple Lie group, there is a unique non-
degenerate bi-invariant metric on G (up to a constant multiple), and thus there is a positive constant βG
such that for any v ∈ g, we have

Tr(advadv) = −βG|v|2.
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See for example [1], Proposition 2.48. This says more explicitly that

m∑
i=1

|adeiv|2 +

n∑
j=1

|adfjv|2 = βG|v|2.

This formula applies for any v, but we also have a compact simple Lie group H, and the same principle
applies to give

m∑
i=1

|adeix|2 = βH |x|2,

where the sum is only taken over h and only applied to x ∈ h. The Ricci curvature on x is now given using
(5.15) by

Ric(x, x) =
1

4

m∑
i=1

|adeix|2 +
(1 + δ)2

4

n∑
j=1

|adfjx|2

=
(1 + δ)2

4

 m∑
i=1

|adeix|2 +

n∑
j=1

|adfjx|2
− δ(2 + δ)

4

m∑
i=1

|adeix|2

=
(1 + δ)2βG

4
|x|2 − δ(2 + δ)βH

4
|x|2,

and we conclude that

C1(δ) =
(1 + δ)2βG − δ(2 + δ)βH

4
.

The computation for Ric(y, y) is slightly more complicated since h⊥ is not a Lie subalgebra, and thus the
sum of terms |adeiy|2 does not represent a Killing form. However we have by (5.15) that

(5.16) Ric(y, y) =
1 + δ

4

m∑
i=1

|adeiy|2 +
1 − 3δ

4

n∑
j=1

|adfjy|2.

Now to compute these two sums, we use the fact that adeiy ∈ h⊥ by (5.3) to write

m∑
i=1

|adeiy|2 =

m∑
i=1

n∑
j=1

⟨adeiy, fj⟩2,

summing only over the inner products with vectors fj ∈ h⊥, and similarly since adfjy ∈ h by our additional
assumption (5.9),

n∑
j=1

|adfjy|2 =
n∑

j=1

m∑
i=1

⟨adfjy, ei⟩2.

We now notice that these two sums are exactly the same, since

⟨adfjy, ei⟩ = −⟨y, adfjei⟩ = ⟨y, adeifj⟩ = −⟨adeiy, fj⟩,

and thus we get
m∑
i=1

|adeiy|2 +

n∑
j=1

|adfjy|2 = 2

n∑
j=1

|adfjy|2 = βG|y|2.

Formula (5.16) thus becomes

Ric(y, y) =
(1 + δ) + (1 − 3δ)

4

n∑
j=1

|adfjy|2 =
(1 − δ)βG|y|2

4
,

so we conclude

C2(δ) =
(1 − δ)βG

4
.

□
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An interesting class of examples where Theorem 5.10 applies is G = SU(n) and H = SO(n), with the
natural inclusion. In this case, h consists of antisymmetric real matrices, and since the bi-invariant form
is ⟨u, v⟩ = − 1

2Tr(uv), this means that h⊥ is a subset of the space of symmetric matrices. Therefore, given

v, w ∈ h⊥,
[v, w]T = (vw − wv)T = wT vT − vTwT = wv − vw = −[v, w],

so that [v, w] ∈ h. This shows that the condition [h⊥, h⊥] ⊆ h is fulfilled. Here the constants are βH =
2(n2 − n− 4) (using Proposition 4.2) and βG = 4n (from [1], Example 2.50).

Remark 5.11. If one does not assume the condition [h⊥, h⊥] ⊆ h, then Proposition 5.9 still holds, except
that in the case u ∈ h⊥, the formula becomes

g(R(u, v)v, u) =
1 − 3δ

4

∣∣P (aduQ(v)
)∣∣2 +

1

4

∣∣Q(aduΛv)
∣∣2.

However, this formula alone does not allow us to conclude that the Ricci curvature is block diagonal.

6. Outlook

We have seen that some groups exhibit the property that every nonsteady geodesic eventually develops
conjugate points. This naturally leads to the question of whether such behavior can be simply characterized.
For instance, Berger-Cheeger groups have this property for negative δ in (5.1) (when one shrinks the metric
along a subgroup H), but it remains unclear whether the same holds for positive δ. If true, it would suggest
that this property persists in a neighborhood of a bi-invariant metric – a kind of stability result (note that
a bi-invariant metric possesses only steady geodesics, so this property is vacuously true in that case).

Proposition 5.7 shows that if we fix a particular initial velocity u0 on the Lie algebra, tangent to a
nonsteady geodesic, then for sufficiently small δ depending on u0 the corresponding geodesic eventually
develops conjugate points. However, we do not have a uniform bound on the time it takes for conjugate
points to appear.

Another interesting problem is that of the shape of the conjugate locus itself, viewed as a subset of the
Lie algebra g: what does the set C of all v ∈ g such that d exp(v) is singular look like? In this work we have
shown the conjugate loci of Berger spheres (Section 5). Very few other concrete examples of this set are
known, since it is hard to describe it explicitly, but the problem seems more tractable in the context of Lie
groups. We know by the work of Warner [53] that an open and dense subset of C is a smooth hypersurface
(codimension one) in g, but there can be branch points whenever conjugate points of multiplicity higher
than one split into two hypersurfaces of lower multiplicity each. What types of branching can occur is also
not known (see [17]).

Aside from geodesics and the conjugate locus, it would be interesting to see whether the results on section
4 can be extended to include more general inertia operators – not just those of a generalized rigid body. In
particular, the question of whether the Ricci tensor still admits a block decomposition in this more general
setting is connected to the study of Ricci flow on Lie groups.

Appendix A. Conjugate points along nonsteady geodesics in a quadratic Lie group

Here we generalize to any quadratic Lie group the method used in Proposition 5.7 to obtain a criterion
of conjugacy along nonsteady geodesics in Berger-Cheeger groups.

Let G be a quadratic Lie group, with metric g defined from an operator Λ and a bi-invariant bilinear form
⟨·, ·⟩ on g through g(u, v) = ⟨Λu, v⟩ (as in (2.11)). Assume u(t) is a nonsteady solution of the Euler-Arnold
equation (2.13). Our first task is to construct a special 3-frame along u(t) such that the index form simplifies
when computed in the span of this 3-frame. This construction relies on conserved quantities which are direct
analogues of the conservation laws for energy and angular momentum in the case of a rigid body, but exist
on any quadratic Lie group.

Lemma A.1. Suppose g is generated by an operator Λ as in (2.11). Then for any nonsteady solution u(t)
of the Euler-Arnold equation (2.13), the quantities

(A.1) k := ⟨u(t),Λu(t)⟩ and ℓ := ⟨Λu(t),Λu(t)⟩
are constant in time. Moreover, the vector fields

(A.2) v1(t) := u′(t)/g(u′(t), u′(t)), v2(t) := kΛu(t) − ℓu(t), v3(t) := u(t).
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are mutually orthogonal (though not generally orthonormal) in the metric g.

Proof. Straightforward computations show that quantities k and ℓ are constant. Since u(t) is nonsteady,
we know u′(t) is never zero, so v1 is well-defined. The fact that k and ℓ are constant implies that v1 is
orthogonal to v3 and v2. Finally v2 is orthogonal to v3 by definitions of k and ℓ. □

To prove the existence of conjugate points, the strategy is to find a variational field y and a time τ > 0
such that y(0) = y(τ) = 0 and the index form at y is negative, as in Proposition 2.5. We now prove a lemma
which will be used to establish the negativity of the index form.

Lemma A.2. Suppose ψ and ϕ are real functions on [0,∞), bounded below by positive constants. Then for
any function ξ(t), and for sufficiently large τ > 0, there is a function f(t) with f(0) = f(τ) = 0, together
with

∫ τ

0
f(t)ξ(t) dt = 0, and such that

I :=

∫ τ

0

(f ′)2

ψ
− ϕf2 dt < 0.

Proof. Let ξ(t) be a function and assume ψ(t) ≥ a and ϕ(t) ≥ b for some positive real numbers a, b and all
t ≥ 0. Now choose f(t) = k1 sin πt

τ + k2 sin 2πt
τ . Clearly f(0) = f(τ) = 0, and we may obviously choose a

nontrivial combination k1 and k2 such that
∫ τ

0
f(t)ξ(t) dt = 0. Moreover, we have the upper bound

I ≤
∫ τ

0

f ′(t)2

a
− bf(t)2 dt =

π2

aτ
(k21 + 4k22) − bτ

2
(k21 + k22),

which will be negative for sufficiently large τ . □

We can now establish our criterion for existence of conjugate points.

Theorem A.3. Let G be a quadratic Lie group with a left-invariant metric g given by (2.11) for an operator
Λ with a bi-invariant nondegenerate bilinear form ⟨·, ·⟩. Let u(t) be a nonsteady solution of the Euler equation,
and let k, ℓ, v1, and v2 be defined as in Lemma A.1 Define the following vector fields on the Lie algebra

w := v′1 + aduv1, x := Λw + adv1Λu,

and the following functions [0,∞) → R,

ψ(t) :=
1

g(v1, v1)
, ϕ(t) :=

k2⟨Λw,Λu⟩2

g(v2, v2)
− ⟨w, x⟩.

Assume that the functions ψ and ϕ are both bounded below by positive constants. Then there is eventually
a conjugate point along the geodesic γ(t) corresponding to u(t) via the Euler-Arnold equations (2.2). In
particular, γ is not globally minimizing.

Proof. Let τ > 0 and y : [0, τ ] → g be a test field, with decomposition y(t) = y1(t)v1(t) + y2(t)v2(t) with
respect to the fields v1, v2 defined by (A.2). We restrict to linear combinations of v1(t) and v2(t) because
including a term proportional to v3(t) = u(t) would only produce a larger index form as the reader can
check. To compute the index form I(y, y), we need to compute both terms involved in the inner product of
the integrand in Equation (2.15). They are given by

z =
(
y′1 − ℓψy2)v1 + y′2v2 + y1w,

Λz + adyΛu = y′1Λv1 + y′2Λv2 + y1x,

and by orthogonality of v1 and v2, their inner product is

⟨z,Λz + adyΛu⟩ = (y′1 − ℓψy2)y′1⟨v1,Λv1⟩ + (y′2)2⟨v2,Λv2⟩
+ y1⟨(y′1 − ℓψy2)v1 + y′2v2, x⟩ + y1⟨w, y′1Λv1 + y′2Λv2⟩ + y21⟨w, x⟩.

Using the following inner products, found after somewhat lengthy but straightforward computations,

⟨x, v1⟩ = 0, ⟨x, v2⟩ = k⟨Λw,Λu⟩ − ℓ, ⟨w,Λv1⟩ = 0, ⟨w,Λv2⟩ = k⟨Λw,Λu⟩,
the integrand of the index form simplifies to

⟨z,Λz + adyΛu⟩ =
(y′1)2

ψ
+ g(v2, v2)(y′2)2 + 2k⟨Λw,Λu⟩y1y′2 + ⟨w, x⟩y21 − ℓ(y2y

′
1 + y1y

′
2).
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The last term attached to ℓ will integrate to zero on [0, τ ] since it is a total time derivative of y1y2, which
vanishes at t = 0 and t = τ . Now completing the square in what remains yields

⟨z,Λz + adyΛu⟩ =
(y′1)2

ψ
+ g(v2, v2)

(
y′2 +

k⟨Λw,Λu⟩y1
g(v2, v2)

)2

+

(
⟨w, x⟩ − k2⟨Λw,Λu⟩2

g(v2, v2)

)
y21 ,

plus a term that integrates to zero, and so the index form is given by

(A.3) I(y, y) =

τ∫
0

(y′1)2

ψ
− ϕy21 + g(v2, v2) (y′2 + ξy1)

2
dt,

where

ξ(t) =
k⟨Λw,Λu⟩y1
g(v2, v2)

.

Then by Lemma A.2, there exists a function f and a τ > 0 such that
∫ τ

0
ξ(t)f(t)dt = 0, f(0) = f(τ) = 0 and

(A.4) I :=

∫ τ

0

(f ′)2

ψ
− ϕf2 dt < 0.

Setting y1(t) = f(t) and y′2(t) = −ξ(t)f(t), we obtain a field y = y1v1+y2v2 that vanishes at t = 0 and t = τ ,
and for which the index form (A.3) is precisely (A.4). Applying Proposition 2.5 then yields the existence of
a conjugate point as claimed. □

In the case of Berger-Cheeger groups as in Section 5, the quantities ϕ and ψ are constant along any
geodesic, so the application of the theorem involves only checking that these quantities are positive, which
is essentially what we did in Proposition 5.7.
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[5] P. Birtea, I. Caşu, T. Ratiu, and M. Turhan, Stability of equilibria for the so(4) free rigid body, J. Nonlinear Sci. 22 (2012),
187–212.

[6] J. Benn, Conjugate points in D2
µ(S2), J. Geom. Phys. 170 (2021), Paper No. 104369, 14 pp.
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[17] N. M. dos Santos, On the conjugate locus of a Riemannian manifold, An. Acad. Brasil. Ci. 39 (1967), 19–26.
[18] T. Drivas, G. Misio lek, B. Shi, and T. Yoneda, Conjugate and cut points in ideal fluid motion Ann. Math. Québec 46,
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