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Abstract. Suppose there is a smooth solution u of the Euler equation on a 3-dimensional manifold

M , with Lagrangian flow η, such that for some Lagrangian path η(t, x) and some time T , we haveR T
0 |ω(t, η(t, x))| dt = ∞. Then in particular smoothness breaks down at time T by the Beale-Kato-

Majda criterion. We know by the work of Arnold that the Lagrangian solution is a geodesic in the

group of volume-preserving diffeomorphisms.

We show that either there is a sequence tn ↗ T such that the corresponding geodesic fails to mini-
mize length on each [tn, tn+1], or there is a basis {e1, e2, e3} of TxM with e3 parallel to the initial vor-

ticity vector ω0(x) such that the components of the stretching matrix Λ(t, x) = (Dη(t, x))TDη(t, x)

satisfy Z T

0

Λ33(τ, x) dτ

Λ11(τ, x) + Λ22(τ, x)
<∞ and lim

t→T

R t
0 Λ11(τ, x) dτR t
0 Λ22(τ, x) dτ

= 0.

The former possibility can be studied in terms of the two-point minimization approach of Brenier

on volume-preserving maps, while the latter gives a precise sense in which the vorticity vector tends
to align with the intermediate eigenvector of the stretching matrix Λ.

Consider a three-dimensional ideal fluid flow on a manifold M described by a time-dependent
velocity field u : [0, T )×M → TM , satisfying the Euler equation

(1) ut +∇uu = −∇p, div u ≡ 0, u(0, x) = u0(x).

Here the pressure is determined implicitly by ∆p = −div (∇uu). We assume u0 is C∞.
The motion of particles is described by the flow map η : [0, T )×M →M , defined by

ηt(t, x) = u
(
t, η(t, x)

)
, η(0, x) = x;

the incompressibility constraint div u = 0 becomes

det (Dη(t, x)) ≡ 1 or η∗µ = µ

in terms of the volume form µ. The particle map satisfies the Euler equation

(2)
D

∂t

∂η

∂t
(t, x) = −∇p

(
t, η(t, x)

)
with initial conditions η(0, x) = x and ηt(0, x) = u0(x).

The vorticity vector field ω = curlu satisfies

ωt + [u, ω] = 0,

which leads to the important conservation law

(3) ω
(
t, η(t, x)

)
= Dη(t, x)

(
ω0(x)

)
.

We can think of η as a geodesic in the volumorphism group

Dµ(M) = {η ∈ C∞(M,M) | η∗µ = µ},
as pointed out by Arnold [A], where the Riemannian metric is generated by the L2 norm of the velocity
field (i.e., the kinetic energy). If s > 5

2 , then the closure of Dµ(M) in the Sobolev Hs topology is
denoted by Dsµ(M), and it is a smooth submanifold of Hs(M,M); furthermore the geodesic equation is
a smooth ODE on this manifold, by results of Ebin-Marsden [EM]. Thus there is a smooth exponential
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map expid from a neighborhood of 0 in the space of divergence-free Hs vector fields TidDsµ(M) to
Dsµ(M) which takes u0 to η(1), with η satisfying (2).

Singular values of the exponential map are called conjugate points: those where the differential
of the exponential map fails to be injective are monoconjugate, while those where the differential
fails to be surjective are epiconjugate points. (In infinite dimensions, these are generally different;
see Grossman [Gr] and Biliotti et al. [BEPT] for an elaboration of these issues.) The derivative of
the exponential map at 0 is the identity map, which implies by smoothness and the inverse function
theorem that there is an Hs neighborhood of the 0 vector in which the exponential map is nonsingular.
If η is a geodesic with η(0) = id, and η(a) is monoconjugate to η(0), then η cannot be minimizing
on [0, b] for any b > a. Intuitively, a conjugate point represents a family of geodesics all starting at
the same point which meet to first order at the endpoint; the most familiar example is the north and
south poles on a sphere. (For details, see a text such as Spivak [Sp], do Carmo [dC], or Lang [L].)

Along a geodesic η in Dsµ(M), there are times b > a > 0 (either of which may be infinite) such that
η(t) is not conjugate to η(0) for t < a, and η(t) is epiconjugate to η(0) for a ≤ t < b. Furthermore
for a countable dense set in [a, b), η(t) is monoconjugate to η(0). See [P2] for an elaboration of this
phenomenon. (In the cases where computations have been done explicitly, a is finite and b is infinite
unless the initial velocity field u0 is harmonic.)

Global existence of solutions to (1) is equivalent to geodesic completeness, which in turn is equivalent
to the exponential map being defined on all of TidDsµ(M). The maximal time of existence T is finite
if and only if the Beale-Kato-Majda criterion [BKM] is satisfied:

(4)
∫ T

0

sup
x∈M
|ω(t, x)| dt =∞.

(We should note that strictly speaking, Beale-Kato-Majda only proved this when M = T3; however
it seems likely that it holds for any compact three-dimensional manifold. Everything we will do in
what follows works on an arbitrary compact three-dimensional Riemannian manifold.) Several other
criteria are known: see Constantin [Co] and Gibbon [Gi] for surveys of the literature, as well as Deng
et al. [DHY] and Chae [Ch] for some recent results. However our analysis depends only on assuming
a slightly strengthened version of (4).

Assumption 1. There is a point x ∈M such that∫ T

0

∣∣ω(t, η(t, x)
)∣∣ dt =∞.

Clearly Assumption 1 is only possible if ω0(x) 6= 0, via (3). Hence we can choose an orthonormal
basis {e1, e2, e3} at TxM which is oriented in the usual way and such that e3 is a positive multiple of
ω0(x). (This basis is of course unique only up to a rotation.) If we define the stretching matrix by

Λ(t, x) =

Λ11 Λ12 Λ13

Λ12 Λ22 Λ23

Λ13 Λ23 Λ33

 ≡ Dη(t, x)TDη(t, x),

then Λ33 = |Dη(e3)|2, so that Assumption 1 is obviously equivalent to

|ω0(x)|
∫ T

0

√
Λ33(t, x) dt =∞.

As such, we can define a rescaled time variable by

(5) s = |ω0(x)|
∫ t

0

√
Λ33(τ, x) dτ.

Obviously s goes from 0 to ∞ as t goes from 0 to T .
Now we define the property we want to establish for such a solution.
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Definition 2. Suppose η is a geodesic in a Riemannian manifold, defined on a maximal interval [0, T ).
We say that η has a conjugate cascade if there is a strictly increasing sequence of times tn ↗ T such
that η(tn) is conjugate to η(tn+1).

It does not matter in this definition whether we use monoconjugate or epiconjugate points. By a
result of [BEPT], monoconjugate points are dense in epiconjugate points; hence if we know that for
every a < T there is a b ∈ (a, T ) such that η(a) is epiconjugate to η(b), then we know that for any
ε > 0, there is a c ∈ (b, b+ ε) such that η(a) is monoconjugate to η(c). Since this is the property we
will actually demonstrate, the use of “conjugate” presents no ambiguity.

In addition, since the minimum time between conjugate locations is governed by the maximum of
the Riemannian sectional curvature, a conjugate cascade implies that the sectional curvature must
approach positive infinity in directions containing the geodesic’s tangent vector.

It should be noted that a conjugate cascade is very different from the pathological behavior of
conjugate points discussed in [EMP] and elaborated in [P1] and [P2]. The difference here is that it is
easy to have points conjugate to the initial time; it is much harder to find points conjugate to each
previous time.

The main result of this paper is the following rigidity theorem, which says that among blowup
scenarios, the conjugate cascade is “typical.” If blowup does not occur, then we get some fairly
precise information about the structure of the stretching matrix Λ.

Theorem 3. Suppose η is a solution of the Euler equation (2) with maximal time of existence T <∞,
satisfying Assumption 1 for some x. Then either η experiences a conjugate cascade, or there is a choice
of orthonormal basis {e1, e2, e3} of TxM such that Λ satisfies the special conditions

(6) lim
t→T

∫ t
0

Λ11(τ) dτ∫ t
0

Λ22(τ) dτ
= 0

and

(7)
∫ T

0

Λ33(τ)
Λ11(τ) + Λ22(τ)

dτ <∞.

(The two possibilities are not necessarily mutually exclusive.)

Roughly speaking (6) and (7) quantify the tendency of vorticity to align with the middle eigenvector
of Λ, a well-known numerical observation [GGH].

We will prove this theorem through a sequence of lemmas in the remainder of this section. First
we recall the following theorem proved in [P1].

Theorem 4. Let η be a geodesic on Dµ(M). If for some point x, the boundary value problem

(8)
d

dt

(
Λ(t, x)

dy

dt

)
+ ω0(x)× dy

dt
= 0, y(a) = 0, y(b) = 0,

has a solution, then η(a) and η(b) are epiconjugate.

Again, by expanding the times slightly we can get the points to be monoconjugate.

Corollary 5. The curve η experiences a conjugate cascade if there is a sequence tn ↗ T such that
for each n, equation (8) has a solution with a = tn and b = tn+1.

Hence the phenomenon is immediately reduced to the oscillation theory of the simple ODE (8). A
system of the form (8) is said to be oscillatory at t = T if there is a sequence tn ↗ T such that there
are solutions for a = tn and b = tn+1 for all n. (For this definition we may have T =∞.)

In what remains we will analyze this ODE in great detail. Since from now on everything happens
at the point x, we will omit reference to it to simplify notation.

First we reduce the three-dimensional system (8) to a two-dimensional system (in the plane orthog-
onal to the vorticity vector).
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Lemma 6. Suppose Λ(t) is a positive-definite symmetric matrix with det Λ(t) ≡ 1, and ω0 is a positive
number. Then the equation

(9)
d

dt

Λ11 Λ12 Λ13

Λ12 Λ22 Λ23

Λ13 Λ23 Λ33

 d

dt

y1

y2

y3

+ ω0

0 −1 0
1 0 0
0 0 0

 d

dt

y1

y2

y3

 =

0
0
0


is oscillatory on [0, T ) if and only if the reduced equation

(10)
d

dt

([
Λ22/Λ33 −Λ12/Λ33

−Λ12/Λ33 Λ11/Λ33

]
d

dt

[
y1

y2

])
+ ω0

[
0 −1
1 0

]
d

dt

[
y1

y2

]
=
[
0
0

]
is oscillatory on [0, T ), where Λij are the components of the inverse of Λ.

Proof. Let 0 ≤ a < b < T . By a well-known general principle (see e.g., Reid [Re]), a self-adjoint system
of the form (9) or (10) has a solution with two zeroes in [a, b] if and only if there is a continuous and
piecewise-differentiable y with y(a) = y(b) = 0, not identically zero, such that the corresponding index
form I(y, y) is nonpositive.

For (9), the index form is

I3(y, y) =
∫ b

a

(
Λ11ẏ

2
1 + Λ22ẏ

2
2 + Λ33ẏ

2
3 + 2Λ12ẏ1ẏ2 + 2Λ13ẏ1ẏ3 + 2Λ23ẏ2ẏ3

+ ω0(y1ẏ2 − y2ẏ1)
)
dt,

(11)

while for (10) the index form is

(12) I2(y, y) =
∫ b

a

(
1

Λ33

(
Λ22ẏ2

1 − 2Λ12ẏ1ẏ2 + Λ11ẏ2
2

)
+ ω0(y1ẏ2 − y2ẏ1)

)
dt.

Completing the square in the first line of (11), we get∫ b

a

(
Λ11ẏ

2
1 + Λ22ẏ

2
2 + Λ33ẏ

2
3 + 2Λ12ẏ1ẏ2 + 2Λ13ẏ1ẏ3 + 2Λ23ẏ2ẏ3

)
dt

=
∫ b

a

[(
Λ11 − Λ2

13
Λ33

)
ẏ2

1 +
(
Λ22 − Λ2

23
Λ33

)
ẏ2

2 + 2
(
Λ12 − Λ13Λ23

Λ33

)
ẏ1ẏ2 + Λ33

(
ẏ3 + Λ12

Λ33
ẏ1 + Λ23

Λ33
ẏ2

)2]
dt.

Now since the determinant of Λ is 1, we easily see that the components of the inverse of Λ are given
by Λ11 = Λ22Λ33 − Λ2

23, Λ22 = Λ11Λ33 − Λ2
13, and Λ12 = Λ13Λ23 − Λ12Λ33. Therefore we have

(13) I3(y, y) = I2(y, y) +
∫ b

a

Λ33

[
ẏ3 + Λ13

Λ33
ẏ1 + Λ23

Λ33
ẏ2

]2
dt.

The last term is clearly nonnegative, so that I2(y, y) ≤ I3(y, y); hence (10) is oscillatory if (9) is.
To prove the other direction, observe by Cauchy-Schwarz that∫ b

a

Λ33

[
ẏ3 + Λ13

Λ33
ẏ1 + Λ23

Λ33
ẏ2

]2
dt ≥

(∫ b

a

Λ13
Λ33

ẏ1 + Λ23
Λ33

ẏ2 dt

)2

/

∫ b

a

dt
Λ33

,

using the fact that y3(a) = y3(b) = 0.
Now if (10) is oscillatory on [0, T ), then given any a ∈ [0, T ) we can find a c > a and a nontrivial

solution ỹ of (10) on [a, c] with ỹ(a) = ỹ(c) = 0. We can also find a b > c and a nontrivial solution y
on [c, b] with y(c) = y(b) = 0. Extend ỹ and y to all of [a, b] by defining ỹ to be zero on [c, b] and y to
be zero on [a, c]. By linearity we can find constants α and β to give a nontrivial linear combination
y := αỹ + βy such that

(14)
∫ b

a

(
ẏ1

Λ13
Λ33

+ ẏ2
Λ23
Λ33

)
dt = 0.
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We now define a third component for y by

y3 = −
∫ t

a

(
ẏ1

Λ13
Λ33

+ ẏ2
Λ23
Λ33

)
dτ,

and (14) ensures y3(a) = y3(b) = 0. We have I2(ỹ, ỹ) = I2(y, y) = 0 and I2(ỹ, y) = 0 on the interval
[a, b], so that by (13) we have

I3(y, y) = I2(y, y) = 0.
Hence equation (9) has a solution with at least two zeroes in [a, b]. �

Now working with (10), define a new time variable s as in (5). Then the index form (12) takes the
form

(15) I2(y, y) = ω0

∫ b

a

(
Φ11(dy1ds )2 + 2Φ12

dy1
ds

dy2
ds + Φ22(dy2ds )2 + y1

dy2
ds − y2

dy1
ds

)
ds,

where

(16) Φ11 =
Λ22

√
Λ33

, Φ12 = − Λ12

√
Λ33

, and Φ22 =
Λ11

√
Λ33

.

Observe that since det Λ = 1, we have Φ11Φ22 − Φ2
12 ≡ 1.

Now set Φ(s) =
[
Φ11 Φ12

Φ12 Φ22

]
and J =

[
0 −1
1 0

]
. Obviously the index form (15) is zero on [a, b] for

some y if and only if the solution of the 2× 2 matrix equation

(17)
d

ds

(
Φ
dY

ds

)
+ J

dY

ds
= 0, Y (a) = 0, Y ′(a) = id

has a solution with det(Y (b)) = 0, since we can then find a vector z0 with Y (b)(z0) = 0; in that case
y(t) = Y (s(t))(z0) is the desired solution of (10).

This leads to a useful criterion in terms of a first-order 2× 2 ODE system.

Lemma 7. Equation (17) is oscillatory at s =∞ if and only if there is a sequence sn ↗∞ such that
the solution of the matrix equation

(18)
dW

ds
+ JΦ(s)−1W (s) = 0

with W (0) = id satisfies

(19) Tr
(
W (sn+1)W (sn)−1

)
= 2

for every n.

Proof. We just define W (s) = Φ(s)Y ′(s). Clearly (17) reduces to (18) under this substitution, with
W (sn) = Φ(sn). On the other hand if we replace only the term in parentheses from (17) with W , we
obtain

dW

ds
+ J

dY

ds
= 0,

from which we obtain
W (sn+1) + JY (sn+1) = W (sn)

since Y (sn) = 0. Since
det(−JY (sn+1)) = −det(Y (sn+1)) = 0,

we see that det(W (sn+1)−W (sn)) = 0.
Now the general formula

d

ds
ln(detW ) = Tr

(
dW

ds
W−1

)
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implies that detW is constant, and since W (sn) = Φ(sn) we see that detW (s) ≡ det Φ(sn) = 1. So
our requirement is that det(W (sn+1)W (sn)−1 − id) = 0.

Now for the matrix A = W (sn+1)W (sn)−1, we know detA = 1, so that if det(A − id) = 0,
the matrix A must have eigenvalue 1 with multiplicity two, which implies TrA = 2 by the Cayley-
Hamilton theorem. This argument can obviously be reversed, so we get a necessary and sufficient
condition (19). �

Now the idea of what we want to do next is the following. Express Φ(s) in terms of its eigenvalues
eλ and e−λ and eigenbasis

(
cos γ − sin γ
sin γ cos γ

)
as

Φ =
[
coshλ+ sinhλ cos 2γ sinhλ sin 2γ

sinhλ sin 2γ coshλ− sinhλ cos 2γ

]
and express W (s) as

W = coshψ
[

cosα sinα
− sinα cosα

]
+ sinhψ

[
cosβ − sinβ
− sinβ − cosβ

]
.

Then equation (18) takes the form

dα

ds
= coshλ− sinhλ tanhψ cos (α+ β + 2γ),(20)

dβ

ds
= coshλ− sinhλ cothψ cos (α+ β + 2γ),(21)

dψ

ds
= − sinhλ sin (α+ β + 2γ).(22)

We observe that α is strictly increasing, and since the trace condition (19) translates into

(23) coshψ(sn+1) coshψ(sn) cos [α(sn+1)− α(sn)]

− sinhψ(sn+1) sinhψ(sn) cos [β(sn+1)− β(sn)] = 1,

it is easy to see that lims→∞ α(s) =∞ is sufficient for a conjugate cascade. Hence if a cascade doesn’t
happen, we must have ∫ ∞

0

[
coshλ− sinhλ tanhψ cos (α+ β + 2γ)

]
ds <∞.

Roughly speaking, this should imply that |λ| → ∞, |ψ| → ∞, and α+ β + 2γ → nπ for some integer
n. Thus both α and β roughly converge, and thus so does γ.

These statements are not quite correct since
∫∞

0
|f(s)| ds <∞ does not imply f(s)→ 0 as s→∞,

but we can still get convergence in an average sense. The other problem is that the variables γ and β
are not well-defined when Φ or W happens to be the identity, while λ and ψ are not smooth at such
times. Hence we will work directly with the components of Φ and W , although we always have the
trigonometric coordinates in mind.

With that said, we now write

(24) Φ =
[
p+ r q
q p− r

]
and W =

[
a+ c b+ d
d− b a− c

]
,

where a, b, c, d, p, q, r are all smooth functions of the rescaled time parameter s. The conditions det Φ ≡
1 and detW ≡ 1 imply

(25) p2 = 1 + q2 + r2 and a2 + b2 = 1 + c2 + d2.
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Theorem 8. Suppose η is a geodesic in Dµ(M) satisfying Assumption 1 which does not experience a
conjugate cascade as t↗ T .

Then there is a basis {e1, e2, e3} of TxM such that, in terms of the new time variable s defined by
(5), and the variables p, q, r defining Φ in (24), we have

(26)
∫ ∞

0

p−
√
p2 − 1 ds <∞

as well as

(27) lim
Σ→∞

∫ Σ

0

[√
q2 + r2 − r

]
ds∫ Σ

0

[√
q2 + r2

]
ds

= 0.

Proof. Set

(28) f = 2(ad− bc), g = 2(ac+ bd), h = a2 + b2 + c2 + d2,

where a, b, c, d are the components of W as in (24). Then equation (25) implies

h2 = 1 + f2 + g2.

We compute that
da
ds = −pb− qc+ rd, db

ds = pa− rc− qd,
dc
ds = −qa− rb+ pd, dd

ds = ra− qb− pc.
(29)

Now equation (25) implies that a2 + b2 6= 0 for all time, and hence the functions ρ =
√
a2 + b2 and α

defined by ρ cosα = a and ρ sinα = b are well-defined and smooth for all time. (We set α(0) = 0 to
normalize, since a(0) = 1 and b(0) = 0.)

Equations (29) imply that
dα

ds
=
aḃ− bȧ
a2 + b2

= p− qf + rg

2(a2 + b2)
,

using (28). Now 2(a2 + b2) = h+ 1, so we get

dα

ds
= p− qf + rg

h+ 1
= p−

√
p2 − 1 +

√
q2 + r2 − qf + rg

h+ 1

=
(
p−

√
p2 − 1

)
+
√
q2 + r2

(
1−

√
h−1
h+1

)
+

√
(q2 + r2)(f2 + g2)− (qf + rg)

h+ 1
.

(30)

Clearly each term of (30) is nonnegative, with the first and second being strictly positive. So α
is strictly increasing. We next want to show that if α approaches infinity, then there is a conjugate
cascade.

We compute that the trace condition (19) is equivalent to

a(sn)a(sn+1) + b(sn)b(sn+1)− c(sn)c(sn+1)− d(sn)d(sn+1) = 1,

which in terms of ρ and α is equivalent to F (sn+1) = 1 where

F (s) = ρ(s)ρ(sn) cos
(
α(s)− α(sn)

)
− 〈φ(sn), φ(s)〉,

with φ(s) = (c(s), d(s)). Observe that

|φ(s)| =
√
c(s)2 + d(s)2 =

√
ρ(s)2 − 1.

Now if lims→∞ α(s) = +∞, then we can choose s′ > sn such that α(s′) = α(sn) + 2π, and get
that F (s′) ≥ ρ(s)ρ(sn) −

√
(ρ(s)2 − 1)(ρ(sn)2 − 1) ≥ 1. We can also choose s′′ > sn such that

α(s′′) = α(sn) + π, so that F (s′′) ≤ −ρ(s)ρ(sn) +
√

(ρ(s)2 − 1)(ρ(sn)2 − 1) ≤ −1. So between s′′ and
s′ there is a solution sn+1 of F (sn+1) = 1.
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Note that the inequalities on F follow from
√

(1 + x2)(1 + y2) − xy ≥ 1, which follows from the
Cauchy-Schwarz inequality in the form 1 + 2xy + x2y2 ≤ 1 + x2 + y2 + x2y2.

Hence if η does not experience a conjugate cascade, then lims→∞ α(s) < ∞, which implies that
each of the three nonnegative terms in (30) has a finite integral. Thus we get (26), in addition to

(31)
∫ ∞

0

√
q2 + r2

(
1−

√
h− 1
h+ 1

)
ds <∞

and

(32)
∫ ∞

0

1
h+ 1

(√
(q2 + r2)(f2 + g2)− (qf + rg)

)
ds <∞.

We first explore the consequences of (31). Define λ(s) ≥ 0 by
√
p2 − 1 = sinhλ. Then λ is certainly

continuous, and we have p = coshλ, so that (26) says that

(33)
∫ ∞

0

e−λ(s) ds <∞.

Hence (31) says that ∫ ∞
0

(eλ − e−λ)u ds <∞,

where u = 1 −
√

h−1
h+1 . Now since 0 < u ≤ 1, we already know that

∫∞
0
e−λu ds < ∞, so (31) really

tells us that
∫∞

0
eλu ds < ∞. Now (33) implies that

∫∞
0
eλ(s) ds = ∞, so if we define a new rescaled

time variable by dσ = eλ(s) ds, then σ →∞ as s→∞. So (31) can be written as

(34)
∫ ∞

0

u(σ) dσ <∞.

We can compute using (29) that dh
ds = 2(rf − qg), so that using h2 − 1 = f2 + g2 we get

(35)
∣∣∣∣dudσ

∣∣∣∣ = |2u− u2| |rf − qg|√
(f2 + g2)(q2 + r2)

≤ 1.

It is easy to see that (34) and (35) together imply that limσ→∞ u(σ)↘ 0, and hence that lims→∞ u(s)↘
0. Since h(s) = 1

u(s) + 1
2−u(s) − 1, we see that lims→∞ h(s) = +∞.

Finally we look at the consequence of (32). Our method is inspired by Hartman [H], Lemma 7.1.
Since lims→∞ h(s) = ∞, there is some L such that h(s) > 1 for s > L; in particular f2 + g2 > 0, so
that it makes sense to define ξ for s > L by f√

f2+g2
= cos ξ and g√

f2+g2
= sin ξ, and this ξ is smooth

on (L,∞). It is easy to compute that

dξ

ds
= 2p− 2h(qf + rg)

h2 − 1
= 2p− 2h√

h2 − 1
(qf + rg),

where f = f√
f2+g2

and g = g√
f2+g2

. Now we have

dξ

ds
≤ 2
[
p−

√
p2 − 1

]
+ 2

[( h√
h2 − 1

− 1
)

(qf + rg)
]

+
[√

q2 + r2 − (qf + rg)
]
,

and we know that each of the terms is (absolutely) integrable. Thus lims→∞ ξ(s) exists. In particular
lims→∞ f(s) and lims→∞ g(s) exist. Now we never specified the specific directions of {e1, e2} (the basis
of the orthogonal complement of ω0(x)), so we might as well now rotate them so that lims→∞ f(s) = 0
and lims→∞ g(s) = 1.
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Now from (32), using (31), we can easily show that

(36)
∫ ∞
L

[√
q2 + r2 − (qf + rg)

]
ds <∞.

Now write for any Σ > L∫ Σ

L

[√
q2 + r2 − (qf + rg)

]
ds∫ Σ

L

√
q2 + r2 ds

+

∫ Σ

L

[
qf + r(g − 1)

]
ds∫ Σ

L

√
q2 + r2 ds

=

∫ Σ

L

[√
q2 + r2 − r

]
ds∫ Σ

L

√
q2 + r2 ds

.

Since
√
q2 + r2 = sinhλ and

∫∞
0
eλ ds =∞, we know the denominator approaches infinity as Σ→∞.

The second quotient approaches zero as Σ → ∞ since f → 0 and g → 1, while the first quotient
approaches zero because of (36). We therefore conclude that

lim
Σ→0

∫ Σ

L

[√
q2 + r2 − r

]
ds∫ Σ

L

√
q2 + r2 ds

= 0.

Because of this, and because limΣ→∞
∫ Σ

0

√
q2 + r2 ds =∞, we also have (27). �

Finally we translate the results of Theorem 8 into the original time variable and in terms of more
easily measured quantities.

Corollary 9. Suppose η is a geodesic in Dµ(M) satisfying Assumption 1. If η does not experience
a conjugate cascade, then there is an oriented orthonormal basis {e1, e2, e3} of TxM such that ω0(x)
is parallel to e3, and the components Λij of Λ = (Dη)T(Dη) and the components Λij of its inverse
satisfy the following:

(37)
∫ T

0

Λ33(τ)
Λ11(τ) + Λ22(τ)

dτ <∞

and

(38) lim
t→T

∫ t
0

Λ11(τ) dτ∫ t
0

Λ22(τ) dτ
= 0.

Proof. By (16) and (24), we have

p =
Λ11 + Λ22

2
√

Λ33

,

and using ds = ω0

√
Λ33 dt, the inequality (26) becomes∫ T

0

(
Λ11 + Λ22 −

√
(Λ11 + Λ22)2 − 4Λ33

)
dt <∞.

Rationalizing, we get ∫ T

0

Λ33

Λ11 + Λ22 +
√

(Λ11 + Λ22)2 − 4Λ33

dt <∞,

so that in particular the integral (37) is finite.
We can replace the term

√
q2 + r2 appearing in (27) with p, since the integral of p −

√
q2 + r2 is

finite by (26). So (27) becomes

lim
Σ→∞

∫ Σ

0
(p− r) ds∫ Σ

0
(p− r) + (p+ r) ds

= 0.
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The only way this can happen is if

lim
Σ→∞

∫ Σ

0
(p− r) ds∫ Σ

0
(p+ r) ds

= 0,

which after changing the time variable is equivalent to (38). �

Notice that a conjugate cascade is closely related to the uniqueness problem for minimizers in the
space of volume-preserving maps (VPM). The general minimization problem on VPM was proposed by
Brenier [B1] and has been studied further by him [B2], Shnirelman [Sh2], and Ambrosio-Figalli [AF].
The space VPM is the closure in the L2 topology of the volumorphism group, and is a metric space in
this topology. If we think of VPM as a closed subset of the space of all L2 maps from M3 to itself, we
can find a Hölder-type bound on the intrinsic distance in VPM in terms of the extrinsic L2 distance
by dVPM(η, ξ) ≤ C(dL2(η, ξ))α for some α < 1. (These results were proved by Shnirelman [Sh1].) A
local uniqueness result for minimizing paths in the L2 topology of VPM would immediately preclude
a conjugate cascade, since the intrinsic L2 distance between successive conjugate point locations goes
to zero by the above Hölder estimate, while the geodesic is non-minimizing on any interval [b, T ] for
b < T . As of this writing, such a local uniqueness result is unknown.
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