
ON THE VOLUMORPHISM GROUP,
THE FIRST CONJUGATE POINT IS ALWAYS THE HARDEST

STEPHEN C. PRESTON

Abstract. We find a simple local criterion for the existence of conjugate points on
the group of volume-preserving diffeomorphisms of a 3-manifold with the Riemannian
metric of ideal fluid mechanics, in terms of an ordinary differential equation along each
Lagrangian path. Using this criterion, we prove that the first conjugate point along a
geodesic in this group is always pathological: the differential of the exponential map
always fails to be Fredholm.

1. Introduction

The theory of ideal (inviscid) incompressible fluid mechanics is one of the most math-
ematically beautiful theories in physics. This is partly because one does not need any
parameters to describe the system: as soon as one has a compact Riemannian manifold
M , possibly with boundary, one can construct the volume-preserving diffeomorphism
group Dµ(M), and on this infinite-dimensional manifold define a Riemannian metric
using the kinetic energy integral. Arnold [A] showed that the geodesics of this metric
on Dµ(M) are precisely the ideal incompressible fluid flows on M , in the Lagrangian
coordinate description. Thus, once one gets past the fairly serious technical issues of
functional analysis involved in constructing a topology on Dµ(M) and proving that
the geodesic equations are well-posed (as accomplished by Ebin and Marsden [EMa]),
one has essentially reduced much of ideal fluid mechanics to a study of geometry. Of
course, this does not automatically solve the outstanding problems of fluid mechanics,
but it does give a different context to them.

For example, the most significant open problem of ideal fluid dynamics is global
existence of solutions in a 3-manifold. From the geometric point of view, this is precisely
geodesic completeness. We may thus hope that a better understanding of the geometry
of Dµ(M) may help in clarifying this problem, or in suggesting new techniques for
its solution. Researchers are only beginning to develop this subject, although much
progress has been made in recent years, and it is likely to remain an interesting field
of study for some time to come.

Conjugate points on Dµ(M) have been of interest ever since Arnold [A] computed
the sectional curvature on Dµ(T2), found that it was usually negative but sometimes
positive, and asked whether one could find conjugate points. Computational difficulties
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prevented much progress in this direction, until Misio lek [M1] proved that one could
construct some simple examples of conjugate points in Dµ(S3) along geodesics corre-
sponding to rigid rotations of the 3-sphere. Here, positive curvature on the underlying
manifold M helps one obtain positive curvature on Dµ(M), which leads to the conju-
gate points. More surprisingly (and far more difficult computationally), Misio lek [M2]
showed that conjugate points exist on Dµ(T2), using an example similar to the one
about which Arnold had asked.

Since the work of Misio lek, substantial progress has been made in understanding
conjugate points on Dµ(M). For example, Shnirelman [Sh] proved that the diameter of
Dµ(M3) is finite for any 3-D manifold M , and using this result and the generalized flows
of Brenier [B], showed that there must be “local cut points” along any sufficiently long
geodesic in Dµ(M3): that is, there is an arbitrarily close path joining the two points
which is strictly shorter. In finite dimensions, such points must be conjugate; on the
infinite-dimensional manifold Dµ(M3), this is not necessarily true. No such result is
possible in the 2-D case, since the diameter of Dµ(M2) is infinite.

More recently, Ebin, Misio lek, and the author [EMP] studied the nature of the
differential of the exponential map. Singularities of d exp are precisely the conjugate
points, so the nature of conjugate points tells us much about the structure of the
exponential map. The map d exp is a mapping from one infinite-dimensional space
to another, and its singularities may be of two types: failure to be injective, and
failure to be surjective. (For finite-dimensional mappings, both types always coincide.)
Grossman [G] called these singularities monoconjugate points and epiconjugate points,
respectively. The authors of [EMP] showed that in Dµ(M2), both types of conjugate
points coincide and are of finite order, because the exponential map is Fredholm.

On the other hand, [EMP] also showed that in Dµ(M3), it is possible to have an
epiconjugate point that is not a monoconjugate point. Their explicit example is the
solid flat torus D2 × S1, where the geodesic η is rigid, unit speed rotation of the disc.
Here η(π) is the first conjugate point; it is epiconjugate but not monoconjugate. In
addition, for every ε > π, there is a to ∈ (π, π + ε) such that η(to) is monoconjugate
to η(0). The present research will demonstrate that this phenomenon is actually quite
typical on three-manifolds. So the structure of conjugate points on Dµ(M3) is in
general much more complicated than on Dµ(M2) or on a finite-dimensional Riemannian
manifold.

In Section 3, we explain why it has often been easier to find conjugate points in three
dimensions than in two. It turns out that one can construct local approximations of
Jacobi fields supported near any point in three dimensions, and use these to search for
genuine Jacobi fields. In Theorem 3.1, we prove that one can construct a divergence-
free vector field in a neighborhood of any Lagrangian path interior to M3, such that
the index form along a geodesic in Dµ(M3) can be approximated by a corresponding
index form along this path. (This construction is not possible on a two-dimensional
manifold.) The approximate index form comes from the following simple equation
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along a Lagrangian path:

(1.1)
D2y

dt2
+ R(y, η̇)η̇ +∇y∇p = 0.

Here p is the pressure function, and the path η(t)(x) in the interior of M satisfies the
Lagrangian form of the ideal fluid equation:

(1.2)
D

dt
η̇ = −∇p.

Equation (1.1) is simply the linearization in M3 of the equation (1.2). If equation (1.1)
has a solution y(t) vanishing at times t = 0 and t = a, then the geodesic η has a Jacobi
field vanishing at t = 0 and some t = b, with b arbitrarily close to a.

The criterion of Theorem 3.1 yields a very simple condition for conjugate points,
which is easiest to apply when we are dealing with a steady solution X of the 3-D
Euler equations. We find that for any steady solution X with a certain type of fixed
point at some x (for example, an elliptic fixed point), there must be a monoconjugate
point somewhere along the geodesic, and we can compute its location in terms of
∆p(x). This is a purely three-dimensional phenomenon: in two dimensions, there are
many steady flows that have elliptic fixed points but do not have any conjugate points
along the corresponding geodesic, because the curvature operator is nonpositive in all
directions. See [P2] for details.

Although Theorem 3.1 applies only in three (or possibly higher) dimensions, it has a
sort of converse that is true in dimension two or higher. This converse, Proposition 3.6,
states that if a geodesic has a monoconjugate point at η(a) for some t = a, then along
some Lagrangian path, the equation (1.1) must have a solution vanishing at t = 0 and
some t = α ≤ a. We apply this for some simple two-dimensional flows (rotational fields
on rotationally-symmetric surfaces) and obtain a new criterion for them not to have
monoconjugate points. A previous result of the author [P2] gives a different criterion,
and we show that the two criteria are distinct with examples.

The results of Theorem 3.1 and Proposition 3.6 are quite reminiscent of the results of
Friedlander and Vishik [FV], though the method of proof is very different. They found
ordinary differential equations such that exponential growth of their solutions implies
exponential growth of linearized Euler perturbations, and hence of Jacobi fields along
geodesics. Our result on conjugate points is loosely related to positive curvature on Dµ,
while their result on exponential growth of Jacobi fields is loosely related to negative
curvature on Dµ. But although the connection between curvature and Jacobi fields is
subtle (as discussed in [P1]), both results show that the most important features of
Jacobi fields in Dµ(M3) are determined by certain ordinary differential equations along
an arbitrary Lagrangian path.

Theorem 3.1 implies that the first conjugate point along a geodesic in Dµ(M3) is
always pathological: we prove in Theorem 4.3 that the differential of the exponen-
tial map has either infinite-dimensional kernel or does not have closed range in the
L2 topology. (If M is a surface, the differential of the exponential map always has
both finite-dimensional kernel and closed range, by the Fredholmness result of [EMP].
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This is a very striking and surprising difference between two-dimensional and three-
dimensional fluid mechanics.) A complete classification of the possible behaviors at
the first conjugate point would be quite interesting.

Finally we give an example of a geodesic in Dµ(M3) such that monoconjugate points
are all of infinite order and dense in an interval. Misio lek [M1] showed that if X is a
unit-length left-invariant vector field on S3, then the corresponding geodesic η has a
Jacobi field vanishing at t = 0 and t = π. We compute all of the monoconjugate point
locations (using a basis of curl eigenfields on S3 constructed by Jason Cantarella),
and find that they occur at all rational multiples of π greater than or equal to π
itself. Furthermore, each one has infinite order. By a result of Biliotti et al. [BEPT],
we conclude that for every τ ∈ [π,∞), the point η(τ) is epiconjugate to η(0). This
example and the one in [EMP] give us explicit and natural examples of the sorts of
pathological conjugate points first described by Grossman [G] in infinite-dimensional
geometry, and recently explored in more depth by [BEPT].

2. Background

In this section, we briefly review the geometry of the volumorphism group Dµ(M).
Many of the formulas provided here for covariant derivatives, curvature operators, and
the index form were derived in [M1], [P1], and [EMP]. We will confine ourselves to
the C∞ case, even though for some technical proofs it is more convenient to use the
Sobolev Hs spaces. See Ebin and Marsden [EMa] for the precise constructions.

The space of volumorphisms Dµ(M) of a Riemannian manifold M (possibly with
boundary ∂M) consists of those C∞ diffeomorphisms η satisfying η∗µ = µ, where µ is
the Riemannian volume form. This space has the structure of a Fréchet manifold. Its
tangent spaces TηDµ(M) consist of elements of the form X◦η, where X is a vector field
on M that is divergence-free and tangent to the boundary. The L2 Riemannian metric
〈〈·, ·〉〉 on Dµ(M) is defined in terms of the metric 〈·, ·〉 on M by the formula

(2.3) 〈〈U ◦η, V ◦η〉〉 =

∫
M

〈U, V 〉◦η µ.

Dµ(M) also has a Lie group structure, where the group operator is composition. The
differentials of the translation operators at the identity are

(2.4) dLη(X) = Dη(X) and dRη(X) = X◦η.

By the change of variables formula for integrals, and the fact that each η is volume-
preserving, we see that the metric (2.3) is right-invariant. It is not, however, left-
invariant. In some sense, then, all the geometric information about Dµ(M) is contained
in the left-translations.

To compute covariant derivatives in the metric (2.3), we use the Weyl decomposition
of vector fields. This decomposition allows us to write any vector field X on a manifold
M as

X = U +∇f,
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where U is divergence-free and tangent to ∂M . We construct this decomposition by
solving the Neumann problem

(2.5) ∆f = div X, 〈∇f, ν〉∂M = 〈X, ν〉∂M

for f , then defining U := X −∇f . (Here ν is the unit normal on ∂M .) This decompo-
sition is orthogonal in the L2 metric (2.3). We will denote the orthogonal projections
by

(2.6) P (X) = U and Q(X) = ∇f.

By right-invariance of the metric, the orthogonal projections in TηDµ(M) are given
by

(2.7) Pη = dRη ◦ P ◦ dRη−1 and Qη = dRη ◦Q ◦ dRη−1 .

Now we consider covariant derivatives.

Proposition 2.1. Suppose η(t) is a curve in Dµ(M), and J(t) is a vector field along
η(t). Let X(t) be the Eulerian velocity field of η, defined by the formula

(2.8) X(t) = dRη(t)−1

(dη

dt

)
=

∂η

∂t
◦ η(t)−1.

If we right-translate back to the identity to obtain Y (t) = dRη(t)−1

(
J(t)

)
, the covari-

ant derivative can be computed using

(2.9)
D̃J

dt
= dRη(t)

(
∂Y

∂t
+ P

(
∇X(t)Y (t)

))
.

Proof. Formula (2.9) is a consequence of the formula

(2.10)
DJ

dt
(t, x) =

∂Y

∂t

(
t, η(t, x)

)
+∇X(t,η(t,x))Y,

where the covariant derivative of J is computed along each path t 7→ η(t, x); this just
comes from the Chain Rule on M . Projecting both sides of (2.10) onto TηDµ(M), we
obtain (2.9). A more detailed derivation is given in [M1]. �

The geodesic equation on Dµ(M) is

D̃

dt

dη

dt
= 0, η(0) = id, η̇(0) = Xo.

Using equation (2.9), the geodesic equation becomes, in terms of the Eulerian velocity
field X(t) defined by (2.8), the Euler equation of ideal incompressible flow:

(2.11)
∂X

∂t
+∇X(t)X(t) = −∇p(t), X(0) = Xo.

The pressure function p(t) is written with a negative sign by convention, and comes
from solving the equation (2.5):

(2.12) ∇p(t) = −Q
(
∇X(t)X(t)

)
.
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The flow equation (2.8) can always be solved for η, with initial condition η(0) = id,
and this gives a one-to-one correspondence between solutions of (2.11) and geodesics
starting at the identity. We will assume that η(0) = id from now on; by right-invariance,
this is no loss of generality.

By formula (2.10), we may also think of the geodesic equation as a family of ordinary
differential equations on the manifold:

(2.13)
D

dt

dη

dt
(t, x) = −∇p(t, x),

which is Newton’s equation with a time-dependent potential p(t, x). Of course, p(t, x)
is not given in advance, but determined by the fluid so as to preserve volume. This
point of view will be useful later; we will see how one can consider the full linearized
geodesic equation on Dµ(M) by comparing it to the far simpler linearized Newton
equation on M . Although these equations are not the same (when one is considering
perturbations in M , one does not have the volume-preserving constraint to complicate
the formulas), they are quite closely related.

We can eliminate the pressure term in (2.11) by computing the curl of both sides.
In three dimensions, we get the vorticity form of the Euler equation:

(2.14)
∂

∂t
curl X(t, x) +

[
X(t, x), curl X(t, x)

]
= 0.

Equation (2.14) implies that the vorticity is transported by the flow: for every x ∈ M ,

(2.15) curl X
(
t, η(t, x)

)
= Dη(t, x)

(
curl Xo(x)

)
.

More generally, by lowering indices in equation (2.11) to get an equation for the 1-form
X[ and taking the differential, we obtain the equation

(2.16)
∂

∂t
dX[ + LXdX[ = 0,

the solution of which is

(2.17) dX[(t) =
(
η(t)−1

)∗
dX[

o.

See for example [AK] for details.

There are several formulas for the Riemann curvature tensor R̃ on Dµ(M), but the
only one we’ll need is the following: if U , V , and W are divergence-free and tangent
to the boundary, then

(2.18) R̃(U, V )W = P
(
R(U, V )W +∇V Q(∇UW )−∇UQ(∇V W )

)
.

See for example [P1]. Since the metric is right-invariant, the curvature tensor is as well,
and thus we can compute the curvature at any η ∈ Dµ(M) using the same formula.

We are interested in Jacobi fields, which are defined as follows: if η(t, s) is a family
of curves in Dµ(M) with η(t) = η(t, 0) a geodesic, then J(t) = ∂η

∂s

∣∣
s=0

is a Jacobi field
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along η(t). Jacobi fields satisfy the linearized geodesic equation

(2.19)
D̃2J

dt2
+ R̃

(
J(t), η̇(t)

)
η̇(t) = 0.

Equation (2.19) is extremely unwieldy, not least because the formulas for both cur-
vature and the covariant derivative involve nonlocal operators (specifically, the solution
of the Neumann problem (2.5)). However, the Jacobi equation can be simplified sub-
stantially, and in fact decoupled into two first-order equations. This fact was first
observed by Rouchon [Ro], and exploited by the author [P1] to obtain explicit Jacobi
fields along certain geodesics of Dµ(M). These simplifications result from the following
equivalent expressions for the linearization of the Newton equation (2.13).

Proposition 2.2. Consider a solution X(t) of the Euler equation (2.11), with cor-
responding geodesic η(t) in Dµ(M). Let J(t) be a vector field along η(t). Then we
have

(2.20)
D2J

dt2
+∇J∇p + R(J, η̇)η̇ =

(∂Z

∂t
+∇XZ +∇ZX

)
◦ η,

where

(2.21) Z =
∂Y

∂t
+ [X, Y ]

and J = Y ◦ η.
We can also write

(2.22)
D2J

dt2
+∇J∇p + R(J, η̇)η̇ = (Dη−1)?

(
∂

∂t

(
ΛV

)
+

(
ıV dX[

o

)]
)

,

where V = ∂tU and J = Dη(U). Here (Dη−1)? is the pointwise metric adjoint of Dη−1,
and Λ = Dη?Dη is the metric pullback, a positive-definite linear operator on each
TxM . In addition, (ıV dX[

o)] is a vector field satisfying 〈(ıV dX[
o)], F 〉 = dX[

o(V, F ) =
〈∇V Xo, F 〉 − 〈∇F Xo, V 〉 for any vector field F .

Proof. To obtain equation (2.20), we start with

DJ

dt
= (∂tY +∇XY )◦η = (Z +∇Y X)◦η,

a consequence of (2.10). Using the Euler equation (2.11), we have(D2J

dt2
+∇J∇p + R(J, η̇)η̇

)
◦η−1 =

D

dt

(
(Z +∇Y X)◦η

)
◦η−1 +∇Y∇p + R(Y, X)X

= ∂t(Z +∇Y X) +∇X(Z +∇Y X)−∇Y (∂tX +∇XX) + R(Y, X)X

= ∂tZ +∇∂tY X +∇Y (∂tX) +∇XZ +∇X∇Y X −∇Y (∂tX)−∇Y∇XX

+∇Y∇XX −∇X∇Y X +∇[X,Y ]X

= ∂tZ +∇ZX +∇XZ.
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To derive equation (2.22), we first recall that Y = η∗U . By the definition of the Lie
bracket (see for example Spivak [Sp]), we have

(2.23) η∗
∂

∂t
η−1
∗ Y =

∂Y

∂t
+ [X, Y ].

Thus Z = η∗V . For convenience, define L = Z ◦ η = Dη(V ).
Then by equations (2.20) and (2.10), our goal becomes to prove that

(2.24)
DL

dt
+∇LX = (Dη−1)?

(
∂

∂t

(
ΛV

)
+

(
ıV dX[

o

)]
)

.

This equation involves no space derivatives, so we can consider it as an equation along
the fixed curve η(t, x) for each particular x ∈ M .

So for some fixed x, pick an arbitrary vector wo ∈ TxM . Then we can compute

(2.25)
〈
wo,

d

dt
(ΛV )

〉
=

d

dt
〈wo, ΛV 〉 =

d

dt
〈Dη(wo), L〉.

By equations (2.23) and (2.10), we can compute that

D

dt

(
Dη(wo)

)
= ∇Dη(wo)X.

Thus (2.25) yields〈
wo,

d

dt
(ΛV )

〉
=

〈
∇Dη(wo)X, L

〉
+

〈
Dη(wo),

DL

dt

〉
=

〈
∇Dη(wo)X, L

〉
−

〈
Dη(wo),∇LX

〉
+

〈
Dη(wo),

DL

dt
+∇LX

〉
.

Using the general formula

〈∇AX, B〉 − 〈∇BX, A〉 = dX[(A, B),

we can write〈
wo,

d

dt
(ΛV )

〉
=

〈
Dη(wo),

DL

dt
+∇LX

〉
− dX[

(
Dη(V ), Dη(wo)

)
.

Now since the vorticity 2-form is transported by the flow, equation (2.17) yields

dX[
(
Dη(V ), Dη(wo)

)
= dX[

o(V, wo) = 〈
(
ıV dX[

o

)]
, wo〉.

Thus we finally get〈
wo,

d

dt
(ΛV )

〉
=

〈
Dη(wo),

DL

dt
+∇LX

〉
− 〈

(
ıV dX[

o

)]
, wo〉,

and since this is true for any wo ∈ TxM , we have the equation

Dη?
(DL

dt
+∇LX

)
=

d

dt
(ΛV ) +

(
ıV dX[

o

)]
,

which yields (2.24) and hence (2.22). �

The following proposition shows how the Jacobi equation simplifies under either left-
or right-translations.



THE FIRST CONJUGATE POINT 9

Proposition 2.3. If η is a geodesic in Dµ(M) and X is its Eulerian velocity field
defined by (2.8), then the Jacobi operator in (2.19) can be written in two ways:

• in terms of the right-translation, with Y = dRη−1(J), as

(2.26)
D̃2J

dt2
+ R̃

(
J, η̇

)
η̇ = dRη

(
∂Z

∂t
+ P

(
∇ZX +∇XZ

))
,

where

Z = ∂tY + [X, Y ].

• in terms of the left-translation, with U = dLη−1

(
J
)
, as

(2.27)
D̃2J

dt2
+ R̃

(
J, η̇

)
η̇ = (dLη−1)?

(
∂

∂t
P

(
Λ

∂U

∂t

)
+ KXo

(∂U

∂t

))
,

where the operator KXo : TidDµ(M) → TidDµ(M) is defined by

(2.28) KXo(W ) = P
(
ıW dX[

o

)]
,

with Λ = Dη?Dη being the metric pullback, Xo being the initial velocity field,
and

(dLη−1)? = dRη◦P ◦(Dη−1)?◦dRη−1

being the L2 adjoint of the operator dLη−1 : TidDµ → Tη−1Dµ.

Proof. The right-translated Jacobi equation (2.26) was derived by Rouchon [Ro], by
linearizing the geodesic equation (2.11) and (2.8) directly. The fact that (2.26) is
equivalent to (2.19) can be seen directly, using formulas (2.9) and (2.18).

Equation (2.27) is a consequence of (2.22), along with the observation that for any
vector field W , we have (dLη−1)?(W ) = (dLη−1)? ◦ P (W ). This observation follows
from the fact that if g is any function on M , then

(dLη−1)?(∇g) = dRη◦P ◦(Dη−1)?◦dRη−1(∇g) = dRη◦P
(
∇(g◦η−1)

)
= 0,

so that (dLη−1)? ◦Q ≡ 0. �

The operator KXo defined by (2.28) is given in two dimensions by

KXo(W ) = P
(
(curl Xo)?W

)
,

where ? is the two-dimensional Hodge star operator that rotates vectors 90◦. This
operator is compact, as discussed in [EMP]. In three dimensions,

KXo(W ) = P
(

curl Xo ×W
)
,

and this operator is generally not compact. The fact that this operator fails to be
compact in three dimensions is the main reason Fredholmness of the exponential map
fails in three dimensions, which is why conjugate points look so different between
Dµ(M2) and Dµ(M3).
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The main thing we are interested in for this paper is the index form along a geodesic
η(t) in Dµ(M). In general this is defined for a Riemannian manifold as

(2.29) Ia

(
J(t), J(t)

)
=

∫ a

0

〈〈D̃J

dt
,
D̃J

dt

〉〉
−

〈〈
R̃

(
J(t),

dη

dt

)dη

dt
, J(t)

〉〉
dt.

The index form represents the second derivative of the energy functional

E(s) =
1

2

∫ a

0

〈〈∂η(t, s)

∂t
,
∂η(t, s)

∂t

〉〉
dt.

If η(t, s) is a family of curves in Dµ(M), such that η(t, 0) is a geodesic, with η(0, s) and
η(a, s) constant in s, then E ′(0) = 0 and

E ′′(0) = Ia

(∂η

∂s

∣∣∣
s=0

,
∂η

∂s

∣∣∣
s=0

)
.

So if the index form is negative for some vector field J(t) vanishing at t = 0 and t = a,
then the geodesic is not minimizing on [0, a]. In addition, there must be a Jacobi field
which vanishes at t = 0 and t = b for some b ∈ (0, a).

We will derive an alternative formula for the index form (2.29), which will form the
basis for the rest of the paper.

Proposition 2.4. If η(t) is a geodesic in Dµ(M) and J(t) is a smooth vector field
along η(t) vanishing at t = 0 and t = a, then the index form Ia

(
J(t), J(t)

)
may be

written in terms of the left-translation U(t) = dLη(t)−1

(
J(t)

)
as

(2.30) Ia

(
J(t), J(t)

)
=

∫ a

0

∫
M

〈
Λ(t, x)

∂U

∂t
(t, x),

∂U

∂t
(t, x)

〉
+ dXo(x)[

(
U(t, x),

∂U

∂t
(t, x)

)
µ(x) dt,

where Λ(t, x) = Dη(t, x)?Dη(t, x) is the metric pullback and dX[
o is the initial vorticity

2-form.

Proof. The formula follows immediately from Proposition 2.3, after integrating the
index form (2.29) by parts to obtain

Ia

(
J(t), J(t)

)
= −

∫ a

0

〈〈D̃2J

dt
+ R̃

(
J(t),

dη

dt

)dη

dt
, J(t)

〉〉
dt.

�

What is remarkable about the formula (2.30) is that it involves only local compu-
tations; it is not necessary to solve the Neumann problem (2.5) to compute the index
form. The index form is virtually the only object in the geometry of Dµ that can be
computed so easily, and it is this fact which helps so much to understand conjugate
points on Dµ, despite our very incomplete understanding of the curvature on Dµ.

The main reason we use left translations to write the index form (2.30) is that it
yields an index form in each tangent space TxM , so that we can study the differential
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equation in a single vector space rather than along a Lagrangian path. However, the
two approaches are equivalent.

3. The local criterion

Theorem 3.1. Let M be a 3-dimensional compact manifold (possibly with boundary).
Let η : [0, T ) → Dµ(M) be a geodesic curve in the diffeomorphism group with η(0) = id.

(Here T is the maximal time of existence, which may be infinite.) Let X(t) = dη
dt
◦η(t)−1

be the velocity field, with X(0) = Xo.
If for some point x in the interior of M , the ordinary differential equation

(3.31)
d

dt

(
Λ(t, x)

du

dt

)
+ curl Xo(x)× du

dt
= 0

has a nontrivial solution vanishing at t = 0 and t = a, then for any δ > 0, there is a
b ∈ (0, a + δ) such that η(b) is monoconjugate to id along η.

Proof. Clearly curl Xo(x) is not zero; if it were, we could not have a nontrivial solution
vanishing at two points, since Λ(t, x) is positive definite.

So set up an oriented orthonormal basis {e1, e2, e3} at TxM , such that curl Xo(x) =
ωoe3, with ωo > 0. Choose Riemannian normal coordinates (x1, x2, x3) in a neighbor-
hood of x interior to M , such that at x, ∂x1 = e1, ∂x2 = e2, and ∂x3 = e3. Let h : R → R
be a nontrivial C∞ function which vanishes identically outside [−1, 1].

For a small ε > 0, let us define three vector fields

A1 = ε4h′
(x1

ε

)
h
(x2

ε2

)
h
(x3

ε3

)
∂x1 − ε3h

(x1

ε

)
h′

(x2

ε2

)
h
(x3

ε3

)
∂x2 ,

A2 = ε3h
(x1

ε

)
h′

(x2

ε2

)
h
(x3

ε3

)
∂x1 + ε4h′

(x1

ε

)
h
(x2

ε2

)
h
(x3

ε3

)
∂x2 ,

A3 = −ε3

2
h′

(x1

ε2

)
h
(x2

ε3

)
h
(x3

ε

)
∂x1 +

ε2

2
h
(x1

ε2

)
h′

(x2

ε3

)
h
(x3

ε

)
∂x2 .

(We set each Aj ≡ 0 outside the coordinate neighborhood.)
Now we specify divergence-free vector fields E1, E2, and E3 by the formulas Ej =

curl Aj. Since we are working in Riemannian normal coordinates, we can compute
these curls to order O(ε) just using the Euclidean formulas, and we obtain:

E1 = h
(x1

ε

)
h′

(x2

ε2

)
h′

(x3

ε3

)
∂x1 + O(ε) on [−ε, ε]× [−ε2, ε2]× [−ε3, ε3],

E2 = h
(x1

ε

)
h′

(x2

ε2

)
h′

(x3

ε3

)
∂x2 + O(ε) on [−ε, ε]× [−ε2, ε2]× [−ε3, ε3],

E3 = h′
(x1

ε2

)
h′

(x2

ε3

)
h
(x3

ε

)
∂x3 + O(ε) on [−ε2, ε2]× [−ε3, ε3]× [−ε, ε].

These vector fields are chosen so that, roughly speaking, Ei is nearly parallel to ei

near x, to lowest order. More precisely, we can check that the following formulas hold
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for the L2 inner products:

〈〈E1, E1〉〉 = 〈〈E2, E2〉〉 = 〈〈E3, E3〉〉 = Γε6 + O(ε7)

〈〈E1, E2〉〉 = 〈〈E1, E3〉〉 = 〈〈E2, E3〉〉 = O(ε7)

〈〈∂x3 × E1, E2〉〉 = Γε6 + O(ε7), 〈〈∂x3 × E2, E1〉〉 = −Γε6 + O(ε7)

〈〈∂x3 × E1, E3〉〉 = 〈〈∂x3 × E2, E3〉〉 = O(ε7),

where the constant Γ is defined by

Γ =

(∫ 1

−1

h(σ)2 dσ

) (∫ 1

−1

h′(σ)2 dσ

)2

.

Now since u(t) is a solution of equation (3.31) vanishing at t = 0 and t = a, we know
that there is a vector function ũ(t) vanishing at t = 0 and t = a + δ such that

ia+δ(ũ, ũ) ≡
∫ a+δ

0

〈Λ(t, x)∂tũ(t), ∂tũ(t)〉+ 〈curl Xo(x)× ũ(t), ∂tũ(t)〉 dt < 0.

(The construction is the same as that for Jacobi fields in finite-dimensional Riemannian
geometry, or more generally for index forms of second-order self-adjoint equations. See
for example Reid [Re].)

If ũ(t) = u1(t)e1 + u2(t)e2 + u3(t)e3, then define Ũ(t) = u1(t)E1 + u2(t)E2 + u3(t)E3.
For y in the support of Ũ , we can approximate Λ(t, y) = Λ(t, x)+O(ε) and curl Xo(y) =
curl Xo(x) + O(ε). Therefore, we have

Ia+δ(Ũ , Ũ) =

∫ a+δ

0

〈〈Λ(t)∂tŨ , ∂tŨ〉〉+ 〈〈curl Xo × Ũ(t), ∂tŨ〉〉 dt

=

∫ a+δ

0

〈〈Λ(t)∂tŨ , ∂tŨ〉〉+ ωo〈〈∂x3 × Ũ , ∂tŨ〉〉 dt + O(ε7)

= Γε6ia+δ(ũ, ũ) + O(ε7),

and choosing ε sufficiently small, we can make this quantity negative.
Since the index form is negative for some divergence free vector field on the interval

[0, a + δ], there must be a Jacobi field along η vanishing at t = 0 and t = b for some
b < a + δ. So η(b) is monoconjugate to η(0) along η, as desired. �

Remark 3.2. The main point is that for any particular vector u ∈ TxM , we can con-
struct a divergence-free vector field U such that U ≈ u near x and P (curl Xo × U) ≈
curl Xo × u near x. We can do this only in three (or possibly higher) dimensions.

In two dimensions, the index form takes the form

Ia(U,U) =

∫ a

0

〈〈Λ(t)∂tU, ∂tU〉〉+ 〈〈(curl Xo) ?U, ∂tU〉〉 dt,

where ? is the Hodge star operator. If U is any divergence-free vector field with support
in a disc, then ?U is a gradient, and thus to lowest order, (curl Xo) ?U is also a gradient.
Since the gradients are orthogonal to the divergence-free vector fields, the second term
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in the index form vanishes to lowest order; thus the index form is positive definite to
lowest order.

We conclude that there is no local criterion that can be used to find conjugate
points along two-dimensional fluid flows: conjugate points on Dµ(M2) are an essentially
global phenomenon. In three (and possibly higher) dimensions, conjugate points are
essentially a local phenomenon.

Remark 3.3. The result is sharp, in the sense that there may not be a monoconjugate
point actually at η(a). This is precisely what happens for one example where we
can compute everything explicitly: uniform rotation with angular velocity 1 of the
solid torus D2 × S1. Ebin, Misio lek, and the author [EMP] computed explicitly the
Jacobi fields along this flow in terms of curl eigenfields on the cylinder, and found that
monoconjugate points occur at a sequence of locations that decreases to π, but that
η(π) itself is not a monoconjugate point. In this example Λ(t, x) is always the identity
and curl Xo ≡ 2 ∂z, so that the equation (3.31) becomes u′′(t) + 2 ∂z × u′(t) = 0. With
u(0) = 0, the solutions are

u(t) =

 sin2 t − sin t cos t 0
sin t cos t sin2 t 0

0 0 t

 u′(0),

and choosing u′(0) orthogonal to ∂z, we see that the first vanishing point is a = π.
If a is not actually a monoconjugate location, then there must be a sequence of

monoconjugate locations descending to a. We will discuss this point more thoroughly
in the next section.

Remark 3.4. By Proposition 2.2, the equation (3.31) is equivalent to the pair of equa-
tions

(3.32)
Dy

dt
−∇y(t)X = z(t) and

Dz

dt
+∇z(t)X = 0

for vector fields y(t) and z(t) along a Lagrangian path t 7→ η(t)(x) in M3. For a steady
flow X for which we happen to know a Lagrangian path, equations (3.32) will often be
easier to write down and solve than equation (3.31). (Of course, at a fixed point of a
steady flow, the two approaches are the same.)

We can also write equations (3.32) as the single second-order equation

(3.33)
D2y

dt2
+∇y∇p + R(y, η̇)η̇ = 0.

This is the linearization of the Newton equation D
dt

η̇ = −∇p on the manifold. Thus
if the finite-dimensional Newtonian system (for the time-dependent potential energy
function p) has a conjugate point, so does the infinite-dimensional Riemannian system.
One can use the same sort of comparison techniques to find solutions of (3.33) as are
used in finite-dimensional Riemannian geometry.

Theorem 3.1 is easiest to apply if X = Xo is a steady solution of the Euler equation,
with a fixed point x.
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Proposition 3.5. Suppose X is a steady solution of the Euler equation ∇XX = −∇p
on a 3-manifold M , and x is a fixed point of X in the interior of M . If ∆p(x) > 0, then

equation (3.31) has nontrivial solutions vanishing at both t = 0 and t = π
√

2/∆p(x).
Otherwise, all solutions of (3.31) can vanish at most at one time.

Proof. The operator u 7→ ∇uX is a linear operator in TxM . Since X is assumed to
be a steady solution of the Euler equation, we know by (2.14) that [X, curl X] = 0
everywhere, and in particular at x. Thus ∇curl X(x)X = ∇X(x) curl X = 0, because
X(x) = 0. In addition, for any u ∈ TxM , we have 〈∇uX, curl X(x)〉−〈∇curl X(x)X, u〉 =
〈curl X(x) × curl X(x), u〉 = 0. Therefore, in a basis {e1, e2, e3} with e3 parallel to
curl X(x), the matrix of u 7→ ∇uX is of the form

∇uX =

(
A 0
0 0

)
u,

where A is a 2 × 2 matrix. Since div X = 0, we have TrA = 0. So the characteristic
equation for A is A2 = −(det A)I.

We have the general formula div∇XX = Ric(X, X) + Tr(u 7→ ∇∇uXX), which is
valid for any divergence-free vector field. Thus for a solution of equation (2.11), we
have ∆p + Ric(X,X) = −Tr(u 7→ ∇∇uXX). In particular, at the point x, we have
Ric(X(x), X(x) = 0 and thus

∆p(x) = −Tr(u 7→ ∇∇uXX) = −TrA2 = 2 det A.

The solution of the pair of equations

dz

dt
+∇zX = 0,

dy

dt
−∇yX = z

with initial conditions y(0) = 0 and z(0) = zo is

y(t) =

(
1
2
A−1(etA − e−tA) 0

0 t

)
zo.

If ∆p(x) > 0, then etA = cos
(√

det A t
)
I + 1√

det A
sin

(√
det A t

)
A, so that

y(t) =

(
1√

det A
sin

(√
det A t

)
I 0

0 t

)
zo.

Choosing zo orthogonal to e3, we obtain a nontrivial solution which vanishes at time
t = π

√
2/∆p(x). On the other hand, if ∆p(x) ≤ 0, we can easily verify that each com-

ponent of y(t) increases with time, so that there are no nontrivial solutions vanishing
at two times. �

We have a natural converse to Theorem 3.1, which works for any dimension n ≥ 2.

Proposition 3.6. Let M be any manifold with dimension n ≥ 2, possibly with bound-
ary. Suppose η(t) is a geodesic in Dµ(M) with η(0) = id, and let X be the Eulerian

velocity field defined by X = ∂η
∂t
◦ η−1.
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If there is a Jacobi field along η vanishing at t = 0 and t = a > 0, then for some x
in the interior of M , there is a solution u(t) of the ordinary differential equation

(3.34)
d

dt

(
Λ(t, x)

du

dt
+

(
ıu(t)dX[

o(x)
)]

)
= 0

with u(0) = u(α) = 0 for some α ∈ (0, a].

Proof. Let U(t) be the left translation of the Jacobi field vanishing at t = 0 and t = a.
Then the index form Ia(U,U) vanishes:

Ia(U,U) =

∫ a

0

〈〈Λ(t)Ut(t), Ut(t)〉〉+ 〈〈
(
ıU(t)dX[

o

)]
, Ut(t)〉〉 dt = 0.

Thus, interchanging the order of integration, we know that∫
M

∫ a

0

〈
Λ(t, x)Ut(t, x), Ut(t, x)

〉
+

〈(
ıU(t,x)dX[

o(x)
)]

, Ut(t, x)
〉
dt dµ(x) = 0.

As a result, we know

Ia(U,U) =

∫
M

ia(x) dµ(x) = 0,

where the integrand is

(3.35) ia(x) =

∫ a

0

〈Λ(t, x)Ut(t, x), Ut(t, x)〉+ 〈
(
ıU(t,x)dX[

o(x)
)]

, Ut(t, x)〉 dt.

Thus ia(x) must vanish for some x in the interior of M .
Now ia(x) is the index form of the self-adjoint system (3.34), and since the matrix

Λ(t, x) is always positive-definite, we can apply the Morse index theorem for systems
to conclude that if ia(x) = 0, then there is some solution of (3.34) vanishing at t = 0
and at some t = α ≤ a. See Reid [Re], Theorem V.8.1. �

Remark 3.7. As in Remark 3.4, we can also use the equations (3.32), or the equivalent
(3.33), instead of (3.34).

Example 3.8. Consider M2, a two-dimensional disc, sphere, annulus, or torus, with
rotationally symmetric metric of the form

(3.36) ds2 = dr2 + ϕ2(r) dθ2

and a vector field

(3.37) X = u(r) ∂θ.

Any such X is a steady solution of the Euler equation (2.11), and thus generates a
geodesic η given in coordinates by η(t)

(
r, θ

)
=

(
r, θ + tu(r)

)
. These are the simplest

nontrivial steady Euler flows.
In [P2], the author proved the following theorem.
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Theorem 3.9. A geodesic in Dµ(M2) generated by an analytic steady flow X on M2

with isolated singularities has nonpositive curvature operator all along it if and only
if M2 is a disc, sphere, annulus, or torus with a polar coordinate system with metric
(3.36) in which X has the form (3.37), and in addition:

• if M2 is a torus, ϕ is constant;
• if M2 is not a torus, then the function Q(r) = (ϕ′u)′/u′ is defined for all r and

satisfies the differential inequality

(3.38) ϕQ′ + Q2 ≤ 1

everywhere.

Nonpositive curvature operator implies, by the Rauch comparison theorem, that the
differential of the exponential map satisfies |d(expid)tX(V )| ≥ t|V | for any t and any V ∈
TidDµ(M2); therefore there are no conjugate points (monoconjugate or epiconjugate—
see Grossman [G]).

Proposition 3.6 gives us a simpler criterion for the nonexistence of monoconjugate
points for flows of the form X = u(r) ∂θ. We can prove the following.

Proposition 3.10. Suppose M2 is a disc, sphere, annulus, or torus, with metric given
in polar coordinates by (3.36), with a vector field X of the form (3.37). Define a radial
function by

(3.39) A(r) = 4u(r)2ϕ′(r)2 + 2ϕ(r)ϕ′(r)u(r)u′(r).

If A(r) ≤ 0 for all r, then the geodesic η in Dµ(M2) defined by X has no monoconjugate
points. Furthermore, if A(r) > 0 for some r, then the first monoconjugate point along

η (if there is one) cannot occur earlier than τ = 2π/
√

supr A(r).

Proof. Using Remark 3.7, if η(a) is monoconjugate to id along η, then along any circle
of constant r, the equations (3.32) have a solution with y(0) = 0 and y(a) = 0.

With y(t) = f(t) ∂r + g(t) ∂θ and z(t) = h(t) ∂r + k(t) ∂θ, equations (3.32) take the
form

ḟ(t) = h(t) ġ(t) = u′(r)f(t) + k(t)

ḣ(t) = 2u(r)ϕ(r)ϕ′(r)k(t) k̇(t) = −
(

u′(r) + 2
ϕ′(r)u(r)

ϕ(r)

)
h(t).

The equation for h(t) takes the form

ḧ(t) + A(r)h(t) = 0,

and from here we can easily solve to find h, k, f , and g with initial conditions h(0) = ho,
k(0) = ko, f(0) = 0, and g(0) = 0. It is not hard to see that these equations have
solutions vanishing for t > 0 if and only if we have A(r) > 0, and then the solution

vanishes at 2π/
√

A(r).
Thus if A(r) ≤ 0 for all r, the equation (3.32) does not have a solution vanishing at

two times along any Lagrangian path, and thus the geodesic cannot have any mono-
conjugate pairs. On the other hand, if η(0) and η(a) are monoconjugate, then for some
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r, we must have 2π/
√

A(r) = a. As a result, the first possible monoconjugate point

cannot occur before 2π/
√

supr A(r). �

Theorem 3.9 and Proposition 3.10 do actually give us distinct criteria for a two-
dimensional rotational flow to have no monoconjugate points (and thus to be infinites-
imally minimizing along its entire length). For example, if ϕ(r) = r and u(r) ≡ 1 on the
disc, then Theorem 3.9 implies that the geodesic has nonpositive curvature operator
and thus no conjugate points, while Proposition 3.10 is inconclusive.

On the other hand, if ϕ(r) = sin r and u(r) = 1/ sin2(r) on the portion π/4 < r <
3π/4 of the round sphere, then A(r) ≡ 0, so that the geodesic has no monoconjugate
points; however, Q(r) = (1 + cos2 r)/(2 cos r) is singular at r = π/2 and never satisfies
the differential inequality (3.38). Thus the curvature operator along the geodesic is
sometimes positive and sometimes negative.

4. The first conjugate point

Proposition 4.1. Suppose η is a geodesic in Dµ(M3). Let

τ = inf{a > 0
∣∣ η(a) is monoconjugate to η(0) along η}.

For each x in the interior of M3, let

τ(x) = inf{a > 0
∣∣ some solution of equation (3.31) vanishes at t = 0 and t = a.}

Then τ = infx∈int(M) τ(x). If η(τ) is itself monoconjugate to η(0) along η, then in
addition τ(x) is constant on M .

Proof. Theorem 3.1 implies that τ ≤ infx∈int(M) τ(x), while Proposition 3.6 implies that
infx∈int(M) τ(x) ≤ τ. This proves the first claim.

Now suppose η(τ) is actually monoconjugate to η(0). Then there is a Jacobi field
J(t) along η with J(0) = 0 and J(τ) = 0. As in the proof of Proposition 3.6, the
left-translation U(t) of this vector field satisfies the equation∫

M

iτ (x) dµ(x) = 0,

where the integrand is

iτ (x) =

∫ τ

0

〈Λ(t, x)Ut(t, x), Ut(t, x)〉+ 〈
(
ıU(t,x)dX[

o(x)
)]

, Ut(t, x)〉 dt.

If iτ (x) < 0 at some point x, then since iτ (x) is the index form of the self-adjoint
system (3.31) in TxM , there must be a solution of (3.31) vanishing at t = 0 and t = a for
some a < τ . (As before, see Reid [Re].) This implies τ(x) ≤ a < τ , which is impossible.
Thus iτ (x) ≥ 0 for every x in the interior of M . The only way a nonnegative function
can integrate to zero is if it identically vanishes, so iτ (x) = 0 for every x. Thus we
must have τ(x) = τ for every x. �
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If we know anything about the metric pullback Λ, the equation (3.31) will be easy
to solve, and we can determine the exact location of the first conjugate point. The
easiest case is of course when X is a Killing field.

Corollary 4.2. If the geodesic η(t) in Dµ(M3) consists of isometries, then the Eulerian
velocity field X is steady and a Killing field. The infimum of monoconjugate point
locations is then

τ =
2π

supM |curl X|
.

If η(τ) is itself monoconjugate to id, then curl X has constant length on M .

Proof. We know that η′(0) = Xo is a Killing field by definition, and since any Killing
field is a steady solution of the Euler equation (see Misio lek [M1] for the proof), we
must have X(t) = Xo for all t.

Since η(t) is always an isometry, the deformation Λ(t, x) is always the identity, so
that equation (3.31) becomes (using ω = curl X)

d2u

dt2
+ ω(x)× du

dt
= 0,

whose solution with u(0) = 0 and u′(0) perpendicular to ω(x) is

u(t) =
sin

(
|ω(x)|t

)
|ω(x)|

u′(0) +
cos

(
|ω(x)|t

)
− 1

|ω(x)|2
ω(x)× u′(0).

Thus τ(x) = 2π/|ω(x)|. The rest follows from Proposition 4.1. �

In Corollary 4.2, constant length of the vorticity is necessary for the infimum of
conjugate points to be monoconjugate; however, it is not sufficient, as shown by the
example given in [EMP]. There, the Killing field X on the solid torus is given in
cylindrical coordinates by X = ∂θ, and the vorticity is curl X = 2 ∂z, with constant
length. The Jacobi fields can all be computed in terms of curl eigenfields, and the
monoconjugate point locations can be expressed in terms of roots of Bessel functions.
The infimum of these is τ = π, but this is not itself a monoconjugate point location.
Instead, this represents an epiconjugate point; the differential of the exponential map
is one-to-one, but not closed, and therefore not onto.

As we will see in the next theorem, the first conjugate point along a geodesic in
Dµ(M3) is always pathological: the differential of the exponential map (d expid)τXo ei-
ther is not closed, which implies that the span of the Jacobi fields excludes an infinite-
dimensional space of vectors; or has infinite-dimensional kernel. Thus the first conju-
gate point is either epiconjugate of infinite order or monoconjugate of infinite order.
We will present an example of this latter phenomenon later.

Theorem 4.3. Let η be a geodesic in Dµ(M3) and let τ be the infimum of monocon-
jugate point locations, as in Proposition 4.1. If the differential of the exponential map
(d expid)τXo has empty or finite-dimensional kernel, then its range is not closed in the
L2 norm. Hence it is epiconjugate of infinite order, i.e., there is an infinite-dimensional
space in Tη(τ)Dµ(M3) disjoint from the image of (d expid)τXo.
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Proof. If there are no monoconjugate points, we have nothing to prove. Otherwise, τ as
defined in Proposition 4.1 is finite. For each δ > 0, there is some xo with τ(xo) < τ +δ.
Solutions of the differential equation (3.31) depend continuously on x, and thus τ(x)
is a continuous function of x in a neighborhood of xo. So for all x in some open set Ω
containing xo, we know τ(x) < τ + δ.

In this set Ω, we can find a sequence of disjoint open sets Ψn, and in each one
we can construct a “test” Jacobi field Un as in Theorem 3.1, vanishing at t = 0 and
t = τ + δ, with Iτ+δ(Un, Un) < 0. Furthermore, since the sets Ψn are disjoint, we have
Iτ+δ(Un, Um) = 0 if m 6= n. Thus the space of vector fields vanishing at 0 and τ + δ
on which Iτ+δ is negative-definite is infinite-dimensional. Consequently, we must have
infinitely many linearly independent Jacobi fields, each of which vanishes at t = 0 and
at some t < τ + δ, as in the proof of the finite-dimensional Morse Index theorem.

This happens one of two ways: either there are infinitely many independent Jacobi
fields all satisfying J(0) = 0 and J(τ) = 0; or there is a sequence of distinct monocon-
jugate point locations τn decreasing to τ . In the former case, we are done since η(τ)
is then monoconjugate to η(0) of infinite order. In the latter case, (d expid)τXo is not
closed, by a result of Biliotti, Exel, Piccione, and Tausk [BEPT]. �

Remark 4.4. The result of [BEPT] is applicable in the topology generated by the
Riemannian metric, i.e., the L2 topology. One may also ask whether (d expid)τXo

also has non-closed range in the Sobolev Hs topology. If M has no boundary, one
can proceed as in [EMP]; the commutators of the partial derivative operators with
d exp are compact, and thus one can conclude non-closed range in Hs from non-closed
range in L2. If M does have a boundary, these commutators may not be compact,
so one cannot answer this question (in the same way that Fredholmness in Hs of the
exponential map on Dµ(M2) is unknown if M has a boundary).

As a result of Theorem 4.3, we can say there always is a “first conjugate point,”
either monoconjugate or epiconjugate, found at η(τ), where τ = infx∈int(M) τ(x), as in
Proposition 4.1.

It is natural to ask whether the monoconjugate point may be of infinite order, and
whether the first conjugate point is actually monoconjugate; the example given in
[EMP] exhibits neither. To answer this question, we consider the example of M = S3,
where the velocity field X is a left-invariant Killing field. Misio lek [M1] showed that
the corresponding geodesic in Dµ(S3) has a monoconjugate point occurring at t = π.

Using a basis of curl eigenfields on S3, we compute all of the conjugate points in this
example. They are quite interesting.

Proposition 4.5. If M = S3 and X is a left-invariant vector field, then along the
corresponding geodesic η in Dµ(S3), the point η(a) is monoconjugate to η(0) if and
only if a = nπ/j for positive integers n and j, with j ≤ n. Each such monoconjugate
point has infinite order. In addition, for any t ≥ π, d(expid)tX does not have closed
range; thus the differential of the exponential map is never Fredholm at or beyond the
first conjugate point.
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Proof. Let us consider S3 as consisting of the unit quaternions in R4, with coordinates
(w, x, y, z). Then a basis of left-invariant vector fields is

e1 = x ∂w − w ∂x + z ∂y − y ∂z,

e2 = y ∂w − z ∂x − w ∂y + x ∂z,

e3 = z ∂w + y ∂x − x ∂y − w ∂z.

These have unit length and satisfy the bracket relations

[e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2.

Their curls satisfy

curl ei = −2ei,

and by linearity, every vector X in the Lie algebra of S3 also satisfies curl X = −2X.
Thus by (2.14), every such X is a steady solution of the Euler equation.

By bi-invariance of the metric on S3, every left-invariant X is also a Killing field, so
that the resulting flow consists of isometries. Thus the metric pullback is Λ(t, x) ≡ 1,
and by formula (2.27), the Jacobi equation for J = Dη(U) takes the form

Utt − 2P (X × Ut) = 0.

Computing curl of both sides, and using the fact that curl annihilates gradients, we
get

(4.40) curl Utt + 2[X, Ut] = 0.

Now we have the general formula

∇〈A, B〉 = ∇AB +∇BA + A× curl B + B × curl A,

for any vector fields A and B. Since X is a Killing field, 2∇UX = curl X × U , so we
have the formula

∇〈U,X〉 = [X, U ] + X × curl U,

which implies upon computing curls that curl [X, U ] = [X, curl U ] for any vector field U .
Thus LX and curl commute as operators, so that in the (finite-dimensional) eigenspaces
of curl, LX restricts to an operator from each eigenspace to itself. In the L2 metric,
curl is self-adjoint while LX is anti-self-adjoint. Therefore, there is a basis of the
(complexified) space of divergence-free fields on S3, orthonormal in L2, consisting of
vector fields U such that

(4.41) curl U = λU and [X, U ] = iαU

for some real numbers λ and α.
To find this, we first start with the related question of the eigenvalues of X and ∆ on

functions. Without loss of generality, we may assume that X = e1 by rotational sym-
metry. One can compute that the eigenfunctions of the Laplacian consist of restrictions
of homogeneous, harmonic polynomials in R4 having degree some nonnegative integer
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k; for any such f , we have ∆f = −k(k + 2)f . To find the eigenvalues of the operator
f 7→ e1(f), we use a toroidal coordinate system: define (σ, θ, φ) so that

w = cos σ cos θ, x = cos σ sin θ, y = sin σ cos φ, z = sin σ sin φ.

Here σ ∈ [0, π/2] while θ, φ ∈ [0, 2π). In these coordinates, we can compute that
e1 = ∂θ + ∂φ. Any monomial P = wk1xk2yk3zk4 with k1 + k2 + k3 + k4 = k can be
written in these coordinates as

P = cosk1+k2 σ sink3+k4 σ cosk1 θ sink2 θ cosk3 φ sink4 φ,

and these functions are in turn spanned by the trigonometric functions

p = cosk1+k2 σ sink3+k4 σeim1θeim2φ,

for some integers m1 ∈ {k1 + k2, k1 + k2 − 2, . . . ,−(k1 + k2)} and m2 ∈ {k3 + k4, k3 +
k4 − 2, . . . ,−(k3 + k4)}. For any such p, we have e1(p) = i(m1 + m2)p, so that the
eigenvalue (m1 + m2) takes on every integer value between −k and k with the same
odd/even parity as k.

Thus we have a basis of complex functions f such that ∆f = −k(k + 2)f for some
nonnegative integer k and e1(f) = imf for some integer m ∈ {−k,−k+2, . . . , k−2, k}.
We now construct a convenient basis of curl eigenfields, following Jason Cantarella
(personal communication).

(I) : U = curl2 S + (k + 2) curl S for S = fe1 and k ≥ 2;

then curl U = kU and [e1, U ] = imU .

(II) : U = curl2 S + (k + 2) curl S for S = f(e2 ± ie3) and k ≥ 2;

then curl U = kU and [e1, U ] = i(m∓ 2)U .

(III) : U = curl2 S − k curl S for S = fe1 and k ≥ 0;

then curl U = −(k + 2)U and [e1, U ] = imU .

(IV) : U = curl2 S − k curl S for S = f(e2 ± ie3) and k ≥ 0;

then curl U = −(k + 2)U and [e1, U ] = i(m∓ 2)U .

From these formulas, we see that the eigenvalues λ of curl are all integers except 0
and ±1; for each such λ, there is an eigenvalue iα of Le1 , where α is an integer with
|α| ≤ |λ| and α having the same odd/even parity as λ. (Although it appears that type
(II) violates this rule when m = ∓k, it turns out that U vanishes in this case.)

In such a basis, equation (4.40) is diagonalized, and the coefficient c(t) of an eigenfield
U with (4.41) will satisfy the equation

λc′′(t) + 2iαc′(t) = 0.

If α 6= 0, the solution with c(0) = 0 is

c(t) =
λ

α
sin

(
αt

λ

)
e−iαt/λ c′(0),
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and the corresponding conjugate point occurs at t = |λ|π
|α| . (If α = 0, there is no

conjugate point obtained.) Since λ and α must both be integers, we have shown that
all conjugate point locations are of the form qπ with q ≥ 1 a rational number. We can
obtain all such rational numbers infinitely many times; if q = n/j with j ≤ n positive
integers, then for any positive integer L, we can construct a vector field U of type (I)
using k = 2nL and m = 2jL; then the corresponding Jacobi field vanishes at qπ for
any L.

The final claim, that (d expid)tX is not closed if t ≥ π, follows from the general
result of [BEPT], that the differential of the exponential map is not closed at any limit
point of the set of monoconjugate point locations. Since the rational multiples of π are
dense in [π,∞), the differential of the exponential map is not closed beyond the first
conjugate point. �

It would be interesting to see if a similar result is true in general; that is, whether
the monoconjugate point locations are always dense in some intervals. We conjecture
that they are, and expect that the proof involves a similar but more sophisticated
approximation of the Jacobi field solution operator as in Theorem 3.1.
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