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1. Introduction

In this article we write the equations of barotropic compressible fluid mechan-
ics as a geodesic equation on an infinite-dimensional manifold. The equations
are given by

ut +∇uu = −1

ρ
grad p, (1)

ρt + div (ρu) = 0, (2)

where the fluid fills up a compact manifold M , u is a time-dependent velocity
field on M , and ρ is the density, a positive function on M . The barotropic
assumption is that the pressure p is some given function of the density, al-
though our methods also extend to certain more general isentropic flows.
Our infinite-dimensional manifold is the product D(M) × C∞(M,R). This
is a group using the semidirect product (which is sometimes incorporated
in other treatments), but the Riemannian metric we use is neither left- nor
right-invariant. Hence our geodesic equation is not an Euler-Arnold equation.
We compute the sectional curvature and show that at least when M = S1,
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the curvature is always nonnegative. We also establish some results on the
Lagrangian linear stability of solutions of this system, for certain nonsteady
solutions in one dimension and steady solutions in two dimensions.

It has been known for many years that the system (1)–(2) can be de-
rived via Hamilton’s principle on an infinite-dimensional manifold (see e.g.,
Ebin [Eb], Smolentsev [Sm], and Holm et al. [HMR], but all such approaches
use a nonzero potential energy, so that the equations are essentially Newton’s
equation D

dt
dη
dt = − grad Ψ for some nonzero Ψ rather than a pure geodesic

motion (with Ψ = 0). We review this approach in Section 2. In contrast we
obtain a genuine geodesic equation, but the price we pay is that our geodesic
equation only gives the barotropic equations on a certain nonholonomic dis-
tribution (i.e., some geodesics correspond to barotropic fluids, while others
have no physical meaning). Our method is somewhat closer to the metric
introduced in Eisenhart [Ei] on the product D(M)×R2, where extra degrees
of freedom are introduced and weighted in the Riemannian metric by terms
involving the potential energy and an arbitrary parameter. The difference
is that our metric is “diagonal” on the product, and the extra variables we
introduce are directly related to the density.

One motivation for doing this is to obtain some intuition for the behav-
ior of compressible fluids under a perturbation. In much the same way that
a one-dimensional particle trajectory in a convex potential energy behaves
approximately like a geodesic in a surface of positive curvature, we hope to un-
derstand stability of a compressible fluid using curvature computations which
at least intuitively suggest the behavior of perturbed solutions. Another mo-
tivation is to understand the warped product geometry of D(M)×C∞(M,R),
under a noninvariant metric. Invariant metrics have some nice algebraic prop-
erties, but are often not physically relevant (for example, the right-invariant
L2 metric on D(M) does not come from any kind of physics, and its geo-
desic equation has no known physical relevance; while the non-invariant L2

metric we consider is naturally related to the kinetic energy, and its geodesic
equation describes the motion of a force-free family of particles).

In Section 3, we write down the Riemannian metric and its geodesics
along with its Riemannian curvature. The advantage of the geodesic ap-
proach, as pioneered by Arnold [A] for incompressible fluids, is that one can
in principle use the curvature to discuss Lagrangian stability of the fluid: in-
tuitively, if the sectional curvature is positive, then the particle paths should
be stable under small perturbations of the initial velocity. (More precisely one
uses the Rauch theorem which gives results up to the first conjugate point.)
This cannot be applied rigorously in our case, since unlike in the case of in-
compressible fluids [EM], the Riemannian exponential map cannot be smooth
in any Hilbert topology: simple examples show that geodesics in the present
context are not even locally minimizing. Hence our approach is necessarily
only formal, and so we may as well require all objects to be C∞ rather than
working in Sobolev spaces.
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Nonetheless we can still analyze the Jacobi equation for linear pertur-
bations of geodesics directly, which we do in Section 4; see [BG] for a similar
perspective. We establish stability or weak instability in special cases (for
arbitrary solutions in one space dimension and a rigid rotational flow in two
space dimensions). This is not a significant drawback, since even for incom-
pressible fluids a direct approach to stability is frequently more informative
than an analysis of the curvature (see [P2]). In the one-dimensional case we
show that Lagrangian perturbations grow at most linearly in time up to the
shock (when solutions cease to be smooth and our methods no longer apply),
while in the two-dimensional steady case, many Lagrangian perturbations are
bounded for all time. This portion of the paper previously appeared in the
author’s thesis [P1].

2. Background

We describe a compressible fluid as follows: consider a manifold N with a
volume form ν (describing the mass distribution) and a Riemannian manifold
M with metric 〈·, ·〉 and Riemannian volume form µ (describing physical
space). Fluid configurations are described by trajectories η(t) ∈ C∞(N,M),
where the density is defined by

ρ ◦ ηη∗µ = ν, or Jac(η)ρ ◦ η. (3)

This space is formally1 a manifold, where the tangent spaces are

TηC
∞(N,M) = {U : N → TM |U(p) ∈ Tη(p)M ∀p ∈ N}

and the coordinate charts are given by the exponential maps

Expη(U) = p 7→ expη(p)(U(p)),

where exp is the Riemannian exponential map on M (which takes the velocity
vector U(p) to the point on the geodesic through η(p) in direction U(p) at
time one). In the Riemannian metric

〈〈U, V 〉〉η =

∫
N

〈U(p), V (p)〉η(p) dν, (4)

Exp is precisely the Riemannian exponential map. On the space C∞(N,M),
the map Exp is globally defined, although an obvious problem is that physi-
cally maps from N to M should be one-to-one: the physically natural space
is the space of smooth embeddings E(N,M), but the exponential map is no
longer globally defined on this space since it’s very easy for geodesics to in-
tersect. See [EM] for details. We note that the metric (4) is invariant under
the right-action of Dν(N) and under the left-action of the isometry group of
M . Hence even if M = N , the metric is neither right- nor left-invariant on
the open subset D(M).

1To prove theorems about geometry on infinite-dimensional manifolds rigorously, one

prefers a Banach or Hilbert structure; however those theorems will not apply in this case
regardless, so we lose nothing by staying in the C∞ category.
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If η ∈ C∞(N,M) is a diffeomorphism, then we can express any element
U ∈ TηC

∞(N,M) as U = u ◦ η, where u is a vector field on M . By the
change of variables formula for integrals, the Riemannian metric (4) becomes
the more familiar expression

〈〈u ◦ η, v ◦ η〉〉η =

∫
M

ρ(q)〈u(q), v(q)〉 dµ.

The geodesic equation D
dt
dη
dt = 0 on C∞(N,M) becomes, in terms of u defined

by
ηt(t, p) = u

(
t, η(t, p)

)
, (5)

the Burgers’ equation (or pressureless Euler equation) ut +∇uu = 0, while
differentiating the density formula (3) leads to the continuity equation (2).

To obtain the barotropic equation (1), we define (see Ebin [Eb] or Smo-
lentsev [Sm]) a potential energy function Ψ: C∞(N,M)→ R which depends
only on the density, of the form

Ψ(η) =

∫
M

ρψ(ρ) dµ =

∫
N

ψ

(
1

Jac(η)

)
dν. (6)

We can then compute that the gradient of this function in the metric (4) is

(grad Φ)η =

(
1

ρ
grad p(ρ)

)
◦ η, where p(ρ) = ρ2ψ′(ρ),

and hence Newton’s equation D
dt
dη
dt = −(grad Φ)η can be written in the form

(1) together with (5). As pointed out by Smolentsev [Sm], this system (like
any conservative Newtonian system) can be rewritten as a geodesic equation
with a modified metric—the Jacobi or Maupertuis metric. Generally speak-
ing, if γ satisfies Newton’s equation D

dt
dγ
dt = −(grad Φ)γ(t) on some manifold,

then the energy E = 1
2 |γ̇(t)|2 + Φ(γ(t)) is constant in time, and all solu-

tions with the same energy will be geodesics in the conformally equivalent
Riemannian metric

(u, v)γ =
(
E − Φ(γ)

)
〈u, v〉γ .

In this paper we will take a different approach which leads to a different
formula for the Riemannian curvature.

In recent years many authors have studied infinite-dimensional geodesic
equations which arise on groups of diffeomorphisms or related groups with
right-invariant metrics. The geodesic equation in this case takes the form
η̇(t) = dRη(t)u(t) and u̇(t) + ad?u(t) u(t) = 0, and the second equation is the

Euler-Arnold equation. See [AK] for examples. The closest relevant example
in the present situation is the semidirect product D(S1) n C∞(S1). The
Euler-Arnold equation was computed in [G] to be

ut + 3uux + ffx = 0, ft + fux + ufx = 0.

Although this resembles the system (1)–(2), the extra factor of 3 makes it
genuinely different, and this factor cannot be removed by a rescaling without
changing the flow equation ηt = u ◦ η. In addition, the higher-dimensional
version as in [V] does not even superficially resemble the equation (1). More
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general Euler-Arnold equations on semidirect product groups were considered
in [HMR], who also considered an alternative Lagrangian approach to the
barotropic equations (where ρ is considered as an independent variable rather
than derived from flow η). Our approach uses a non-invariant metric which
does not lead to an Euler-Arnold equation.

3. The geometry of C∞(N,M × R)
Now we define our (noninvariant) Riemannian metric. Our configuration
space will be C∞(N,M) × C∞(N,R) = C∞(N,M × R). Tangent vectors
to a point (η, F ) are of the form (U, φ) where U ∈ TηC

∞(N,M) and φ ∈
C∞(N,R). If η is a diffeomorphism, we can express (U, φ) = (u ◦ η, f ◦ η),
where u is a vector field on M and f is a function on M . Let λ : R+ → R+

be some smooth function, and define a metric on the product C∞(N,M ×R)
by the formula

〈〈(u ◦ η, f ◦ η), (v ◦ η, g ◦ η)〉〉(η,F ) =

∫
M

[
λ(ρ)fg + ρ〈u, v〉

]
dµ. (7)

This is essentially a warped product of C∞(N,M) in the noninvariant metric
(4) with the space of functions on N .

3.1. Basic formulas

The following Lemma shows us how to differentiate functions on our config-
uration space. The proof is a computation which can be found in [Sm] or
[Eb].

Lemma 3.1. Suppose W is a vector field on C∞(N,M×R) given by W(η,F ) =
(w ◦ η, h ◦ η) for some vector field w on M and function h : M → R. Suppose
Φ: C∞(N,M × R)→ R is a function of the form

Φ(η, F ) =

∫
M

αϕ(ρ) dµ =

∫
N

α ◦ η Jac(η)ϕ(1/ Jac(η)) dν

for some functions α : M → R and ϕ : R+ → R, where ρ is defined by (3).
Then the derivative of Φ in the direction W is given at any point (η, F ) by

W(η,F )Φ =

∫
M

ρ〈w, grad
(
αϕ′(ρ)

)
〉 dµ = −

∫
M

div (ρw)αϕ′(ρ) dµ. (8)

Now that we know how to differentiate functions that depend only on
the density, we can use the Koszul formula to obtain the covariant derivative.
For our purposes it is sufficient to compute in terms of vector fields of the
form W(η,F ) = (w ◦ η, h ◦ η) for some vector field w on M and function
h : M → R, as in Lemma 3.1.

Lemma 3.2. Let u and v be vector fields on M , and let f and g be real-
valued functions on M . Define vector fields U and V on C∞(N,M × R) by
U(η,F ) = (u◦η, f ◦η) and V(η,F ) = (v ◦η, g ◦η). Then the covariant derivative
∇UV is given by (∇UV )(η,F ) = Z ◦ η, where

Z =
(
u(g),∇uv

)
+ Γρ

(
(u, f), (v, g)

)
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and

Γρ :
(
χ(M)× C∞(M,R)

)2 → χ(M)× C∞(M,R)

is the Christoffel map, a bilinear map satisfying

〈〈Γρ
(
(u, f), (v, g)

)
, (w, h)〉〉 =

∫
M

ϕ(ρ)
(
hf div v+hg div u−fg divw

)
dµ, (9)

where ρ is given by (3) and

ϕ(ρ) =
1

2

(
λ(ρ)− ρλ′(ρ)

)
. (10)

Proof. This is straightforward using the Koszul formula (see e.g., [dC]), Lemma
3.1, and the fact that the commutator of right-invariant fields is [U, V ](η,F ) =(
[u, v] ◦ η, (u(g)− v(f)) ◦ η

)
. �

Remark 3.3. Note that in general a weak Riemannian metric does not nec-
essarily have any covariant derivative at all; what happens here is essentially
the same sort of fortunate accident that occurs on the full diffeomorphism
group D(M) as in Ebin-Marsden [EM]. Here we are effectively working on
C∞(N,M ×R), and using the fact that the covariant derivative constructed
by [EM] on D(M) works in the same way on C∞(N,X) for any Riemannian
manifold X. Of course the usual covariant derivative on C∞(N,M × R) is
somewhat different since that comes from a Cartesian product metric and
our metric is a warped product; however the difference of two connections
is an operator defined pointwise (the Christoffel symbol), and so we get our
connection as long as we understand this difference. Lemma 3.2 basically just
computes this difference.

Although the formula (9) will be most convenient for our purposes, it is
easy to see via integration by parts that we can write Γρ more explicitly as

Γρ
(
(u ◦ η, f ◦ η), (v ◦ η, g ◦ η)

)
= (z ◦ η, j ◦ η) where

j =
ϕ(ρ)

λ(ρ)
(f div v + g div u) and z =

1

ρ
grad

(
ϕ(ρ)fg

)
. (11)

Notice that if λ(ρ) = ρ, then ϕ(ρ) = 0 and hence Γρ = 0 as well. In this case
the geometry reduces to the geometry of M (as we will see later), and the
covariant derivative is

(∇̃UV )(η,F ) = DR(η,F )

(
u(g),∇uv

)
=
(
u(g) ◦ η,∇uv ◦ η

)
when U(η,F ) = (u ◦ η, f ◦ η) and V(η,F ) = (v ◦ η, g ◦ η). (12)

This will be useful later. Having obtained the covariant derivative, we can
start computing. Our first goal is to obtain the geodesic equation.

Corollary 3.4. Suppose
(
η(t), F (t)

)
is a geodesic curve in C∞(N,M × R)

in the Riemannian metric (7), with η(t) a diffeomorphism from N to M
on some interval (−T, T ). Define ρ(t) by (3). Let u(t) be the vector field
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satisfying ∂η
∂t = u ◦ η, and let f(t) be the function satisfying ∂F

∂t = f ◦ η. Set
q = λ(ρ)f . Then u and q satisfy the equations

ut +∇uu+
1

ρ
grad

(q2ϕ(ρ)

λ(ρ)2

)
= 0 (13)

qt + div (qu) = 0, (14)

where ϕ is given by (10).

Proof. If we define u and f by η̇(t) = u(t) ◦ η(t) and Ḟ (t) = f(t) ◦ η(t) and

U(t) =
(
u(t), f(t)

)
, then the geodesic equation can be written as U̇(t)◦η(t)+

(∇U(t)U(t)) ◦ η(t) = 0. Using formula (11), this becomes

∂u

∂t
+∇uu+

1

ρ
grad

(
ϕ(ρ)f2

)
= 0

ft + u(f) +
2ϕ(ρ)

λ(ρ)
f div u = 0.

Using (2), it is then easy to see that q = λ(ρ)f satisfies (14). �

Obviously (14) is exactly the same differential equation as (2), which
implies that if q = ρ at time zero, then q = ρ for all time. In this case, the
equation for u satisfies

ut +∇uu+
1

ρ
grad

(ρ2ϕ(ρ)

λ(ρ)2

)
= 0.

This is precisely equation (1) if we define

p(ρ) =
ρ2ϕ(ρ)

λ(ρ)2
. (15)

We have thus obtained the barotropic equations as a special case of the
geodesic equation (13)–(14). We summarize this as another corollary.

Corollary 3.5. Suppose γ0 = (η0, F0) is a point in C∞(N,M ×R), and set ρ0
to be the density of η0 given by (3). Let U0 ∈ T(η0,F0)C

∞(N,M × R) be the
vector U0 = (u0 ◦η0, ρ0

λ(ρ0)
◦η0). Then the geodesic γ(t) with initial position γ0

and initial velocity U0 has tangent vector γ′(t) = DRγ(t)
(
u(t), f(t)

)
, where u

satisfies the barotropic evolution equation (1) and f = ρ
λ(ρ) for all time.

We thus obtain the equations of interest if we restrict the initial velocity
in C∞(N,M × R) to be something very specific in the function direction
(but arbitrary in the diffeomorphism direction). This gives a distribution of
allowable velocities in C∞(N,M ×R). It is easy to see that this distribution
is nonholonomic; in other words, there is no submanifold of C∞(N,M ×
R) for which all geodesics will correspond to barotropic flow. This limits
the applicability of our standard geometric techniques, although we could if
desired make sense of this situation in the context of the symmetric product ;
see for example [BL] and references therein for the general context.
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Remark 3.6. It is natural to ask whether the geodesic equations (13)–(14)
have any meaning if our initial condition is not of the special type in Corol-
lary (3.5). An interpretation is as follows. More general compressible fluid
mechanics allows for the pressure p in (1) to depend on both the density ρ
and the entropy s. In the absence of shocks, the entropy of any fluid particle
is conserved, which implies the equation

st + u(s) = 0. (16)

If instead of having q = ρ in (14) we have q = ρζ(s) for some function
ζ : R → R, then the fact that ρt + div (ρu) = 0 implies that s must satisfy
(16), as expected. The corresponding pressure function would then be

p(ρ, s) =
ρ2ϕ(ρ)

λ(ρ)2
ζ(s)2. (17)

In other words, we can represent any compressible fluid as a certain family
of geodesics in C∞(N,M × R) as long as the pressure is separable as a
function of its arguments, and conversely every geodesic in C∞(N,M ×R) is
a compressible fluid flow for some choice of the separable pressure function.

3.2. The sign of the curvature

In spite of Remark 3.6 we will still consider in the rest of this paper only
barotropic flow. Since our primary motivation for considering the barotropic
equations as geodesics is to understand stability in terms of curvature, we will
compute the sectional curvature of this manifold. We are interested primarily
in those sections where at least one of the vectors lies in our nonholonomic
distribution, but we will first work out the general formula.

Theorem 3.7. Let U and V be right-invariant vector fields on the manifold
C∞(N,M × R) given by U(η,F ) = (u ◦ η, f ◦ η) and V(η,F ) = (v ◦ η, g ◦ η)
for some vector fields u and v on M and functions f and g on M . Then the
(unnormalized) sectional curvature of the metric (7) is given by

〈〈R(U, V )V,U〉〉(η,F ) =

∫
M

ρ〈R(u, v)v, u〉 dµ

+

∫
M

(
ρϕ′(ρ) +

ϕ(ρ)2

λ(ρ)

) [
f div v − g div u

]2
dµ

+

∫
M

ϕ(ρ)
[
f2Q(v, v) + g2Q(u, u)− 2fgQ(u, v)

]
dµ

+

∫
M

ϕ(ρ)2

ρ
|f grad g − g grad f |2 dµ,

(18)

where the symmetric operator Q is defined by

Q(u, v) = div (∇uv)− u(div v)− (div u)(div v) (19)

and 〈R(u, v)v, u〉 is the curvature on M .
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Proof. This is a long but straightforward computation using Lemma 3.2. The
fact that Q is symmetric follows from the computation

Q(u, v)−Q(v, u) = div [u, v]− u(div v) + v(div u) = 0.

�

The terms of (18) are for the most part relatively simple, and thus we
can determine the sign of the curvature quite easily, at least in special cases.

Corollary 3.8. If N = M = S1 and if

xϕ′(x) +
ϕ(x)2

λ(x)
≥ 0 for all x ≥ 0, (20)

then the sectional curvature (18) of C∞(N,M × R) is nonnegative in all
sections.

Proof. In one dimension the first and third terms of (18) always vanish, so
positivity of the second term is sufficient. �

Note that we cannot prove strict positivity: if f , g, u, and v are C∞

functions with disjoint supports in S1, we will have 〈〈R(U, V )V,U〉〉 = 0.

Remark 3.9. For a polytropic fluid, where p(ρ) = Aργ for some constants A
and γ > 1, it is easy to check that the condition (20) is equivalent to γ ≤ 3.
This is true in many applications (e.g., for typical gases at room temperature,
γ = 1.4; later we will consider the special cases γ = 3 in one dimension and
γ = 2 in two dimensions).

In higher dimensions the formula gets more complicated, and ensuring
positivity of curvature is more difficult. We choose two examples for which
it is easy to compute the Jacobi fields (and hence completely determine the
linearized stability) in order to illustrate the relationship between positive
curvature and stability. We emphasize that since the Riemannian exponential
map is not smooth or even C1, we cannot rigorously prove any relationship
between positive curvature and boundedness of Jacobi fields using tools like
the Rauch theorem, even for short time. Hence these computations should be
viewed as intuitive guides rather than directly useful for stability analysis.

Example 3.10. Suppose M = T2 with flat Riemannian metric and u is a
velocity field of the form u = ω(x) ∂

∂y . Then for any pressure function p(ρ),

the velocity field u is a solution of the steady compressible Euler equations

∇uu = −1

ρ
grad p(ρ), div (ρu) = 0 (21)

with constant density ρ ≡ 1. Writing U =
(
u, ρ/λ(ρ)

)
and V =

(
v, ρ/λ(ρ)

)
,

the curvature is given by

〈〈R(U, V )V,U〉〉 =
ϕ′(1) + ϕ(1)2/λ(1)

λ(1)2

∫
T2

(div v)2 dx dy. (22)
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This works because ∇uu = 0 for such a velocity field, which forces ρ
to be constant. Since Q(z, z) integrates to zero for any velocity field z, the
corresponding terms disappear.

Example 3.11. Suppose M is the unit disc in R2. Let u = ∂
∂θ be a rotational

velocity field. Suppose that the pressure function is given by p(ρ) = c2ρ2/2
for some constant c, so that λ(ρ) = 1

c2 and ϕ(ρ) = 1
2c2 .

Then u is a solution of the steady Euler equation (21) with density

function ρ(r) = r2

2c2 , and the sectional curvature in directions U =
(
u, ρ/λ(ρ)

)
and V =

(
ku, ρ/λ(ρ)

)
for some constant k is given by

〈〈R(U, V )V,U〉〉 = −π(k − 1)2

48c2
.

To see this, just notice that since f = g = ρ/λ(ρ) in (18), it reduces to

〈〈R(U, V )V,U〉〉 =
c2

4

∫
M

ρ2(div z)2 dµ+
c2

2

∫
M

ρ2Q(z, z) dµ,

where z = v − u. Now div z = 0 while Q(z, z) = −2(k − 1)2, and the rest is
an easy computation.

Remark 3.12. The geometric approach of Smolentsev [Sm], using the Jacobi
metric, yields an alternative sectional curvature formula; let us compute its
sign. For simplicity we will work in the one-dimensional case. In this case
the configuration space is D(S1), and it is natural to compute the sectional
curvature at an η ∈ D(S1) in a plane spanned by U = u◦η and V = v◦η. We
can suppose the fields are normalized so that 〈〈U, V 〉〉 =

∫
S1 ρ(x)u(x)v(x) dx =

0, and 〈〈U,U〉〉 = 〈〈V, V 〉〉 = 1. After some simplifications, the formula of

Smolentsev then yields that the sectional curvature K̃ of D(S1) in the Jacobi
metric is given by

K̃ =
1

4(E − Φ(η))2

[
2

∫
S1

ρp′(ρ)(u′2 + v′2) dx

+
3
( ∫

S1 p
′(ρ)ρ′v dx

)2
+ 3
( ∫

S1 p
′(ρ)ρ′u dx

)2 − ∫
S1 p

′(ρ)2ρ′2/ρ dx

E − Φ(η)

]
.

Clearly the fact that the first term involves (u′2 +v′2) implies that for typical
u and v we obtain positivity.

But we now ask whether this curvature can ever be negative. Now the
parameter E is arbitrary, as long as E > Φ(η0), and thus the term 1/[E−Φ(η)]
can be made arbitrarily large. In addition, for a given ρ and p, we can certainly
choose u and v so that

∫
S1 p

′(ρ)ρ′v dx =
∫
S1 p

′(ρ)ρ′u dx = 0. Hence for any
nonconstant density ρ, for values of E sufficiently close to Φ(η) there will be
velocity fields u and v such that the sectional curvature is approximately

K̃ ≈ − 1

4(E − Φ(η))3

∫
S1

p′(ρ)2ρ′2/ρ dx < 0.

We mention this only to emphasize that the Jacobi-metric approach is
fundamentally different from our approach as far as curvature and stability
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predictions go, in spite of the fact that both generate the same geodesic
equations.

4. Jacobi fields and linear stability of compressible motion

In this section we compute some examples of Jacobi fields explicitly, partly to
illuminate the Lagrangian stability theory and partly to discuss the properties
of the Riemannian exponential map. We work with the case p(ρ) = 1

3ρ
3 on the

circle (where the Euler equations (1)–(2) reduce to the Burgers equation and

can be solved fairly explicitly) and the case p(ρ) = c2

2 ρ
2 in two dimensions.

Note that although we have formulas for the covariant derivative (11)
and the curvature (18), which in principle allow us to study the Jacobi equa-
tion directly, the formulas are complicated enough and there is enough can-
cellation in them to make them more trouble than they are worth. Instead
we work directly with the linearizations of equations (1)–(2).

Theorem 4.1. Consider a family ζ(s, t) of geodesics in C∞(N,M × R), de-
pending on a small parameter s, with tangent vectors satisfying the condition
of Corollary 3.5, with ζ(0, t) = (η(t), F (t)) and ζ(s, 0) = id for all s. Let u
and ρ be the solutions of (1)–(2), related to η through (3) and (5).

Let J(t) = ∂ζ
∂s (0, t) be the corresponding Jacobi field. Then J(t) =

(j(t) ◦ η(t), G(t)) for some vector field j(t) and function G(t), which satisfy

σ = −div (ρj) and ˙G(t) = g(t) ◦ η(t) along with the linearized Lagrangian
equations

g = 2ϕ(ρ)σ/λ(ρ)2 + jρ/λ(ρ) and
∂j

∂t
+ [u, j] = v (23)

and the linearized Euler equations

∂σ

∂t
+ div (σu) + div (ρv) = 0 (24)

∂v

∂t
+∇uv +∇vu+ grad

(
h′(ρ)σ

)
= 0, (25)

where h is the function defined by h′(ρ) = p′(ρ)/ρ.

Proof. Write ζ(s, t) =
(
η(s, t), F (s, t)

)
, with u(s, t) and ρ(s, t) such that ηt =

u ◦ η and ρ ◦ ηJ(η) = 1. Define σ = ∂s
∣∣
s=0

ρ and v = ∂s
∣∣
s=0

u. Differentiating

(1) and (2) with respect to s yields (24) and (25). Differentiating ∂tF =(
ρ/λ(ρ)

)
◦ η with respect to s gives

∂G

∂t
=
∂f

∂s
◦ η
∣∣
s=0

+
〈

grad f ◦ η, ∂η
∂s

〉∣∣
s=0

,

which reduces to the first part of (23). The second part of (23) comes from

differentiating the flow equation (5) and using the general formula D
∂s

∂η
∂t =

D
∂t
∂η
∂s pointwise on M (see e.g., do Carmo [dC]). Finally the relationship

σ = −div (ρj) comes from differentiating equation (3). �
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4.1. The one-dimensional case

Consider the one-dimensional caseM = S1 (corresponding to periodic motion
on R). We will assume p(ρ) = 1

3ρ
3; this is one of the cases that can be solved

explicitly (see Courant-Friedrichs [CF], Chap. III, Sect. 28), which allows us
to write down all the Jacobi fields explicitly as well.

Theorem 4.2. Suppose (η, F ) is a compressible geodesic as in Corollary 3.5
with density ρ and velocity u on S1, with pressure function given by p(ρ) =
ρ3/3. Consider a Jacobi field along (η, F ) as in Theorem 4.1 with initial
condition J(0) = 0 and J ′(0) = (v0, 0). Then as long as the solution exists
we have

‖j(t)‖L∞ ≤ t‖v0‖L∞ . (26)

Proof. In one dimension with p(ρ) = ρ3/3, equations (1) and (2) become
ut + uux + ρρx = 0 and ρt + uρx + ρux = 0. We thus find that the functions
α+ = u+ρ and α− = u−ρ both satisfy Burgers’ equation: αt+ααx = 0. Let
ξ± be the flow of α±; then of course we have ∂2t ξ± = 0, the solution of which
is obviously ξ(t, x) = x + tα0(x). Hence α± satisfy the implicit equations
α0(x) = α

(
t, x + tα0(x)

)
. If χ± denotes the spatial inverse of ξ±, then we

have α±(t, x) = α0

(
χ±(t, x)

)
.

The Jacobi equations (23)–(25) in this case are

(ρj)x = −σ, jt + ujx − jux = v, (27)

σt + (σu+ ρv)x = 0, vt + (uv + σρ)x = 0. (28)

Define β+ = v+σ and β− = v−σ. Then the functions β± satisfy the linearized
Burgers equation

βt + αβx + αxβ = 0.

It is easy to see that the solution is

β±(t, x) =
v0
(
χ(t, x)

)
ξx
(
t, χ(t, x)

) = v0
(
χ(t, x)

)
χx(t, x),

since σ(0, x) = 0 implies β±(0, x) = v0(x). Solving for σ and v, equations
(27) imply

ρ(t, x)j(t, x) =
1

2

∫ χ−(t,x)

χ+(t,x)

v0(y) dy. (29)

Now since the inverse flows χ± satisfy χ±(t, x) = x− tα±(t, x), formula
(29) yields

ρ(t, x)|j(t, x)| ≤ 1

2
sup
y∈S1

|v0(y)||χ−(t, x)− χ+(t, x)|

≤ t

2
‖v0‖L∞ |α+(t, x)− α−(t, x)|

= t ρ(t, x)‖v0‖L∞ ,

which implies (26). �
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Recall that the curvature is nonnegative by Corollary 3.8 but not strictly
positive. In fact although our γ = 3 is the critical case in (20), which makes
all terms but the last in (18) vanish, the last term is generally positive, since
we cannot expect the function f = ρ/λ(ρ) to coincide with the function g
satisfying (23). Hence the curvature is nonnegative but sometimes positive,
and the linear growth of Jacobi fields aligns with our intuition and is the
best we can expect. This is a sort of weak instability: polynomial but not
exponential growth of the Lagrangian perturbations.

We can also use this explicit solution to establish the lack of smoothness
of the Riemannian exponential map. Our technique involves analyzing the
conjugate points along a particular geodesic, as in [M2], [CK], and [P4]. The
idea is that although the exponential map is continuous in various function
spaces (see Kato [K]), it cannot be C1 in any Banach space: if it were, then the
inverse function theorem and the fact that its derivative at 0 is the identity
map would imply the existence of a small interval on the geodesic in which
no two points are conjugate (see e.g., do Carmo [dC]). Hence we will prove
the exponential map cannot be C1 by finding a particular geodesic γ such
that γ(tn) is conjugate to γ(0) for a sequence of times tn converging to 0.

Theorem 4.3. Let Hs(S1, S1×R) denote the closure of C∞(S1, S1×R) in the
Sobolev Hs topology, and consider the weak Riemannian metric with λ(ρ) =
3/ρ. Then the Riemannian exponential map cannot be C1 for any s > 3/2.

Proof. By (10) and (15), this choice of λ gives p(ρ) = ρ3/3 as in Theorem
4.2. A particular solution of the equaitons is ρ(t, x) = u(t, x) = 1 for all t
and x. Let γ = (η, F ) be the corresponding geodesic as in Corollary 3.5; to
prove that γ(0) and γ(T ) are conjugate, we need to find a Jacobi field with
J(0) = J(T ) = 0. By theorem 4.1 we can write J(t) = (j ◦ η,G) where j
satisfies (27) and ∂G

∂t = g ◦ η, and we can compute that g(t, x) = 2
3σ(t, x).

For this solution we have (as in the proof of Theorem 4.2) that α+(t, x) =
2 and α−(t, x) = 0 for all t and x, so that the inverse flows are χ+(t, x) = x−2t
and χ−(t, x) = x. Thus we obtain

σ(t, x) = 1
2

(
v0(x− 2t)− v0(x)

)
and v(t, x) = 1

2

(
v0(x− 2t) + v0(x)

)
.

Formula (29) yields

j(t, x) =
1

2

∫ x

x−2t
v0(y) dy

and since the flow of u is η(t, x) = x+ t, we obtain

G(t, x) =

∫ t

0

g
(
τ, η(τ, x)

)
dτ =

1

3

∫ t

0

(
v0(x− τ)− v0(x+ τ)

)
dτ.

Now suppose v0(x) = cosnx for some integer n. Then we have

j(t, x) =
sinnt cosn(x− t)

n

G(t, x) =
4

3n
sin (nx) sin2 (nt/2),
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and we see that there are conjugate points at T = 2πm
n for any positive

integer m. Thus there is no neighborhood of 0 on which the derivative of the
exponential map is an invertible linear map. �

4.2. The two-dimensional case

We can do everything fairly explicitly in one dimension, at least assuming
a simple pressure function. In two or more dimensions, explicit nonsteady
solutions are much harder to come by. Hence we will just work out the Jacobi
fields and Lagrangian stability for the two special steady solutions already
studied in Section 3.2, via Proposition 3.10 and Example 3.11.

Theorem 4.4. Suppose M = T2. Suppose u = ω ∂
∂y , for some constant ω, is

a steady solution of the Euler equation (21), with constant uniform density
ρ ≡ 1. Let c be the speed of sound, defined by c2 = p′(1), for an arbitrary
function p(ρ). Let γ = (η, F ) be the geodesic as in Corollary 3.5. Let J =
(j ◦ η,G) be a Jacobi field along γ as in Theorem 4.1, with initial conditions
j(0, x) = 0 and jt(0, x) = v0(x) for some velocity field v0. Then j is bounded
in time if and only if v0 is a gradient; otherwise j grows linearly in time at
every point.

Proof. Equations (23)–(25) reduce in this case to

(∂t + ω∂y)j = v, (∂t + ω∂y)σ + div v = 0, (∂t + ω∂y)v + c2 gradσ = 0.

Eliminating σ we get

(∂t + ω∂y)2v = c2 grad div v,

with initial condition satisfying

vt(0, x, y) + ωvy(0, x, y) = 0. (30)

It is easy to write down solutions: we expand v using the Hodge decomposi-
tion as v = grad f + w, where f is some mean-zero function and w is some
divergence-free vector field which both depend on time. Then f and w satisfy
the equations

(∂t + ω∂y)2f = c2∆f and (∂t + ω∂y)2w = 0.

The solution satisfying (30) is clearly

f(t, x, y) =
∑
n

an cos (cλnt)φn(x, y − ωt)

w(t, x, y) = z(x, y − ωt),

where ∆φn = −λ2nφn, the numbers an are some constants, and z is some
divergence-free field. Integrating once to solve for j we obtain

j(t, x, y) =
∑
n

an sin (cλnt)

cλn
gradφn(x, y − ωt) + tz(x, y − ωt).

Every component of the gradient part is bounded in time, while any nontrivial
divergence-free part grows in time. �
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Note that we obtain the behavior of Jacobi fields regardless of the cur-
vature: in Proposition 3.10 we showed the curvature was nonnegative if and
only if ϕ′(1) + ϕ(1)2/λ(1) ≥ 0, which e.g., happens for pressure functions
p(ρ) = Aργ if and only if 1 < γ ≤ 3. On the other hand even if this quantity
is negative, it does not change the Jacobi fields in any way.

Now we consider our final example: a rigidly rotating disc in the plane, as
in Example 3.11. We assume the steady solution takes the form u = ω ∂

∂θ for

some constant ω, and that the pressure function is given by p(ρ) = c2ρ2/2, so
that the Euler equation (1) is ut+∇uu = −c2 grad ρ for some constant c (the
speed of sound). In this case we must have ρ′(r) = ω2r/c2. Now the stability
analysis depends on the boundary conditions we use. For our computations it
is simpler to work with the free-boundary case (without surface tension), in
which the density is specified on the boundary by ρ = ρ0 for some constant. If
instead we worked with a fixed boundary (e.g., the fluid in a solid container),
then the density would be unspecified at the boundary but the velocity would
be required to be tangent to the boundary.

We may assume by rescaling units that the boundary is at r = 1 and that

ρ0 = 1. Then ρ(1) = 1 and ρ′(r) = ω2r/c2 imply that ρ(r) = ρ0− ω2

2c2 + ω2r2

2c2 .

Since the density must always be positive, we must have ρ0 >
ω2

2c2 for this
to make sense. Hence the velocity may exceed the speed of sound but not
more than by a factor of

√
2. Although in this supersonic region the evolution

equations are not hyperbolic, and hence the standard existence theory breaks
down, there is no apparent problem with the linearized equations in Theorem
4.1.

Now we analyze the linear stability of the uniformly rotating fluid. Al-
though stability can be analyzed for such fluids (and in much greater gen-
erality; see e.g., [HMRW]), we are interested in obtaining the explicit time-
dependence of solutions of the linearized equations in order to study growth
of the Jacobi fields as in Theorem 4.1. What is interesting about this com-
putation is that we can express all the perturbations in terms of discrete
Fourier modes: in general the fact that the corresponding operators are not
self-adjoint means that we should expect a continuous spectrum as well as a
discrete spectrum, but here the spectrum is purely discrete. The other rea-
son this is interesting is that we don’t require an ansatz for the growth of a
perturbation; rather, the dependence is a consequence of the equations.

The only boundary condition for the linearized equations is that σ = 0
on the boundary, a result of ρ being prescribed. We note that Beyer and
Günther [BG] analyzed the Jacobi equations in this situation, in greater
generality but less detail.

Theorem 4.5. Suppose M is the unit disc in R2, with u = ω ∂
∂θ , a rigid

rotation for some constant ω. Further suppose that the barotropic fluid is
described by the pressure function p(ρ) = c2ρ2/2 for some constant c. We
assume the boundary conditions are such that the the density is a prescribed
constant but the velocity is unconstrained.
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Then all solutions of the linearized equations (24)–(25) are bounded in
time, and we can write the solutions explicitly as sums of functions which
look like Q(t, r, θ) = eiytq(r)ein(θ−ωt) for some real y, some n ∈ Z, and some
function q.

Proof. The linearized equations (24)–(25) are

σt + div (ρv + σu) = 0, (31)

vt +∇uv +∇vu = −c2 gradσ, (32)

with boundary condition σ = 0 when r = 1. To write these equations more
explicitly, we decompose the vector field ρv into its gradient and divergence-
free part (using the Hodge decomposition); more specifically

ρv = grad f + sgrad g =
1

ρ

((
fr + gθ/r

)
∂r +

(
fθ/r

2 − gr/r
)
∂θ

)
. (33)

Without loss of generality we can assume that g vanishes on the boundary,
although we cannot say anything yet about f on the boundary.

We easily compute that

∇vu =
ω

r
grad g − ω

r
sgrad f.

Using the explicit formulas for ρ, u, and v, we can rewrite (31) as

σt + ∆f + ωσθ = 0. (34)

Taking the divergence and curl, we obtain

σt + ωσθ + F = 0 (35)

Ft + ωFθ + 2ωG+ c2Λσ = 0 (36)

Gt + ωGθ − 2ωF + ω2σθ = 0, (37)

where Λσ = div (ρ gradσ), F = ∆f , and G = ∆g. By our free-boundary
assumption, σ vanishes on the boundary, and compatibility requires that F
and G have the same boundary conditions.

Since the hermitian operator Λ commutes with the antihermitian opera-
tor ∂θ, we can expand our functions in a mutual eigenbasis ζkn(r)einθ, where
Λ(ζkne

inθ) = −λknζkn(r)einθ, for some functions ζkn defined for k ∈ N and
n ∈ N. By the usual Sturm-Liouville theory, we see that λkn →∞ as k →∞
for any fixed n.

Then we can write

F (t, r, θ) =

∞∑
k=1

∑
n∈Z

Fkn(t)ζkn(r)einθ,
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and similarly for G and σ. Hence the coefficients satisfy the ordinary differ-
ential system

dσkn
dt

+ Fkn(t) = 0,

dFkn
dt

+ 2ωGkn(t)− c2λknσkn(t) = 0,

dGkn
dt
− 2ωFkn(t) + inω2σkn(t) = 0.

(38)

This is a constant-coefficient system, and its characteristic polynomial is
z3+(c2λkn+4ω2)z+2inω3 = 0. and we want to show that it has three distinct
imaginary roots in order to guarantee that σ, F , and G are all bounded in
time. Writing z = iy, we obtain

y3 − 3py − 2q = 0, where p = (c2λkn + 4ω2)/3 and q = nω3. (39)

Such a cubic has three distinct real roots if and only if p > 0 and q2 < p3.
So we want to show that c2λkn > ω2(3n2/3 − 4) for every n ∈ Z and every
k ∈ N. Obviously it is enough to show that c2λ1n > ω2(3n2/3 − 4).

To obtain this bound on the smallest eigenvalue, we use the Rayleigh
minimum principle. Let F be the space of smooth functions f : [0, 1] → R
such that f(1) = 0; then we can compute that

λ1n ≥ a inf
f∈F

∫ 1

0
rf ′(r)2 dr + n2

∫ 1

0
f(r)2/r dr∫ 1

0
rf(r)2 dr

+ b inf
f∈F

∫ 1

0
r3f ′(r)2 dr + n2

∫ 1

0
rf(r)2 dr∫ 1

0
rf(r)2 dr

,

where a = ρ0− ω2

2c2 and b = ω2

2c2 . The first term is exactly the Rayleigh quotient
for the Bessel operator, and hence it is minimized when f(r) = Jn(cnr) with
cn the first positive root of the Bessel function Jn; the minimum value is then
c2n. We claim the second quotient takes the minimum value n2+1: to see this,
write h(r) = rf(r), so that h(0) = h(1) = 0, and∫ 1

0
r3f ′(r)2 dr∫ 1

0
rf(r)2 dr

= 1 +

∫ 1

0
rh′(r)2 dr∫ 1

0
1
rh(r)2 dr

,

and the infimum of this last term is zero, as can be seen by computing it for
functions h(r) = − ln r

1+α(ln r)2 for α > 0; we obtain α
2 , so we can make it as close

as desired to zero. As a result we have λ1n ≥ ac2n+b(n2+1) > ω2

2c2 (n2+1). The

fact that c2λ1n > ω2(3n2/3−4) now follows from the fact that n2 +7 > 6n2/3

for every integer n.

Hence all solutions of the system (38) oscillate in time; specifically we
can write σkn(t) = σ1kne

iy1knt + σ2kne
iy2knt + σ3kne

iy3knt for some distinct
reals yikn, and similarly for Fkn and Gkn. Having obtained such a solution for
F and G, we can then find f = ∆−1F and g = ∆−1G. Here g is assumed to
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vanish on the boundary, and we can obtain the boundary values for f using
(31)–(32). �

It is now trivial to figure out how Jacobi fields grow, using (23).

Corollary 4.6. Let γ = (η, F ) be a geodesic in the space C∞(D2, D2 × R)
for which the corresponding tangent vector satisfies the condition of Corol-
lary 3.5, with velocity u and density ρ given as in Theorem 4.5. Then Ja-
cobi fields are bounded for all time if the initial perturbation v0 satisfies∫ 2π

0
curl

(
ρ(r)v0(r, θ)

)
dθ = 0 for every r.

Proof. From (23) we see that jt + ωjθ = v, and we expressed v as a sum of
components of the form v(t, r, θ) = eiytein(θ−ωt)q(r) for some real number y.
Hence the corresponding component of the Jacobi field is

j(t, r, θ) = ein(θ−ωt)q(r)

∫ t

0

eiys ds.

This will be bounded for all time if and only if y 6= 0. From equation (39),
we see that y = 0 iff n = 0. It is easy to check that we have nonzero n = 0
components if and only if the condition of the theorem is satisfied. �

This is another illustration of the fact that compressible flows tend
to be more Lagrangian stable than incompressible flows. There are many
Jacobi fields which are bounded in time in the compressible case, while in
the incompressible case the curvature along a rigid rotational flow vanishes
identically (it satisfies both the nonnegativity condition of Misio lek [M1] and
the nonpositivity condition of the author [P3]) and thus all Jacobi fields grow
linearly in time.

References
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