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Abstract. This article consists of a detailed geometric study of the one-dimensional vorticity
model equation

ωt + uωx + 2ωux = 0, ω = Hux, t ∈ R, x ∈ S1 ,

which is a particular case of the generalized Constantin-Lax-Majda equation. Wunsch showed that
this equation is the Euler-Arnold equation on Diff(S1) when the latter is endowed with the right-

invariant homogeneous Ḣ1/2–metric. In this article we prove that the exponential map of this
Riemannian metric is not Fredholm and that the sectional curvature is locally unbounded. Fur-
thermore, we prove a Beale-Kato-Majda-type blow-up criterion, which we then use to demonstrate
a link to our non-Fredholmness result. Finally, we extend a blow-up result of Castro-Córdoba to
the periodic case and to a much wider class of initial conditions, using a new generalization of an
inequality for Hilbert transforms due to Córdoba-Córdoba.
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Introduction

In this paper we study geometric properties of the equation

(1) ωt + uωx + 2ωux = 0, ω = Hux, t ∈ R, x ∈ S1

where H is the Hilbert transform given by the integral transform

(2) (Hu)(x) =
1

2π
p.v.

∫ 2π

0
u(y) cot

(
x− y

2

)
dy

or in terms of the Fourier transform as

(Hu)(x) = −i
∑
n∈Z

sign(n)ûn e
inx,

where ûn are the Fourier coefficients of u. Equation (1) is a particular case of the generalized
Constantin-Lax-Majda equation introduced in [39] (corresponding to the parameter a = −1

2 in the
notation of that paper). The original Constantin-Lax-Majda equation [13] is considered the simplest
model of the blowup mechanism for the three-dimensional equations of ideal fluid mechanics, and
related models are still being studied in this context [12]. Wunsch [48] showed that equation (1)
can be recast as the Euler-Arnold equation on Diff(S1) endowed with a right-invariant degenerate
metric. For this reason we will refer in the remainder of the article to equation (1) as the Wunsch
equation.

To obtain the geometric interpretation of (1), Wunsch equipped the space Diff(S1) with the
right-invariant Riemannian metric given at the identity by

(3) 〈〈u, u〉〉Ḣ1/2 =

∫
S1

uHux dx = 2π
∑
n∈Z
|n| |ûn|2 if u(x) =

∑
n∈Z

ûne
inx.

Here the metric is both weak in that it does not generate a topology in which Diff(S1) is a man-
ifold, and degenerate since constant vector fields have zero length in this metric. The latter can
be avoided if we work on Diff(S1)/Rot(S1), corresponding to the homogeneous space of diffeo-
morphisms modulo rotations. The local well-posedness of the geodesic equation induced by the
homogeneous metric Ḣ1/2 on Diff(S1)/Rot(S1) has been shown in [23]. Alternatively we can con-
sider the group of diffeomorphisms fixing a single point.

The space Diff(S1)/Rot(S1) with the Ḣ1/2-metric (3) has been studied geometrically by many
authors, due to its appearance as a model for string theory [8] and due to its structure as an
infinite-dimensional Kähler manifold [30]. It may be viewed as the space of densities on the circle,
or as a coadjoint orbit of the Virasoro group, or as the space of univalent holomorphic functions in
the disc, or as the space of closed Jordan curves in the complex plane; each of these pictures gives
different geometric information. It is related to the space Diff(S1)/PSL2(R) with the Ḣ3/2-metric

which arises in Teichmüller theory [38, 25]. Formulas for sectional curvatures of the Ḣ1/2 and

Ḣ3/2-metrics were computed using various methods in [8, 30, 50, 26]. See the book of Sergeev [44]
for a recent survey of these and related topics. Our emphasis here is different since we will be
concerned primarily with the geodesic equation, which has mostly not been studied.

A nondegenerate metric on Diff(S1) with similar properties is denoted by µH1/2 and given at
the identity by

(4) 〈〈u, u〉〉µH1/2 =

∫
S1

(µ(u) +Hux)u dx,

where

µ(u) :=
1

2π

∫
S1

u dx.



GEOMETRIC INVESTIGATIONS OF A VORTICITY MODEL EQUATION 3

The Euler-Arnold equation is almost the same as (1):

(5) ωt + uωx + 2ωux = 0, ω = µ(u) +Hux, t ∈ R, x ∈ S1;

only the definition of the momentum ω changes slightly. Even more, zero mean solutions of the
above equation are also solutions to the Wunsch equation (1), as we show in Lemma 4. As an
analogue of the µ–Hunter–Saxton equation [29], we will also refer to this equation as µ–mCLM or

µ–Wunsch equation. We may view the additional term in the µH1/2-metric as analogous to the
projection onto the space of harmonic (constant) vector fields in the Euler equation on T2 or T3;
the fact that mean-zero fields are preserved under the flow is analogous to the preservation of the
average velocity of an ideal fluid [27].

We will show that the µH1/2–metric satisfies the conditions derived in [21]. Thus similarly as

for the Ḣ1/2–metric the smoothness of the metric and the spray on the Sobolev completions follow.
The main advantage in this situation is that we can work on the full diffeomorphism group Diff(S1)
rather than on a subgroup or a homogeneous space. In addition we note for future reference that a
very simple explicit solution of (5) is u(t, x) ≡ 1 (so that ω(t, x) ≡ 1), corresponding to unit-speed

rotation of the circle. Note that there is no corresponding solution in the Ḣ1/2 case, and in fact it
is unclear if there are any time-independent solutions of (1) at all for that case.

Another related metric is the full H1/2-metric

〈〈u, u〉〉H1/2 =

∫
S1

(u+Hux)u dx ,

with corresponding Euler-Arnold equation

(6) ωt + uωx + 2ωux = 0, ω = u+Hux, t ∈ R, x ∈ S1;

Although we will focus our attention on the µH1/2-metric, most of the results in this article continue
to hold for the full H1/2-metric and for the degenerate Ḣ1/2-metric. Throughout the paper we will
comment on the necessary changes to deal with these related situations. The geometric picture
for the Ḣ1/2-metric, which is slightly different from the other two cases, is separately discussed in
Appendix A.

Equations (1), (5), and (6) are interesting geometrically since the Sobolev index s = 1
2 of the

corresponding metrics is critical for several important properties. For example, the Riemannian
exponential map (which takes an initial velocity u0 to η(1) ∈ Diff(S1), where η is the flow defined
by ηt = u ◦ η and η(0) = id) is C∞ in any Sobolev completion Diffq(S1) for q > 3/2 and also in the
smooth category, and this only happens for the weak Hs-metric if s ≥ 1

2 . On the other hand, [3]
proves that the geodesic distance (the infimum of lengths of smooth curves) vanishes in this metric,
and this only happens for the weak Hs-metric if s ≤ 1

2 . The explanation for this paradoxical
behavior is that although geodesics minimize between diffeomorphisms that are close in the strong
topology (H2 or stronger), there are highly oscillatory shortcuts that leave small balls. Finally [36]
proved that the Riemannian exponential map is a nonlinear Fredholm map (that is, its differential
has finite-dimensional kernel and cokernel and closed range) for the right-invariant Hs-metric when
s > 1

2 , but did not consider the critical case s = 1
2 .

Contributions of the article: In this paper we show that the exponential maps for the
Ḣ1/2, the H1/2 and the µH1/2-metrics are not Fredholm for essentially the same reason that
Fredholmness fails for the L2-metric on Diffµ(M3), the volume-preserving diffeomorphism group of
a three-dimensional manifold [18]: there are linearly independent Jacobi fields Jn along geodesics
η(t) = expid(tu0) with Jn(0) = 0 and Jn(tn) = 0, where tn is a sequence of times converging to
some T ; we use these to show that the range of (d expid)Tu0 cannot be closed. In fact we can find
conjugate points very easily using a pointwise approximation of the Jacobi equation in much the
same way as in [41]. The results in this section will be formulated for the µH1/2-metric only, but

they continue to hold for the full H1/2-metric and the Ḣ1/2-metric without any significant changes.
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In Section 3 we study the blow-up behavior of equations (1) and (5). We prove a Beale-Kato-
Majda-type blow-up criterion, which we then use to demonstrate a link to our non-Fredholmness
result. Furthermore we extend a blow-up result of Castro and Córdoba [11] to the periodic case
and a wider class of initial conditions, using a special case of the new pointwise inequality

H(fHΛpf) + fΛpf ≥ 0, Λ = HDx

valid for any f : S1 → R and any p > 0. This inequality extends a result of Córdoba-Córdoba [14],
who proved the case p = 1; we expect it to have many other applications in PDEs.

Finally, in Section 4 we show that the sectional curvature for the µH1/2–metric admits both signs
and is locally unbounded from above. It is unknown if the Ḣ1/2-metric has any negative sectional
curvature; we conjecture that it is positive as happens for the Ḣ1-metric [32].

In Appendix A we discuss the geometric picture for the homogeneous Ḣ1/2-metric on S1, and in
Appendix B we discuss all the metrics for the case of the diffeomorphism group on the non-compact
manifold R.

1. Geometric background material

In this part we will study the µH1/2-metric on the diffeomorphism group of the circle, while
recalling the major results for general Euler-Arnold equations. For vector fields u, v ∈ TidDiff(S1)
it is given by

〈〈u, v〉〉µH1/2 =

∫
S1

(µ(u) +Hux) v dx .

This inner product is then extended to a right invariant metric on all of Diff(S1) via right-
translation:

G1/2
ϕ (X,Y ) = 〈〈X ◦ ϕ−1, Y ◦ ϕ−1〉〉µH1/2 .

1.1. The geodesic equation. First recall that on TidDiff(S1) the Lie bracket is given by adu v =
vux − uvx (the negative of the usual Lie bracket of vector fields, see Arnold-Khesin [2]), while the
group adjoint is given by

Adη v = TLη.TRη−1 .v = (ηxv) ◦ η−1.

Let Λ denote the first-order self-adjoint differential operator given by

Λu =
1

2π

∫
S1

u dx+Hux

so that the µH1/2-metric can be written as

〈〈u, v〉〉 =

∫
S1

uΛv dx.

We first compute the operators ad>u and Ad>η from the Lie algebra g = TidDiff(S1) to itself. This
computation appears in [36, 21] and elsewhere; we repeat it here for the reader’s convenience.

Proposition 1. If v ∈ TidDiff(S1), then for any u ∈ TidDiff(S1) and η ∈ Diff(S1), we have

(7) ad>u v = Λ−1(2uxΛv + uΛvx)

and

(8) Ad>η v = Λ−1
[
η2
x(Λv) ◦ η

]
.
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Proof. Let w be an arbitrary vector field on S1. Then

〈〈ad>u v, w〉〉 = 〈〈v, aduw〉〉 =

∫
S1

(Λv)(wux − uwx) dx

=

∫
S1

w [uxΛv + ∂x(uΛv)] dx = 〈〈w,Λ−1 [uxΛv + ∂x(uΛv)]〉〉,

because Λ : C∞(S1)→ C∞(S1) is a topological linear isomorphism, and we conclude (7). Similarly
we have

〈〈Ad>η v, w〉〉 = 〈〈v,Adη w〉〉 =

∫
S1

(Λv)ηx ◦ η−1w ◦ η−1 dx

=

∫
S1

[(Λv) ◦ η] η2
xw dx = 〈〈w,Λ−1

[
η2
x(Λv) ◦ η

]
〉〉,

and formula (8) follows. �

Using the formula for ad>, we obtain the geodesic equation:

Corollary 2. The geodesic equation of the µH1/2-metric on Diff(S1) is given by

(9) ηt ◦ η−1 = u, ωt + uωx + 2ωux = 0, ω =
1

2π

∫
S1

u dx+Hux.

Remark 3. Let η be the flow of the time-dependent vector field u(t). Then

d

dt
Ad>η u = Ad>η

(
ut + ad>u u

)
.

Therefore, if u is a solution of the Euler equation (9), then Ad>η(t) u(t) = u(0) and we get

(10) ηx(t, x)2ω (t, η(t, x)) = ω0(x).

1.2. Connections to the Wunsch equation. In the following we want to connect solutions to
the geodesic equation of the µH1/2-metric to solutions to the Wunsch equation.

Lemma 4. The mean of the momentum
∫
S1 ω(t, x) dx remains constant along any solution to (9).

Thus any solution to (9) that has zero initial mean velocity
∫
S1 u(0, x) dx = 0 has zero mean velocity

for all time t and is therefore also a solution to the Wunsch equation.

A similar statement has been proven for the µ-Hunter–Saxton equation (resp. the Hunter–
Saxton equation) in [29] and more generally this statement continues to hold for any pair of metrics

(µHs, Ḣs) where s > 0; here Ḣs generally denotes an inner product vanishing on constant vector
fields and otherwise equivalent to Hs.

Proof. Using the differential equation governing the evolution for ω we have

d

dt

∫
S1

ω(t) = −
∫
S1

u(t)ωx(t) + 2ux(t)ω(t) =

∫
S1

u(t)ωx(t) =

∫
S1

u(t)∂xΛu(t) = 0,

because the operator ∂xΛ is L2 skew-symmetric. Now∫
S1

ω(t) =

∫
S1

µ(u(t)) +

∫
S1

H∂xu(t) =

∫
S1

u(t).

Thus the mean of u(t) is constant in time and the conclusion follows since (9) reduces to the mCLM
equation if the mean of u(0) vanishes. �
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1.3. Local well-posedness. There are two ways to solve equation (4); the first one uses the
second-order spray method of Ebin-Marsden [17], while the other one is based on the following
lemma due to Ebin [16]. (See also Majda-Bertozzi [33], where the latter is described as the “particle-
trajectory method.”)

Lemma 5. Let G be a Lie group with a right-invariant metric. A smooth curve η(t) is a geodesic
issued from the neutral element e with initial velocity u0 iff η(t) is an integral curve of the vector
field

X(η) :=
(
TLη−1

)>
u0.

Proof. Let η(t) be a a geodesic, then we have

dη

dt
= TRηu

where the Eulerian velocity u satisfies the Euler-Arnold equation

du

dt
= −B(u, u)

and B(u, v) := 1
2

(
ad>u v + ad>v u

)
is the Arnold operator. The Euler-Arnold equation implies

d

dt

(
Ad>η(t) u(t)

)
= 0,

so that u(t) = Ad>η−1 u0. Therefore, the flow equation becomes

dη

dt
= (TRη)

(
Ad>η−1

)
u0 = (TRη) (TRη)

> (TLη−1

)>
u0 =

(
TLη−1

)>
u0,

because Rη is a Riemannian isometry and thus (TRη) (TRη)
> = idTηG. �

Consider now the special case where G = Diff(S1) is the Fréchet Lie group of orientation-
preserving diffeomorphisms of the circle, with a right-invariant metric induced by an inertia operator
A:

〈〈u,w〉〉id :=

∫
S1

(Au)w dx, u, w ∈ Vect(S1),

where A : C∞(S1) → C∞(S1) is a L2-symmetric Fourier multiplier. That is A is continuous and
commutes with ∂x.

Starting with the Euler equation

ut = − ad>u u = −A−1 (2uxAu+ u(Au)x) ,

we compute the second order spray as follows. Let η(t) be a geodesic and v(t) := ηt(t) so that
v = u ◦ η. We get

vt = ut ◦ η + (ux ◦ η)(u ◦ η)

which leads to

vt =
{
A−1

(
− 2uxAu− u(Au)x +A(uux)

)}
◦ η =

{
A−1

(
[A, uD]u− 2(Au)ux

)}
◦ η.

The geodesic spray can thus be written as:

(11)

{
ηt = v,

vt = Sη(v),

where
Sη(v) :=

(
TRη ◦ S ◦ TRη−1

)
(v),

and
S(u) := A−1 {[A, uD]u− 2(Au)(Du)} ,
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with initial conditions η(0) = id and v(0) = u0.
On the other way, we have

TLη−1v =
1

ηx
v.

where η ∈ Diff(S1) and v ∈ TηDiff(S1). Therefore, for every u ∈ Vect(S1), we have

〈〈TLη−1v, u〉〉id = 〈〈v,
(
TLη−1

)>
u〉〉η

and we get (
TLη−1

)>
u = A−1

η

(
1

η2
x

Au

)
,

where
Aη := TRη ◦A ◦ TRη−1 .

Ebin’s reformulation leads thus to the first order Cauchy problem

(12) ηt = A−1
η

(
1

η2
x

Au0

)
,

with initial condition η(0) = id. We can write (12) more explicitly as an ODE for ρ = ηx involving
an integral transform, but we will not pursue this since it is not necessary here.

In both cases, we need to show that these vector fields extend smoothly on some Hilbert approx-
imation manifolds Dq(S1) of Diff(S1), that we review briefly first. Let Hq(S1) be the completion
of C∞(S1) for the norm

‖u‖Hq :=

(∑
k∈Z

(1 + k2)q |ûk|2
)1/2

,

where q ∈ R and q ≥ 0. A C1 diffeomorphism η of S1 is of class Hq if for any lift η̃ to R, we have

η̃ − id ∈ Hq(S1).

For q > 3/2, the set Dq(S1) of C1-diffeomorphisms of the circle which are of class Hq has the
structure of a Hilbert manifold, modeled on Hq(S1) (see [17] or [28]). The manifold Dq(S1) is also
a topological group but not a Lie group (composition and inversion in Dq(S1) are continuous but
not differentiable). Note however, that, given ϕ ∈ Dq(S1),

u 7→ Rϕ(u) := u ◦ ϕ, Hq(S1)→ Hq(S1)

is a smooth map, and that

(u, ϕ) 7→ u ◦ ϕ, Hq+k(S1)×Dq(S1)→ Hq(S1)

is of class Ck.
Coming back to our problem, we have to show either that that (11) extends to a well-defined

and smooth second order vector field on Dq(S1), or that (12) extends to a well-defined and smooth
vector field on Dq(S1). Both problems require some kind of ellipticity condition, namely that A
extends to a topological linear isomorphism from Hq(S1) to Hq−r(S1) for some r ≥ 1. In the sequel,
we will assume that this ellipticity condition is fulfilled and take the index q such that q > 3/2 and
q ≥ r. Under these hypotheses, both vector fields are well defined on Dq(S1). The main problem
is to show that they are smooth.

It was shown in [21, Theorem 3.10] that the smoothness of the spray (11) reduces to show the
smoothness of the mapping

(13) η 7→ Aη, Dq(S1)→ L(Hq(S1), Hq−r(S1)).

Concerning the second problem (12), and given our choice of indices q, r, the mapping

η 7→ 1

η2
x

Au0, Dq(S1)→ Hq−r(S1)
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is smooth. Therefore, the smoothness of Ebin’s vector field

η 7→ A−1
η

(
1

η2
x

Au0

)
reduces to show that the mapping

(η, w) 7→ A−1
η (w), Dq(S1)×Hq−r(S1)→ Hq(S1)

is smooth, which is the same as showing the smoothness of (13) (see [21]).
Finally, if A is a differential operator with constant coefficients, it is just an exercise to show

that the mapping
η 7→ Aη, Dq(S1)→ L(Hq(S1), Hq−r(S1)),

is smooth (indeed real analytic). It was the goal of [21] to show that this result extends for a more
general class of non-local inertia operators. If A is a Fourier multiplier, we have

(14) (Au)(x) =
∑
n∈Z

a(n)ûne
inx,

where a : Z → R is a real even function, called the symbol of A. We will write A = a(D) or
A = op (a(ξ)). A Fourier multiplier A = a(D) is of class Sr if a is the restriction to Z of a smooth
function such that ∣∣∣a(n)(ξ)

∣∣∣ . (1 + |ξ|2)(r−n)/2, ∀n ∈ N.

It was shown in [21] that the mapping (13) is smooth, provided that A is of class Sr and r ≥ 1.
Moreover, this result is still true if a has some singularities at ξ = 0 like |ξ| or contains an additional
term like δ0(ξ).

As a consequence of this we obtain the following result concerning smoothness of the metric and
the spray.

Theorem 6. The µH1/2-metric and its geodesic spray extend smoothly to the Hilbert approxi-
mation manifolds Dq(S1) for all q > 3

2 . The corresponding exponential map is a smooth local

diffeomorphism from a neighborhood V of 0 onto a neighborhood U of the identity in Dq(S1).

Remark 7. A similar statement holds for the full H1/2-metric

〈〈u, u〉〉H1/2 =

∫
S1

u2 dx+

∫
S1

uHux dx,

and also for the degenerate Ḣ1/2-metric — here one has to consider the degenerate metric as a
metric on the subgroup of diffeomorphisms that preserve one point; see Appendix A.

Proof. The µH1/2-metric corresponds to the inertia operator

Λ := op (δ0(ξ) + |ξ|) .
This operator fulfills the above assumptions and thus we can apply the results of [21]. �

1.4. The induced geodesic distance. The induced geodesic distance of a Riemannian metric G
is defined as the infimum of the lengths of all paths that connect two given points:

distG(ϕ1, ϕ2) = inf

∫ 1

0

√
Gϕ(ϕt, ϕt) ,

where the infimum is taken over all paths ϕ : [0, 1] → Diff(S1) with ϕ(0) = ϕ1 and ϕ(1) = ϕ2. It
was very surprising when Michor and Mumford proved in [35] that the right invariant L2-metric
on Diff(S1) induces vanishing geodesic distance, i.e., any two diffeomorphisms ϕ1, ϕ2 ∈ Diff(S1)
can be connected by paths of arbitrary short length. This result was extended to the class of
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Sobolev-type metrics of order s ≤ 1
2 in [3, 4]. It turns out that this phenomenon also occurs for the

µH1/2-metric.

Theorem 8. The geodesic distance for the µH1/2-metric on Diff(S1) vanishes.

The proof for the homogeneous Ḣ1/2-metric is discussed in Appendix A.

Proof. The result follows from the fact that on a compact manifold the µH1/2-norm is bounded
from above by the H1/2-norm

〈〈u, u〉〉µH1/2 =
∑
n∈Z

(δ0(n) + |n|) |ûn|2 ≤
∑
n∈Z

(1 + |n|) |ûn|2 = 〈〈u, u〉〉H1/2

Now vanishing geodesic distance for the µH1/2-metric follows from the vanishing geodesic distance
result for the full H1/2-metric. For the convenience of the reader we will sketch the main arguments
of the proof given in [3] in our slightly different situation. The proof can be split in the following
two steps:

(1) The set Diff(S1)L=0 of all diffeomorphism that can be connected from the identity by paths
of arbitrary short length is a normal subgroup of the diffeomorphism group.

(2) Diff(S1)L=0 is non-trivial, i.e., there exists a diffeomorphism ϕ 6= id with ϕ ∈ Diff(S1)L=0.

Then the statement follows using that Diff(S1) is a simple group, i.e., it has no nontrivial normal
subgroups and thus DiffL=0(S1) needs to be equal to the whole connected component of the identity.

To prove the first statement let ψ1 ∈ Diff(S1) and ϕ1 ∈ Diff(S1)L=0. Now we consider a curve
t 7→ ϕ(t, ·) from the identity to ϕ1 with length less than ε. Then ψ(t) := ψ1 ◦ ϕ(t) ◦ ψ−1

1 connects

the identity to ψ1 ◦ ϕ1 ◦ ψ−1
1 . We will now show that the length of ψ(t) is smaller than a constant

times ε. Therefore we let u = ϕt ◦ ϕ−1. Then we calculate

Len(ψ−1
1 ◦ ϕ ◦ ψ1) =

∫ 1

0

∥∥(ψ′1 ◦ ψ−1
1 ) · (ϕt ◦ ϕ ◦ ψ1)−1

∥∥
µH1/2 dt

=

∫ 1

0

∥∥ψ′1 ◦ ψ−1
1 · u ◦ ψ

−1
1

∥∥
µH1/2 dt ≤ C(ψ1)

∫ 1

0
‖u‖µH1/2 dt

= C(ψ1) Len(ϕ) ≤ C(ψ1)ε .

Here we used that for h ∈ C∞(S1) and ψ1 ∈ Diff(S1) pointwise multiplication f 7→ h · f and

composition f 7→ f ◦ ψ are bounded linear operators for the µH1/2-norm. Thus we have seen that
Diff(S1)L=0 is a normal subset of Diff(S1). It remains to prove that there exists one non-trivial
diffeomorphism in Diff(S1)L=0. To do this we will construct arbitrary short paths from the identity

to the shift ϕ1(x) = x+1. To define these paths we will need functions that have small µH1/2-norm

and large L∞-norm at the same time. For the full H1/2-norm the existence of such functions has
been proven in [47]. Since we can bound the H1/2-norm by the µH1/2-norm a similar statement
holds in our situation. In particular this result provides us with a family of functions fN such that
‖fN‖2µH1/2 ≤ C 1

N , while ‖fN‖∞ = 1.

Now we can define a family of vector fields via

uN (t, x) = λfN (t− x) with 0 ≤ λ < 1

for t ∈ [0, Tend]. The timepoint Tend has to be chosen such that the flow ϕN of uN satisfies
ϕN (Tend, x) = x+1. To show that the flow of this vector field at time t = Tend is indeed ϕ(Tend, x) =
x+ 1 and that Tend does not grow as N →∞, we refer to the proof in [3].

Now the energy of this path is bounded by

E(uN ) =

∫ Tend

0
‖u(t, .)‖2µH1/2 dt ≤ C Tend

1

N

and thus the result follows. �
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Remark 9. We have now seen that both the full H1/2-metric and the µH1/2-metric induce vanishing
geodesic distance. On the other hand, we have shown in the previous section that the geodesic flow
for both metrics is C∞ in any Sobolev completion Dq(S1) for q > 3/2 and as a consequence that
the corresponding exponential map is a smooth local diffeomorphism from a neighborhood of 0
onto a neighborhood of the identity in Dq(S1). By the Gauß lemma this result seems to guarantee
positivity of the geodesic distance. This paradoxical behavior can be explained by the observation
that although geodesics minimize between diffeomorphisms that are close in the strong topology
(H2 or stronger), there are highly oscillatory shortcuts that leave small strong balls (but stay in
small weak balls).

For the Hs-metric on Diff(S1) with s < 1
2 , the article [3] provides a proof of the vanishing

geodesic distance result that does not need to use the simplicity of the diffeomorphism group, i.e.,
for any diffeomorphism ϕ1 ∈ Diff(S1) they construct paths from the identity to ϕ1 with arbitrary
short length. The reason for this is that the indicator function of an interval [a, b] is an element
of Hs if and only if s < 1

2 . Defining the vector fields uN with indicator functions — instead of
the functions fn as defined above — allows much more precise control on the endpoint of the
corresponding flows. It would be interesting to generalize this direct proof to the case s = 1

2 , since
this would then also yield a proof for the diffeomorphism group on the non-compact manifold R;
see [3, 4] and Appendix B for a discussion on these questions.

2. Non-Fredholmness of the exponential map

We have already seen that the µH1/2-metric is geometrically interesting since the Sobolev index
s = 1

2 is critical for several important properties. In this part we will study Fredholm properties
of the exponential map. In [36] it was proved that the Riemannian exponential map is a nonlinear
Fredholm map for the right-invariant Hs-metric when s > 1

2 , but the authors did not consider the

critical case s = 1
2 . In the following we will show that for the critical value, the exponential map

fails to be Fredholm. In order to prove this result, we will construct linearly independent Jacobi
fields Jn along geodesics η(t) = expid(tu0) with Jn(0) = 0 and Jn(tn) = 0, where tn is a sequence of
times converging to some T ; we use these to show that the range of (d expid)Tu0 cannot be closed.

Therefore we will use the fact from general Riemannian geometry that there is a Jacobi field
vanishing at times t = a and t < b if and only if there is a vector field v(t) such that v(a) = v(b) = 0
and I(v, v) < 0, where I is the index form. (This fact depends only on properties of second-
order self-adjoint differential equations and is thus true for both weak and strong metrics in finite
dimensions or infinite dimensions.)

On any Riemannian manifold the Morse index form corresponding to the Jacobi equation

D2J

dt2
+R(J, η̇)η̇ = 0

is given by

(15) I(J, J) =

∫ b

a

∥∥∥∥DJdt
∥∥∥∥2

− 〈〈R(J, η̇)η̇, J〉〉 dt;

that is, we compute the dot product of the Jacobi equation with a Jacobi field and integrate by
parts. Using the formulas from [36], we can compute a much simpler version of the index form.
The formula involves only left translations, since for a right-invariant metric all the geometry is
determined by the left translations (otherwise the metric would be bi-invariant, and the Riemannian
exponential map would reduce to the group exponential map).

Lemma 10. Suppose G is a Lie group with a weak right-invariant metric 〈〈·, ·〉〉, and let η be a
geodesic in G with η(0) = id and η̇(0) = u0, defined on [0, T ]. Then for any a, b with 0 ≤ a < b ≤ T ,
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the Morse index form for a Jacobi field J = TLηv is given by

(16) I(J, J) =

∫ b

a

∥∥Adη(t) v̇(t)
∥∥2

+ 〈〈u0, adv(t) v̇(t)〉〉 dt.

If the index form is negative for some field v with v(a) = v(b) = 0, then η(a) is monoconjugate to
η(b− ε) for some ε > 0, in the sense that there is a Jacobi field with J(a) = J(b− ε) = 0.

Remark 11. Note, that for the degenerate Ḣ1/2-metric the operator ad>u v does not exist in general,

but only the symmetric version β(u, v) = 1
2(ad>u v+ad>v u). However, one can reformulate the above

lemma in terms of β. See Appendix A for more comments on this situation. In the following we
will focus our analysis on the non-degenerate µH1/2-metric and therefore we will not worry about
this.

Proof. Given a path η(t) in G, the covariant derivative of a vector field X(t) defined along the path
may be written as

DX

dt
= TRη

{
dv

dt
+∇uv

}
.

where u(t) := TRη−1
dη
dt , v(t) := TRη−1X(t) and ∇uv := 1

2

(
− adu v + ad>u v + ad>v u

)
by the Levi-

Civita formula for right-invariant vector fields. Here we are using adu v = −[u, v] where the latter
denotes the usual Lie bracket of vector fields; see Arnold-Khesin [2].

The index form is given by (15). Write J = TRηy for y ∈ TidG, and we have 〈〈R(J, η̇)η̇, J〉〉 =
〈〈R(y, u)u, y〉〉 by right-invariance of both the metric and the curvature. Furthermore, the definition
of the curvature gives

〈〈R(y, u)u, y〉〉 = 〈〈∇y∇uu, y〉〉 − 〈〈∇u∇yu, y〉〉+ 〈〈∇[u,y]u, y〉〉.

Now set z = dy
dt − adu y, so that dy

dt +∇uy = z +∇yu. Using the Euler equation du
dt +∇uu = 0, the

index form becomes

I(J, J) =

∫ b

a
‖z +∇yu‖2 + 〈〈∇y dudt , y〉〉 − 〈〈∇yu,∇uy〉〉 − 〈〈∇[u,y]u, y〉〉 dt

=

∫ b

a
‖z‖2 + 2〈〈z,∇yu〉〉 − 〈〈∇z−[u,y]u, y〉〉 − 〈〈∇yu, z − [u, y]〉〉 − 〈〈[u, y],∇yu〉〉 − 〈〈∇[u,y]u, y〉〉 dt

=

∫ b

a
‖z‖2 + 〈〈z,∇yu〉〉 − 〈〈y,∇zu〉〉 dt

=

∫ b

a
‖z‖2 − 〈〈u, [y, z]〉〉 dt.

Finally we use the fact that the Euler equation du
dt + ad>u u = 0 implies that u = Ad>η−1 u0, so

that the last term becomes

〈〈u, [y, z]〉〉 = 〈〈u0,Adη−1 [y, z]〉〉 = 〈〈u0, [Adη−1 y,Adη−1 z]〉〉.

Now set y = Adη v and z = Adη w; then the fact that z = dy
dt − adu y implies that w = dv

dt , so
z = Adη v̇. This finally gives the formula (16). �

2.1. Explicit solution of the Jacobi equation. The easiest way to prove that the µH1/2 ex-
ponential map on Diff(S1) is not Fredholm is to compute all the Jacobi fields explicitly along a
particular geodesic. Recall from the Introduction that if u0 is the constant vector field u0(x) ≡ 1,
then u(t, x) ≡ 1 for all time. In [36] it was shown that on any Lie group with a right-invariant met-
ric, the Jacobi equation for a Jacobi field J(t) = (d expid)tu0(tw0) along a geodesic η(t) = expid(tu0)
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can be written in terms of the left translation J(t) = dLη(t)v(t) as the system

(17)
dv

dt
= w,

d

dt

(
Ad>η(t) Adη(t)w(t)

)
+ ad>w(t) u0 = 0, v(0) = 0, w(0) = w0.

Solving this equation along a particularly simple geodesic immediately lets us prove the following
theorem, analogous to the result in [18] for the three-dimensional volumorphism group.

Theorem 12. The exponential map for the µH1/2-metric on Diff(S1) is not Fredholm.

This result can be proven in a similar manner for the full H1/2-metric, but not for the degenerate
Ḣ1/2-metric, since the basic ingredient — the existence and explicit formula of the steady state
solutions — is not known in this case.

Proof. Let u0 ≡ 1. Then u(t, x) = 1 for all t and x, so that the flow η is given by η(t, x) = x + t

(modulo 2π). Then Adη(t) is an isometry, so we see that Ad>η(t) Adη(t) is the identity for all t. On

the other hand by formula (7) we have

ad>w u0 = Λ−1(2wxΛu0 + wΛ(u0)x) = 2Λ−1(wx).

where Λ is the corresponding inertia operator of the µH1/2-metric. Now expand w in a Fourier
series as

w(t) =
∑
n∈Z

wn(t)einx, w0 =
∑
n∈Z

cne
inx,

and (17) becomes

dwn
dt

+
2inwn(t)

δ0(n) + |n|
= 0, wn(0) = cn,

with solution

wn(t) = cn exp

(
−2int

δ0(n) + |n|

)
.

Solving for v(t, x) =
∑

n∈Z vn(t)einx with initial condition vn(0) = 0, we obtain

vn(t) =

{
cne
−it signn sin t n 6= 0

c0t n = 0

so that vn(π) = 0 whenever n 6= 0. We thus see that η(π) is monoconjugate to η(0) of infinite
order, and so the nullspace of (d expid)πu0 is infinite-dimensional, while its image is just the space
of constant vector fields and thus its codimension is also infinite. But a Fredholm operator must
have finite-dimensional kernel and cokernel by definition. �

2.2. Conjugate points along arbitrary geodesics. In the previous section we have constructed
families of conjugate points along very special solutions to the geodesic equation. In the following
we want to show that this is in fact not an isolated phenomenon, but that these families of conjugate
points continue to exist along arbitrary geodesics. First we need to estimate the term ‖Adη v‖2µH1/2 .

We use the Cauchy-Schwarz inequality to estimate in terms of the H1-norm, but note that we have
to do this somewhat delicately to get everything in terms of ηx alone in Theorem 14.

Lemma 13. Suppose η ∈ Diff(S1) is smooth. Then for any vector field v and any ε > 0 we have

‖Adη v‖2µH1/2 ≤
∫
S1

[
1
2εφ

2 + ε
2φ

2
x

]
dx+

1

2π

(∫
S1

ηxφdx

)2

+

∫
S1

φNη(φ) dx,

where φ = ηxv and Nη is an integral operator with a smooth kernel.
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Proof. We have Adη v = φ ◦ η−1, where φ = ηxv, so that

(18) ‖Adη v‖2µH1/2 = 2πµ2 +
∥∥φ ◦ η−1

∥∥2

Ḣ1/2 ,

where

µ =
1

2π

∫
S1

φ ◦ η−1 dx =

∫
S1

ηyφdy

under the change of variables y = η(x), and where

‖ζ‖2
Ḣ1/2 =

∫
S1

ζHζx dx

for any ζ.
For the second term in (18), the idea here is that we use the integral operator expression (2),

then use a change of variables to remove the composition, and finally approximate the resulting
integral kernel (now a function of η) by a kernel that does not depend on η, at the expense of
adding a smooth integral kernel.

Specifically for K(q) = 1
2π cot q2 we have∥∥φ ◦ η−1

∥∥2

Ḣ1/2 =

∫
S1

∫
S1

φ
(
η−1(w)

)
K(w − z) d

dz

[
φ
(
η−1(z)

)]
dz dw

=

∫
S1

∫
S1

φ(x)η′(x)K (η(x)− η(y))
d

dy
φ(y) dy dx,

using the change of variables w = η(x) and z = η(y). Now if η is smooth, we want to simplify
K (η(x)− η(y)). Recall that for q ∈ [−π, π], the only singularity of K(q) is at q = 0, where it looks
like K(q) ≈ 1

πq , and the difference L(q) = 1
2π cot q2 −

1
πq is easily seen to be C∞ on [−π, π]. Thus

we can write

η′(x)K (η(x)− η(y))−K(x−y) = η′(x)L (η(x)− η(y))−L(x−y)+

(
η′(x)

π [η(x)− η(y)]
− 1

π(x− y)

)
,

where the first two terms are smooth in x and y since L and η are. On the other hand the last
term can be expanded in a series in y (fixing x) to obtain

η′(x)

η(x)− η(y)
− 1

x− y
=

1
2η
′′(x) + 1

6η
′′(y)(y − x) + · · ·

η′(x) + 1
2η
′′(x)(y − x) + · · ·

,

and since η′(x) cannot be zero because η is a diffeomorphism, we see that the right side of this is
also smooth as a function of x and y.

We therefore have

(19) ‖Adη v‖2 = 2πµ2 +

∫
S1

∫
S1

φ(x)K(x− y)φ′(y) dy +

∫
S1

∫
S1

φ(x)φ′(y)Mη(x, y) dy dx,

where Mη is some smooth function on S1 × S1 depending on η and its derivatives.
Let ε > 0 be a small number; then the inequality 2ab ≤ 1

εa
2 + εb2 implies that the middle term

in (19) can be written as∫
S1

∫
S1

φ(x)K(x− y)φ′(y) dx dy =

∫
S1

φHφ′ dx ≤ 1
2ε

∫
S1

φ2 + ε
2

∫
S1

φ′2 dx,

using the fact that H is an isometry in L2. Finally defining Nη(φ)(x) =
∫
S1 Mη(x, y)φ′(y) dy, the

fact that Mη is smooth implies that Nη is a C∞-valued operator. �

Now using the approximation from Lemma 13 to estimate the index form from Lemma 10, we
obtain a very simple local criterion for the existence of conjugate points along a geodesic. This
criterion implies that we can find conjugate points along virtually any geodesic arising from Jacobi
fields that are supported in a neighborhood of any point of S1, as happens for the 3D Euler equation
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in [41]. As in that paper, we conclude that the exponential map cannot be Fredholm since the first
conjugate point along a geodesic is either of infinite order or a limit point of other conjugate points.
In addition, we will see in Section 3.1 that the criterion we derive here for conjugate points is
intimately connected with the Beale-Kato-Majda criterion for blowup, similarly to what happens
with the 3D Euler equation [42].

Theorem 14. Let η be a smooth geodesic in Diff(S1) in the µH1/2-metric which is defined on
the time interval [0, T ]. Let 0 < a < b < T . Then there is some constant R such that η is not
minimizing on [a, b] whenever, for some x0 ∈ S1, we have the inequality

|ω0(x0)|
∫ b

a

dτ

ηx(τ, x0)2
> Rπ.

For example, R = 4/3 works.

The proof of this result works similarly for the full H1/2-metric and for the degenerate Ḣ1/2-
metric.

Proof. By Lemma 10, we just need to find a test field v such that J = TLη(v) gives I(J, J) < 0,
and the idea will be to use a v that is sharply peaked near a point x0.

We have already estimated ‖Adη v̇‖2µH1/2 in Lemma 13; the other term 〈〈u0, adv v̇〉〉 in the index

form is easier: writing

ω0(x) = Λu0(x) =
1

2π

∫
S1

u0 dx+H∂xu0(x)

we have∫ b

a
〈〈u0, adv vt〉〉 dt =

∫ b

a

∫
S1

(Λu0)(vtvx − vvtx) dx dt = 2

∫ b

a

∫
S1

ω0(x)vt(t, x)vx(t, x) dx dt

Here we used integration by parts in time and the fact that v(a) = v(b) = 0.
Using Lemma 13, the index form (16) is then bounded by

(20) I(J, J) =

∫ b

a

[
1
2εα(t) + ε

2β(t) + 2γ(t) + µ(t) + ν(t)
]
dt,

where

α(t) =

∫
S1

(ηxvt)
2 dx, β(t) =

∫
S1

[∂x(ηxvt)]
2 dx, γ(t) =

∫
S1

ω0vtvx dx,

µ(t) =

∫
S1

(ηxvt)Nη(ηxvt) dx, ν(t) =
1

2π

(∫
S1

η2
xvt dx

)2

.

The idea is now as follows: if v(t, x) is spatially supported in a small ε-neighborhood of x0, then
terms involving no x-derivatives of v will be O(ε), while terms with two x-derivatives will be O(1/ε),
and terms involving a single x-derivative will be O(1). Hence in (20) we will get O(1) contributions
from α, β, and γ, while the terms µ and ν will only be O(ε) and can be neglected.

To see how this works, we will analyze α(t) in more detail. Fix t = t0 for the moment, and
suppose vt(t0, x) = ζ(x−x0ε ) for some ε, with ζ supported in an interval (c, d). Then changing
variables to z = (x− x0)/ε we get

α(t0) =

∫
S1

ηx(t0, x)2vt(x)2 dx = ε

∫ d

c
ηx(t0, x0 + εz)2ζ(z)2 dz

= εηx(t0, x0)2

∫ d

c
ζ(z)2 dz +O(ε2),
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using spatial smoothness of η. Similarly we have

β(t0) =
1

ε
ηx(t0, x0)2

∫ d

c
ζ ′′(z)2 dz +O(1),

while µ(t) = O(ε) and ν(t) = O(ε2). The term γ(t) requires a slightly different analysis since it
involves both vt and vx, so it cannot be analyzed just at a single time t0, but the idea is similar.

Finally we construct the test field v explicitly. Let f : [a, b] → R and g : R → R be functions
such that f(a) = f(b) = 0 and g is smooth with compact support in (−m,m) for some m > 0. Set
v(t, x) = f(t)g(x−x0ε − c(t)), for some arbitrary chosen point x0 and a function c(t) to be chosen
later. Obviously we have

vt(t, x) = f ′(t)g

(
x− x0

ε
− c(t)

)
− c′(t)f(t)g′

(
x− x0

ε
− c(t)

)
.

Now we can evaluate each term of the index form (20) separately. We first have

1

2ε

∫ b

a
α(t) dt =

∫ b

a
ηx(t, x0)2

∫
S1

[
f ′(t)2g(z − c(t))2 − 2f(t)f ′(t)c′(t)g(z − c(t))g′(z − c(t))

+f(t)2c′(t)2g′(z − c(t))2
]
dx dt+O(ε)

=
1

2

∫ b

a
ηx(t, x0)2

[
f ′(t)2A+ c′(t)2f(t)2B

]
dt+O(ε)

where A =
∫m
−m g(z)2 dz and B =

∫m
−m g

′(z)2 dz, and we used the compact support of g to get∫
S1 g(z)g′(z) dz = 0.

In the same way we get

ε

2

∫ b

a
β(t) dt =

1

2

∫ b

a
ηx(t, x0)2

[
f ′(t)2B + c′(t)2f(t)2C

]
dt+O(ε)

where C =
∫m
−m g

′′(z)2 dz, and∫ b

a
γ(t) dt = −Bω0(x0)

∫ b

a
c′(t)f(t)2 dt+O(ε).

Plugging into (20) we obtain

I(J, J) ≤ 1

2

∫ b

a
ηx(t, x0)2

[
Af ′(t)2 +Bc′(t)2f(t)2 +Bf ′(t)2 + Cc′(t)2f(t)2

]
dt

− 2Bω0(x0)

∫ b

a
c′(t)f(t)2 dt+O(ε).

Now define

j(t) =

∫ t

0

dτ

ηx(τ, x0)2
,

and set s = j(t) to be a rescaled time variable, and set c(t) = kj(t) for some constant k; then we
get

I(J, J) = O(ε) +
1

2

∫ j(b)

j(a)

[
Af ′(s)2 +Bk2f(s)2 +Bf ′(s)2 + Ck2f(s)2 − 4kω0(x0)f(s)2

]
ds.

Minimizing this is now trivial; we just choose f(s) = sin
(
π(s−j(a))
j(b)−j(a)

)
and obtain

I(J, J) = O(ε) +
π

4∆

(
A∆2 +Bk2 +B∆2 + Ck2 − 4kω0B

)
,
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where ∆ = π
j(b)−j(a) , and it remains only to choose the parameter k to make this as small as

possible, which is trivial: we have k = 2Bω0
B+C . For this k we get

I(J, J) = O(ε) +
∆2(A+B)(B + C)− 4ω2

0B
2

4δ(B + C)
.

The only question remaining is how small we can make R =
√

(A+B)(B + C)/(2B). It is easy

to check that for m =
√

3π/2 the function g(y) = cos3(x/
√

3) has g(m) = g′(m) = g′′(m) = 0
and that R = 4/3 in this case; a slight smoothing of g to make it supported in (−m,m) will not
substantially change A, B, or C, so we can come as close to 4/3 as desired. It is likely that there are
sharper estimates for this minimum, which appears for example in Mitrinović [37, Section 2.2.3]; it
is easy to see that R ≥ 1 among functions that are supported in an interval (−m,m) regardless of
m. �

We want to finish this section with comments on open questions and future research directions:

• The metric treated in this article presents the second example of a metric with a smooth
exponential map that is not Fredholm, the only other one being the L2-metric on Diffµ(M3),
the volume-preserving diffeomorphism group of a three-dimensional manifold [18]. This
geometric similarity further suggests that the Wunsch equation is a good one-dimensional
model of the 3D Euler equation. We do not know if there are any other Euler-Arnold
equations which have exponential maps with similar properties, but we suspect they would
also be good models.
• For s > 1

2 the exponential map of the Hs–metric is a non-linear Fredholm map, see [36].

In [3] it is proven that s = 1
2 is also the critical index for positive/vanishing geodesic distance.

In this section we have proven that these two geometric properties have indeed the same
behavior at the critical index s = 1

2 . It is an open question to investigate the connections
between these two results. This could yield a pathway for a complete characterization of
positive/vanishing geodesic distance for fractional order Sobolev metrics on diffeomorphism
groups of higher dimensional manifolds.
• Lack of Fredholmness makes it easy to construct “local shortcuts” in the diffeomorphism

group. Although the 3D volumorphism group has nonvanishing geodesic distance due to
being a submanifold of an ambient space with positive distance [17], there is a bound for
the intrinsic distance in terms of the extrinsic distance in 3D due to Shnirelman [45], which
forces finite diameter of Diffµ(M3), while no such result can be true in two dimensions [19].
Are these properties related, and can one find a direct proof of vanishing distance or distance
bounds using non-Fredholmness?

3. Blowup

In this section we focus on a detailed analysis of blowup for equation (1). Okamoto-Sakajo-

Wunsch [39] showed that the solution blows up at time T if and only if
∫ T

0 ‖ux(t, x)‖L∞ dt = ∞.

We prove that this condition can be replaced with
∫ T

0 ‖ω(t, x)‖L∞ dt = ∞, using the method
of Beale-Kato-Majda [7], which we use to demonstrate a link to the existence of infinitely many
conjugate pairs along a blowup solution (as studied in [42]). A similar criterion was derived by
Wunsch [49] for a slightly different member of the modified Constantin-Lax-Majda family.

Castro and Córdoba [11] demonstrated that some solutions of (1) on the real line blow up in
finite time. We extend this result to the periodic case and demonstrate a larger class of blowup
solutions by using an interesting pointwise inequality for the Hilbert transform. Along the way we
show that equation (1) takes a particularly simple form in Lagrangian coordinates, where it looks
like an equation arising in the study of the blowup for the 3D axisymmetric Euler equations of an
ideal fluid [43].
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3.1. The Beale-Kato-Majda criterion. Beale, Kato, and Majda [7] proved that the Euler equa-
tions on R3,

∂ω

∂t
+ [u, ω] = 0, ω = curlu, div u = 0,

with divergence-free initial condition u(0) = u0 in Hq for q ≥ 3, has a solution in Hq on [0, T ] if
and only if

(21)

∫ T

0
‖ω(t)‖L∞ dt <∞,

as a consequence of the easier-to-prove criterion
∫ T

0 ‖u‖C1 dt <∞. The condition (21) is easier to
understand since it involves only the vorticity, which is transported by the flow η via ω (t, η(t, x)) =
Dη(t, x)ω0(x).

In the present situation, Okamoto et al. [39] proved that smooth solutions of (1) exist on [0, T ] if

and only if
∫ T

0 ‖u‖C1 dt <∞, and our goal now is to prove that the same criterion (21) works in the
present situation, in terms of the momentum ω = Hux (which should be thought of as essentially
a one-dimensional version of the curl operator.) This is not automatic since the Hilbert transform
is not bounded as an operator in L∞ (for example the Hilbert transform of a step function has a
logarithmic singularity). The technique is similar to that of [7], though of course simpler in the
one-dimensional compact case.

Theorem 15. Suppose u0 is an Hq vector field for q ≥ 2. Then a solution of (1) exists in Hq on
a time interval [0, T ] if and only if ∫ T

0
‖ω(t)‖L∞ <∞.

Proof. We first want to obtain a bound of the form

(22) ‖Hf‖L∞ ≤ C
[
1 + log

∥∥f ′∥∥
L2

]
[‖f‖L∞ + 1]

for some constant C and every smooth function f : S1 → R. For simplicity assume the maximum
of |(Hf)(x)| occurs at x = 0; then we have

‖Hf‖L∞ = |Hf(0)| = 1

2π

∣∣∣∣∫ 2π

0
f(y) cot

y

2
dy

∣∣∣∣ .
First split the interval into [−ρ, ρ] and [ρ, 2π − ρ] by periodicity, for a ρ ∈ (0, 1) to be chosen later.
We integrate by parts near the singularity at y = 0 to obtain

|Hf(0)| ≤ 1

π

∣∣∣log sin
ρ

2

∣∣∣ ∣∣f(ρ)− f(−ρ)
∣∣− 2

π

∫ ρ

−ρ

∣∣f ′(y)
∣∣ log

∣∣∣sin y
2

∣∣∣ dy +
1

π

∫ 2π−ρ

ρ
|f(y)|

∣∣∣cot
y

2

∣∣∣ dy.
The first and third terms are bounded in terms of ‖f‖L∞ , while the middle term can be bounded
using Cauchy-Schwarz in terms of ‖f ′‖L2 , using∫ ρ

−ρ
log
∣∣∣sin y

2

∣∣∣2 dy ≤ 2

∫ ρ

0
(log y

2 )2 dy = 2ρ
[
2− 2 log ρ

2 + (log ρ
2)2
]
≤ 8ρ

[
log ρ− 1

]2
for ρ ≤ 1. We obtain

|Hf(0)| ≤ C(1− log ρ)
[
‖f‖L∞ +

√
ρ
∥∥f ′∥∥

L2

]
.

Now choose ρ = min{1, ‖f ′‖−2
L2 } to obtain (22).

As shown in [39], if u is a solution of (1), then

(23)
d

dt

∫
S1

u2
xx dx = −3

∫
S1

uxω
2
x dx− 2

∫
S1

uxu
2
xx dx ≤ 5 ‖ux‖L∞

∫
S1

u2
xx dx,
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so that (22) with f = ω = Hux thus yields

d

dt
log ‖uxx‖L2 ≤ C(1 + log ‖uxx‖L2) (1 + ‖ω‖L∞) ,

and the solution of this inequality is

log
(

1 + log ‖uxx‖L2

)
≤ C ′ + C

(
t+

∫ t

0
‖ω(τ)‖L∞ dτ

)
.

Thus a bound on
∫ T

0 ‖ω(τ)‖L∞ dτ implies a double-exponential bound on the Sobolev norm ‖u(t)‖H2 .
Similar estimates as in (23) are easy to derive for higher Sobolev norms of u, with only ‖ux‖L∞

being relevant, and thus we get bounds on the growth of ‖u(t)‖Hq for all q ≥ 2 in terms solely of∫ t
0 ‖ω(t)‖L∞ . �

Remark 16. Note that the first part of equation (23) implies that growth of the norm happens only
when ux < 0, so in fact to bound the H2-norm of u, it is sufficient to obtain a bound on (ux)−,
the negative part of ux. Since particle trajectories satisfy the flow equation ηt(t, x) = u (t, η(t, x)),
we see that ux (t, η(t, x)) = ∂

∂t log ηx(t, x); thus in the Lagrangian analysis of blowup in the next
section, we need only be concerned with ηx approaching zero (rather than infinity). An alternate
way to understand this is using the conservation law (10), in the form

ω (t, η(t, x)) = ω0(x)/ηx(t, x)2,

to see that if ηx(t, x) ≥ a(t) for all x, then

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ /a(t)2,

so the blowup condition is that
∫ T

0 dt/a(t)2 =∞; no upper bound on ηx is needed.
In three-dimensional fluids the stretching map Dη always has determinant one, so although

here stretching is more important, stretching must always be accompanied by shrinking in another
direction.

3.2. Proof of blowup. In this section we demonstrate finite-time blowup of solutions to (1); we
imitate the technique of Castro and Córdoba [11], although the situation simplifies here due to
periodicity since we are able to work in terms of Fourier coefficients. In addition we are able
to generalize the method to deal with any initial data such that u′0(0) < 0 and (Hu0)′(0) = 0,
while previously this was only known to work if u0 was an odd function. In fact the inequality
H(fHf ′′) + ff ′′ ≤ 0 we require is fairly easy to generalize to higher derivatives, as in Theorem 17,
which we hope will be useful in other applications.

To prove the result, we need to estimate a nonlocal term. Fortunately properties of the Hilbert
transform make this relatively elementary, especially using the Fourier series. Castro and Córdoba [11]
proved that if f is an odd function on the line, then H(fHf ′′)(0) < 0, using Mellin transforms.
In our case the proof uses Fourier coefficients, and we are able to get a stronger result, which also
generalizes a result due to Córdoba-Córdoba [14].

Theorem 17. Suppose f : S1 → R is a function with Fourier series f(x) =
∑

n∈Z cne
inx. Let H

denote the Hilbert transform, and set Λ = H∂x, so that Λ(einx) = |n| einx for every n ∈ Z. For any
positive number p, define gp = H(fHΛpf) + fΛpf . Then for every x ∈ S1 we have

(24) gp(x) = 2

∞∑
k=1

[kp − (k − 1)p] |φk(x)|2 , where φk(x) =

∞∑
m=k

cme
imx.

In particular every gp is nonnegative and strictly positive if f is nonconstant.
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Proof. It is sufficient to prove (24) at x = 0, since if x were not zero we could just replace cne
inx

everywhere with c̃n. This corresponds to translation-invariance of the operators H and Λ, and
simplifies notation.

We first compute

(fHΛpf)(x) =
∑

m,n∈Z2

cm(−i sign (n)) |n|p cnei(m+n)x,

then observe that

H(fHΛpf)(0) = −
∑

m,n∈Z2

sign (n) sign (m+ n) |n|p cmcn.

Therefore we have

gp(0) =
∑

m,n∈Z2

[1− sign (n) sign (m+ n)] |n|p cmcn.

Of course, when n = 0 there is no contribution since p > 0, so we can break up the sum into terms
when n > 0 and when n < 0, obtaining

(25) gp(0) =

∞∑
n=1

npcn
∑
m∈Z

[1− sign (m+ n)] cm +

∞∑
n=1

npcn
∑
m∈Z

[1 + sign (m− n)] cm = (I) + (II),

where in the second sum we replaced n with −n and used the fact that c−n = cn since f is
real-valued.

Now in the sum (I) of (25) we have nonzero terms if and only if m+ n ≤ 0, and thus we have

(I) =
∞∑
n=1

npcn

(
c−n + 2

−n−1∑
m=−∞

cm

)
=
∞∑
n=1

np |cn|2 + 2
∞∑
n=1

∞∑
m=n+1

npcncm,

where in the last sum we replaced m with −m. The same tricks applied to the second term (II) of
(25) give

(II) =

∞∑
n=1

np |cn|2 + 2

∞∑
n=1

∞∑
m=n+1

npcncm.

Plugging these both into (25) we get

(26) gp(0) = 2
∞∑
n=1

np |cn|2 + 2
∞∑
n=1

∞∑
m=n+1

np(cncm + cmcn).

In terms of φk =
∑∞

j=k cj , equation (26) becomes

gp(0) = 2

∞∑
n=1

np |φn − φn+1|2 + 2

∞∑
n=1

np
[
(φn − φn+1)φn+1 + φn+1(φn − φn+1)

]
= 2

∞∑
n=1

np
[
|φn|2 − |φn+1|2

]
,

which becomes (24) after summation by parts. �

In fact the only features we used of the power function Q(λ) = λp are that Q(λ) = 0 and Q is
increasing on R+. Hence the same proof gives the inequality

H(fHg) + fg ≥ 0 if g = Q(Λ)(f)
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for any such Q, where the action of Q on a function is determined by linearity and the action
on the Fourier basis: Q(Λ)(einx) = Q(|n|)einx. Note also that by the general product formula
(Hf)(Hg)−H(gHf) = H(fHg) + fg, we obtain for free the inequality

(Hf)(Hg)−H(gHf) ≥ 0 if g = Q(Λ)(f).

The proof above also works (and is in fact simpler) for functions defined on R rather than on S1,
using Fourier transforms rather than Fourier series, as we will show in Appendix B. We will only
need the special case p = 2 in what follows, but we summarize the result for all integers p below;
note that since H has period 4 we essentially get four cases.

Corollary 18. For any function f : S1 → R we have the following pointwise inequalities:

−H(ff ′) + fHf ′ ≥ 0, −H(fHf ′′)− ff ′′≥ 0,

H(ff ′′′)− fHf ′′′ ≥ 0, H(fHf ıv) + ff ıv ≥ 0.

The same inequalities are valid when the order of the derivatives are replaced by any positive integer
which is equal modulo 4.

Proof. We just use H2 = −1 and break up Λp = Hp∂px depending on p modulo 4. �

The first inequality −H(ff ′) + fHf ′ ≥ 0 is equivalent to the case α = 1 of the pointwise
inequality in [14], which takes the form Λ(f2) ≤ 2fΛf in terms of Λ = H∂x. The fact that this
inequality can be generalized to any α ∈ [0, 2] and to any convex function, as well as to higher
dimensions (see Córdoba-Mart́ınez [15]) suggests that Theorem 17 might be generalized to higher
dimensions as well, for example replacing the Hilbert transform by Riesz transforms. But we have
not been able to generalize the result using the present techniques.

Corollary 18 and the special structure of (1) (as distinct from all other equations in the “mod-
ified Constantin-Lax-Majda” family) allow us to obtain the following especially simple form in
Lagrangian flow coordinates.

Theorem 19. Suppose u and ω form a solution of (1) with
∫ 2π

0 u0(x) dx = 0. Let η denote the
Lagrangian flow of u satisfying

ηt(t, x) = u (t, η(t, x)) , η(0, x) = x.

Then ηx satisfies the equation

(27) ηxtt(t, x) =
ω0(x)2

ηx(t, x)3
− F (t, η(t, x)) ηx(t, x),

where F (t, x) = −uu′′ −H(uHu′′) is positive for all t and x by Corollary 18.

Proof. Since ω = Hux, the Hilbert transform of (1) is

utx = H(uωx) + 2H(uxHux).

Using the Hilbert transform identity 2H(fHf) = (Hf)2 − f2 (valid as long as f has vanishing
mean value), this equation becomes utx = H(uuxx) + ω2 − u2

x, which may be written in the form

(28) utx + u2
x + uuxx = ω2 − F.

Now differentiate the flow equation in space to get

(29) ηtx(t, x) = ux (t, η(t, x)) ηx(t, x),

and differentiating this in time gives

ηttx(t, x) =
(
utx + u2

x + uuxx
)

(t, η(t, x)) ηx(t, x).
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Composing (28) with η, we therefore see that it can be written in the form

(30) ηttx(t, x) = ω (t, η(t, x))2 ηx(t, x)− F (t, η(t, x)) ηx(t, x).

Plugging the vorticity conservation law (10) into (30) gives (27). The fact that F is always

positive comes from the fact that u can never be constant, since
∫ 2π

0 u(t, x) dx = 0 for all t; if u
were constant at any time, then u would have to be identically zero at that time, which would
mean u is identically zero for all time. Since u is nonconstant, F is strictly positive. �

Our first blowup result is now quite easy in this Lagrangian form.

Theorem 20. Suppose u and ω form a solution of (1) where u0 and ω0 = H∂xu0 satisfy ω0(x0) = 0

and u′0(x0) < 0 for some x0 ∈ S1, with
∫ 2π

0 u0(x) dx = 0. Let η be the Lagrangian flow of u. Then
ηx(t, x0) reaches zero in finite time T < 1/ |u′0(x0)|, and thus ux (t, η(t, x0)) reaches negative infinity
at the same time.

Proof. Since ω0(x0) = 0, the conservation law (10) implies that ω (t, η(t, x0)) = 0 for all time.
Equation (27) thus implies that ηttx(t, x0) < 0 as long as ηx(t, x0) > 0. Hence the function
φ(t) = ηx(t, x0) has φ(0) = 1, φ′(0) = ux(0, x0) < 0, and φ′′(t) < 0, so that φ(t) must reach zero in
finite time. Since equation (29) implies

ηx(t, x0) = exp

(∫ t

0
ux (τ, η(τ, x0)) dτ

)
,

we must have ux (t, η(t, x0)) approaching negative infinity as well. �

Equation (27) is exactly the Ermakov-Pinney equation [31] for r(t) = ηx(t, x) with Ω(t)2 =
F (t, η(t, x)) and c = ω0(x); that is,

(31) r′′(t) + Ω(t)2r(t) =
c2

r(t)3
.

As pointed out by Eliezer and Gray [20], this equation appears when describing the motion of a
time-dependent harmonic oscillator in the plane, with a returning force always pointing toward the
origin. If we consider the system r̈(t) + Ω(t)2r(t) = 0 for a vector r(t) ∈ R2, then r(t) = ‖r(t)‖
solves (31), where c is the (constant) angular momentum.

Since η(0, x) = x for all x, we always have initial condition r(0) = 1; that is, the “particle”
begins on the unit circle with some initial radial velocity (which could be positive or negative) and
some initial angular momentum (which is preserved). If the angular momentum is zero, then the
particle remains on a line between the origin and its starting position on the circle. If it is initially
heading inward (as in the situation of Theorem 20) then it reaches the origin in finite time. If it
heads outward but not too fast, it is likely that the (nonlocal) returning force may still send it to
the origin, but we cannot tell yet without sharp bounds on F = −uu′′ − H(uHu′′) as given by
Lemma 17. Note that in this case it is not necessary that Ω(t) actually approaches infinity in some
finite time, only that it remains positive, for blowup to occur. If Ω(t) remains finite, then when r(t)
approaches zero we must have r′(t) approaching some nonzero value, which means r(t) ≈ C(T − t)
for some C 6= 0 as t→ T . We thus have

∫ T
0

dt
ηx(t,x0)2

=∞ as we might expect from Theorem 20.

At present we can only conjecture that blowup can be localized, in the sense that a solution
should blow up if and only if there is some x0 ∈ S1 such that

(32)

∫ T

0
|ω (t, η(t, x0))| dt = |ω0(x0)|

∫ T

0

dt

ηx(t, x0)2
=∞.

(We do not need the maximum of ω to actually be reached along a particular Lagrangian path,
only that some path carries enough of the vorticity stretching to still give infinity here.) Note that
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the scenario of Theorem 20 does not quite work here since ω0(x0) = 0; however one would expect
that if ω′0(x0) 6= 0, then any point near x0 would still give infinity.

On the other hand, if there is any angular momentum, then the particle spins around the origin,

and the localized blowup criterion (32) is exactly the condition that c
∫ T

0 dt/r(t)2 = ∞. Since

in polar coordinates we have θ′(t) = c/r(t)2 by conservation of angular momentum, we can have
blowup along such a trajectory at time T if and only if the corresponding planar system has a
solution that completes infinitely many turns around the origin before time T . Such a system
necessarily requires the force Ω(t) to be approaching infinity as t→ T already.

This analysis is exactly what happens for the 3D axisymmetric Euler equations with swirl when
considering the flow near the axis of symmetry (and perhaps more generally), as shown by Sarria
and the third author [43]. There the vorticity conservation law also translates into a constant
angular velocity in the Ermakov-Pinney equation, and the central force corresponds to the second
radial derivative of the pressure. It is conjectured but not yet known if the pressure has a local
minimum on the axis of symmetry, but if it did this would correspond to the “magical” inequality
of Lemma 17 that makes the force always point inwards. This fact is what makes us convinced that
(1) is the best one-dimensional model of the 3D Euler equation.

Finally we note here that the localized blowup criterion (32) is exactly the condition needed in
Theorem 14 to obtain an infinite sequence (0, t1, t2, . . .) with tk ↗ T such that η(tk) is monocon-
jugate to η(tk+1) for every k; in other words the geodesic is not locally minimizing even on short
time intervals. (Note that in spite of the vanishing geodesic distance, geodesics are still locally
minimizing in the H2 topology due to smoothness of the exponential map; they just fail to be
globally minimizing.) This is a slightly simpler version of the phenomenon described in [42] for 3D
fluid flow, again illustrating how similar (1) is to the 3D Euler equation when one looks at them
both geometrically.

Hence we expect a complete understanding of blowup in the Wunsch equation to lead to a better
understanding of possible blowup scenarios for the 3D Euler equation. In particular the following
open questions should be addressed:

• We know that blowup will occur if ω0(x0) = 0 and u′0(x0) < 0 for some x0 ∈ S1. Does it
in fact occur if u′0(x0) ≥ 0? If so, it would imply that every nonconstant solution ends in
finite time, since

∫
S1 ω0 dx = 0 implies ω0 vanishes at one point.

• The work of Khesin-Lenells-Misio lek [29] implies that a nonzero mean term µ can prevent
blowup in the Hunter-Saxton equation. So far all of our analysis has assumed that the
mean of the initial data (and hence of all future data) is zero; can blowup still occur if it is
not?
• Theorem 15 implies that at the blowup time we have

∫ T
0 ‖ω(t)‖L∞ dt = ∞. On the other

hand it appears that blowup is localized to a point x0 where ω0(x0) = 0, and hence we do not

have
∫ T

0 |ω (t, η(t, x0))| dt =∞ (the localized Beale-Kato-Majda criterion) since momentum
is conserved. Is this localized criterion valid for x in a selected neighborhood of x0?
• The localized Beale-Kato-Majda criterion is precisely what shows up in the condition for an

infinite sequence of conjugate pairs leading up to the blowup time as in Theorem 14. Are
there such conjugate pairs, as conjectured in [42]? Can one see the failure of minimization
along the corresponding geodesic explicitly?
• The Camassa-Holm equation (the Euler-Arnold equation for the H1-metric on Diff(S1))

has solutions which blow up in finite time in the sense that ux approaches negative infin-
ity; however one can define global weak solutions, thus ensuring the continuation of the
Lagrangian flow beyond the blow-up point; see [34, 10, 9]. Does the same thing happen for
the Wunsch equation? That is, can one extend geodesics in C∞(S1, S1) for all time even if
they leave Diff(S1)?
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• It is easy to see that the positive forcing term F = −uuxx−H(uHuxx) given by Theorem 19

can be bounded above in terms of ‖u‖2H3/2 . On the other hand it is not clear how to obtain
a good lower bound, although we know it is positive. A lower bound is necessary to prove
blowup of other Lagrangian trajectories carrying nonzero momentum.
• Finally, it should be remembered that for s > 3/2, the Hs-metric and the µHs-metric on

Diff(S1) are geodesically complete (geodesics are defined for all time) [22]. The critical
exponent s = 3/2 was studied in [25]. It was shown there that the metric is strong and

geodesically complete on a manifold which could be thought as a replacement for D3/2(S1)
(which is not a topological group). However, it is not clear if the metric is geodesically
complete on Diff∞(S1) (local well-posedness in that case was studied in [21]). It would also
be interesting to study the blowup for other values of s ≤ 3/2.

4. Curvature

In this part we will show that the sectional curvature for the µH1/2–metric admits both signs
and is locally unbounded from above. The unboundedness of the curvature is further evidence that
there exists a relation between unbounded sectional curvature and vanishing geodesic distance as
conjectured by Michor and Mumford [35].

Formulas for the sectional curvature of Diff(S1)/Rot(S1) were computed by Bowick-Rajeev [8]
and Zumino [50] using the formula of Freed [24] for Kähler geometry, by Kirillov-Yur’ev [30] using
complex normal coordinates, and by Gordina-Lescot [26] directly using the covariant derivative.
Here we will use Arnold’s curvature formula [1] for right invariant metrics on Lie-groups, which
allows us to see the effect of the mean term µ. The sectional curvature K(u, v) for a right-invariant
metric 〈·, ·〉 on a Lie group G at the unit element e for the 2-plane spanned by linearly independent
vectors u, v ∈ g is given by

K(u, v) =
〈R(u, v)v, u〉

〈u, u〉〈v, v〉 − 〈u, v〉2
=
〈δ, δ〉 − 2〈α, β〉 − 3〈α, α〉 − 4〈Bu, Bv〉

〈u, u〉〈v, v〉 − 〈u, v〉2

where

2α = adu v, 2β = ad>u v − ad>v u, 2δ = ad>u v + ad>v u

and

2Bu = ad>u u, 2Bv = ad>v v.

It remains to calculate the terms of the curvature formula for the µH1/2-metric on Diff(S1).
Therefore we recall the definition of the inertia operator and the adjoint operator:

Λu = µ(u) +Hux, ad>u v = Λ−1 (2uxΛ(v) + uΛ(vx)) .

Plugging this into Arnold’s curvature formula yields the general formula for the sectional curvature
of the µH1/2-metric. However, since the resulting formula does not seem to give any insights we
will refrain from doing so and instead calculate the sectional curvature for the particular choice of
vector fields u, v ∈ {sin(mx), cos(nx)}. We obtain the following result:
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Theorem 21. The sectional curvature of the µH1/2-metric admits both signs and is locally un-
bounded from above. In particular we have:

K(sin(mx), sin(nx)) = K(sin(mx), cos(nx)) = K(cos(mx), cos(nx))

=
m
(
m2 + 2mn+ 2n2

)
2n(m+ n)

, n > m > 0

K(sin(mx), cos(nx)) =
n
(
2m2 + 2mn+ n2

)
2m(m+ n)

, m > n > 0

K(sin(mx), cos(mx)) =
1

2
(5m− 6), m > 0 .

Proof. Let n,m 6= 0. Then we have

Λ(sin(nx)) = |n| sin(nx), Λ(cos(mx)) = |m| cos(mx)

and integrating we get

‖sin(nx)‖2µH1/2 = π |n| , ‖cos(mx)‖2µH1/2 = π |m| .

We will also need that sin(nx) and cos(mx) are orthogonal with respect to the µH1/2-metric, i.e.,

〈〈sin(nx), cos(mx)〉〉µH1/2 = 〈〈sin(nx), sin(mx)〉〉µH1/2 = 〈〈cos(nx), cos(mx)〉〉µH1/2 = 0.

We will only present the remaining calculations for the case u = sin(mx) and v = sin(nx) with

n > m > 0. For the operator ad>u v we calculate:

ad>u v = nΛ−1 (2m cos(mx) sin(nx) + n sin(mx) sin(nx))

= n
m− n

2

n−m
sin((m− n)x) + n

m+ n
2

m+ n
sin((m+ n)x)

To calculate Λ−1 we used that H−1 = −H and that sin(kx) has zero mean for any k ∈ N. Thus
we obtain the formulas for β, δ,Bu and Bv:

2β =
n2 −m2

2(n+m)
sin((m+ n)x)− m2 − 4mn+ n2

2(n−m)
sin((n−m)x),

2δ =
n2 −m2

2(n−m)
sin((n−m)x) +

m2 + 4mn+ n2

2(m+ n)
sin((m+ n)x),

Bu =
3

4
m sin(2mx), Bv =

3

4
n sin 2nx.

For the remaining term α we have

α = −n−m
2

sin((m+ n)x) +
n+m

2
sin((n−m)x),

Now we can calculate the µH1/2-norms. Since sin(kx) is an orthogonal system with respect to the

µH1/2-metric we have

〈〈Bu, Bv〉〉µH1/2 = 0 .

For the other terms we arrive at:

4〈〈δ, δ〉〉 =
π

2(n+m)

(
n(3m3 + 9m2n+ 5mn2 + n3)

)
2〈〈α, β〉〉 = −π

8
(m+ n)(m2 − 3mn+ n2)

〈〈α, α〉〉 =
π

8
(n−m)n(m+ n)
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Putting everything together we obtain for the sectional curvature:

K(sin(mx), sin(nx)) =
πm(m2 + 2mn+ 2n2)

4(m+ n)n
≥ πm(m+ n)

4n

which is unbounded for fixed n and m → ∞. Note, that this formula is not symmetric in u and
v, since we have assumed that n > m, in order to calculate the Hilbert transform of terms as
sin((n − m)x). The calculations for the other terms are similar. Only in the case u = cos(mx)

v = sin(mx), one has to be more careful since Λ(ad>u v) has non-zero mean, and thus one has to
take into account the µ-term for the inversion of Λ. �

Several questions concerning the sectional curvature remain open for future investigation:

• We have seen that the sectional curvature of the µH1/2-metric has unbounded positive
curvature. This has also been observed for the L2-metric. Both of these metrics have
vanishing geodesic distance. On the other hand, for metrics of order one — which induce
non-vanishing geodesic distance — the curvature turns out to be bounded from above. It
is an open conjecture by Michor and Mumford that there is a relation between unbounded
curvature and vanishing geodesic distance.
• We have seen that the sectional curvature admits both signs and is unbounded from above.

It is not known, whether the curvature is bounded from below. In this case it would be
interesting to derive explicit lower bounds.
• The homogeneous H1–metric has strictly positive sectional curvature. On the other hand,

it has been shown in [29] that the sectional curvature of the µH1–metric admits both signs.
Similarly, the negative sectional curvature directions, that are described in Thm. 21, are
originating only from the µ-term in the µH1/2–metric. It remains open whether the sectional
curvature of the homogeneous Ḣ1/2-metric admits both signs or is strictly positive.
• One can repeat the above calculations for the general homogeneous Ḣs-metric. For 0 <
m < n we find that

K(sin(mx), sin(nx)) =
π

4
(nm)−2s

(
(−m+ n)−2s

(
m1+2s − 2m2sn+ 2mn2s − n1+2s

)2
+ (m+ n)−2s

(
m1+2s + 2m2sn+ 2mn2s + n1+2s

)2 − 4m2s
(
−m2 + 2n2

)
+ 4n2s

(
−2m2 + n2

)
− 3(−m+ n)2(m+ n)2s − 3(m+ n)2(n−m)2s

)
.

For s = 0 this gives

K(sin(mx), sin(nx)) = 3π
(
m2 + n2

)
,

which is the sectional curvature of the metric associated to Burgers equation. For s = 1 this
gives constant sectional curvature, as computed by Lenells [32] for the homogeneous Ḣ1-
metric, which is associated to the Hunter Saxton equation. Clearly the sectional curvature
for s = 0 is not bounded, while it is bounded for for s = 1. It remains open to study
boundedness of the sectional curvature for general Hs–metrics.

Appendix A. The homogeneous Ḣ1/2-metric

The Ḣ1/2 inner product on C∞(S1) is defined as

〈〈u, u〉〉Ḣ1/2 =

∫
S1

uHux dx = 2π
∑
n∈Z
|n| |ûn|2 if u(x) =

∑
n∈Z

ûne
inx.

This inner product does not induce a right-invariant metric on Diff(S1) because it is degenerate.
The latter can be avoided if we work on Diff(S1)/Rot(S1), corresponding to the homogeneous space
of diffeomorphisms modulo rotations.
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More generally, the geodesic equation for a right-invariant Riemannian metric on a homogeneous
space G/K can be reduced to the Euler-Poincaré equation

ωt = ad∗u ω, ω ∈ g∗,

on the dual space g∗ of the Lie algebra of G (see Poincaré’s original paper [40]).
But unfortunately, in general, there is no well-defined Euler-Arnold equation in that case because

the Eulerian velocity (defined using a lift g(t) in G of a path x(t) in G/K) is only defined up to
a path in K and the relation between u and ω is not one-to-one (see [46] for a discussion on this
subject).

These difficulties clear away if K is a normal subgroup. Indeed, in that case, the coset manifold
G/K is a Lie group equipped with a right-invariant Riemannian metric. But this special case is
not very useful for us, since Diff(S1) is simple.

There is another situation where a right-invariant Riemannian metric on a homogeneous space
reduces to an Euler-Arnold equation on a Lie group, namely when the right action of G on the set
of left cosets G/K becomes simply transitive when restricted to a subgroup G0 of G.

This situation occurs for Diff(S1)/Rot(S1), where G0 := Diffx0(S1), the subgroup of diffeomor-
phisms which fix one point, say x0. Its Lie algebra Vectx0(S1) is the space of vector fields on the
circle which vanish at x0. The inertia operator H∂x induces an isomorphism between Vectx0(S1)
and the subspace of its topological dual defined by linear functionals

u 7→
∫
S1

ω(x)u(x) dx

where ω is smooth and has zero mean:
∫
S1 ω(x) dx = 0. We can therefore consider equation (1) as

an Euler-Arnold equation but on Diffx0(S1) rather than Diff(S1).
Even if ad(v)>u is not defined on Vectx0(S1) in that case because uxHvx does not have vanishing

integral in general, the symmetric part of the bilinear operator ad(v)>u is however well defined
and so is the geodesic spray. The proof of local existence of the geodesics and the fact that the
exponential map is a local diffeomorphism follows the same line as in Section 1.3 (see [23, 21] for
the details). Moreover, the proof of Lemma 10 can be adapted in that case, without referring to

Ad>η which is not defined either.
To finish this section we will prove the following lemma.

Lemma 22. The geodesic distance for the homogeneous Ḣs-metric on Diffx0(S1) vanishes for
0 ≤ s ≤ 1/2.

Proof. The Fréchet manifold Diffx0(S1) can be covered by a single chart, namely, the set of smooth,
real 1-periodic functions η on R such that η(0) = 0. Let η0 and η1 be two diffeomorphisms in
Diffx0(S1). Given any path η(t) in Diff(S1) with η(0) = η0 and η(1) = η1, we introduce

LA(η) =

∫ 1

0

∥∥∂tη ◦ η−1
∥∥
A
dt,

where

‖u‖2A :=

∫
S1

(Au)u dx.

Let Λ2s := (1 + |D|2)s and Λ̇2s := |D|2s; see formula (14). We have ‖u‖Λ̇2s ≤ ‖u‖Λ2s , for all

u ∈ C∞(S1) and thus

LΛ̇2s(η) ≤ LΛ2s(η).

However, to conclude that the geodesic distance distḢ
s
(η0, η1) for the Ḣs-metric on Diffx0(S1) is

bounded above by distH
s
(η0, η1), the geodesic distance for the Hs-metric on Diff(S1), we need to
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show that the infimum of LΛ̇2s(η) on all paths η in Diff(S1) joining η0 and η1 is the same as the

infimum on paths η in Diffx0(S1). To do so, given a path η in Diff(S1), we introduce

η̃(t, x) := η(t, x)− η(t, 0)

which is a path in Diffx0(S1) and we check that∥∥∂tη̃ ◦ η̃−1
∥∥

Λ̇2s =
∥∥∂tη ◦ η−1

∥∥
Λ̇2s .

The conclusion follows since distH
s
(η0, η1) vanishes for 0 ≤ s ≤ 1/2. �

Appendix B. The diffeomorphism group on the real line

Shifting our focus from the diffeomorphism group of the compact manifold S1 to the diffeomor-
phism group of the non-compact manifold R requires us to specify certain decay conditions for
the diffeomorphisms under consideration. The reason for this is that the group of all orientation-
preserving diffeomorphisms Diff(R) is not an open subset of C∞(R,R) endowed with the compact
C∞-topology. Thus it is not a smooth manifold with charts in the usual sense. A method to over-
come this difficulty is to restrict ourselves to subgroups of the whole diffeomorphism group, which
are still smooth Fréchet manifolds. This approach leads among others to the group of compactly
supported diffeomorphisms Diffc(R), the group of rapidly decaying diffeomorphisms DiffS(R), or
the group of Sobolev diffeomorphisms DiffH∞(R) = ∩∞k=2DiffHk(R):

Diffc(R) : =
{
ϕ(x) = id + f : f ∈ C∞c (R), f ′ > −1

}
,

DiffS(R) : =
{
ϕ(x) = id + f : f ∈ S(R), f ′ > −1

}
,

DiffH∞(R) : =
{
ϕ(x) = id + f : f ∈ H∞(R), f ′ > −1

}
.

Note that for Diff(S1) all the above groups coincide.

B.1. The full H1/2-metric. We will first focus on the full H1/2-metric, which is geometrically the
most straightforward of the three metrics studied in this article. The H1/2-scalar product yields
a well-defined metric on any of the above defined diffeomorphism groups. For analytic reasons we
will consider the metric on the group of all Sobolev diffeomorphisms. Analogous to Section 1.3,
let Dq(R) be the Hilbert approximation manifold of DiffH∞(R). It has been shown in [6] that the

H1/2-metric extends to a smooth Riemannian metric on Dq(R) for any q > 3
2 . Thus we obtain

the analogue of the local well-posedness statement Theorem 6 for the full H1/2-metric on both
DiffH∞(R) and Dq(R):

Theorem 23. For any q > 3
2 the exponential map of the H1/2-metric is a smooth local diffeomor-

phism from a neighborhood V ⊂ Hq(R) of 0 onto a neighborhood U of the identity in Dq(S1)(R).
This result continues to hold in the smooth category DiffH∞(R).

For integer order metrics, one can show a similar statement on the group of compactly supported
diffeomorphisms, using groups of Ck-diffeomorphisms as approximation spaces. We are not aware
of any generalization of this result to the case of fractional-order metrics.

As a next step we want to discuss the corresponding geodesic distance. There are, however, two
obstacles against generalizing the proof for Diff(S1) presented in Section 1.4. First, the group of
Sobolev diffeomorphisms DiffH∞(R) is not a simple group, e.g., Diffc(R) and DiffS(R) are normal
subgroups. Furthermore the shift ϕ(x) = x+ 1 is not an element of the group. For the Hs-metric
of order s < 1

2 a direct construction for the vanishing geodesic distance result – using neither the
simplicity nor the shift diffeomorphism — has been proven in [3]. This construction uses indicator

function, which are elements of Hs(R) for s < 1
2 , but not of H1/2. Although we strongly believe

that the result continues to hold for the H1/2-metric on the diffeomorphism group of the real line,
this question remains open for the time being.
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Finally we want to comment on the non-Fredholmness results, presented in Section 2. The
constant vector field u = 1 is not an element of the Lie-algebra in the non-compact situation.
Thus we do not have the simple steady state solutions that were the main ingredient for the direct
proof of the non-Fredholmness. On the other hand, the construction of conjugate points along
arbitrary geodesic presented in Section 2.2 continues to hold in this situation, and thus we obtain
the non-Fredholmness of the exponential mapping also in the non-periodic case.

B.2. The degenerate Ḣ1/2-metric and the µH1/2-metric. We will finish this article with
some comments on the degenerate Ḣ1/2-metric and the µH1/2-metric. To prove vanishing geodesic
distance for these two metrics, one has to overcome similar problems as for the full H1/2-metric on
Diff(R) and thus we will not further consider this question. Instead we will sketch how one could
prove a well-posedness statement for the geodesic equation of these two metrics.

The µH1/2-metric does not induce a bounded inner product on H∞(R) and its Sobolev approx-
imations Hq(R). Instead of these L2-type decay conditions, we have to consider L1-type decay
condition, yielding the Lie-group DiffW∞,1(R) and its Banach approximations Dq,1(R). Here W∞,1

denotes the intersection of all Besov spaces W k,1 of type L1. For a proof of the Lie-group structure
of DiffW∞,1(R) we refer to the article [5]. On DiffW∞,1(R) the µH1/2-metric induces a smooth
right-invariant metric. To prove smoothness of the corresponding exponential mapping it remains
to prove that the metric extends to a smooth metric on its Banach approximations Dq,1(R) for high
enough q. This should follow using similar methods as in [21, 6].

The situation for the degenerate Ḣ1/2-metric is even more interesting. This inner product defines
a well-defined and non-degenerate metric for any of the previously diffeomorphism groups. However
it turns out that neither the adjoint ad>u v nor its symmetrized version exist on any of these groups.
As a consequence these groups do not admit a geodesic equation (or Levi-Civita covariant derivative)

for these metrics. This phenomenon was first observed for the related situation of the Ḣ1-metric
in the article [5].

Extending these groups by a one-dimensional space (to include diffeomorphisms that are a shift

near positive infinity) yields groups where the symmetrized version of the adjoint 1
2(ad>u v+ad>v u) is

defined. Thus we obtain a meaningful geodesic equation. To prove smoothness of the corresponding
exponential mapping it remains again to prove that the metric extends to a smooth metric on the
corresponding Banach approximation spaces, which follows similarily as in [21, 6].

Finally we consider blowup results for the Ḣ1/2-metric (equivalently, for the µH1/2-metric with
initial mean zero). This was the situation originally studied in Castro-Córdoba [11], where blowup
was proved for odd initial data. Here we extend this result by adapting Lemma 17, which works
essentially the same way as in the periodic case and avoids the machinery of Mellin transforms.

Lemma 24. Suppose f : R → R is a nonconstant function, and let Λ be the Fourier multiplier

defined so that Λ̂f(ξ) = |ξ| f̂(ξ). Define gp = H(fHΛpf) + fΛpf ; then gp(x) > 0 for every x ∈ R.

Proof. Again it is sufficient to prove this at x = 0, by translation invariance. Define the Fourier
transform F as

F(f)(ξ) = f̂(ξ) :=

∫
R
f(x)e−2πixξ dx

so that F−1(f)(ξ) = F(f)(−ξ) and note that f̂(−ξ) = f̂(ξ) since f is real-valued. The same
computation as in Theorem 17 (which also appears in [11]) gives

H(fHΛpf)(0) = −
∫ ∞
−∞

∫ ∞
−∞

sign (ξ + ψ) sign (ψ) |ψ|p f̂(ξ)f̂(ψ) dψ dξ.

We therefore have

gp(0) =

∫ ∞
−∞

∫ ∞
−∞

[
1− sign (ξ + ψ) sign (ψ)

]
|ψ|p f̂(ξ)f̂(ψ) dψ dξ,
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which may be rewritten, using the same techniques as in Theorem 17, as

gp(0) = 2

∫ ∞
0

pζp−1 |φ(ζ)|2 dζ, where φ(ζ) =

∫ ∞
ζ

f̂(ξ) dξ.

�
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